
Linear Algebra 2023 HW1
Cycle Detection

TA : b08201054 鄭承櫸、b08901172 莊鳴鐸
2023.09.22

Outline
1. Task Introduction

a. Graph
b. Cycle
c. Cycle detection application

2. Promblem1
3. Promblem2
4. Python Tips
5. Submission

Task Introduction

Graph
● A graph contains some nodes and some edges.

○ Often represented as G = (V, E) with V nodes and E edges.

● The edges can be directed or undirected.
○ (a, b) is an edge from node a to node b in a directed graph.

● This task is given the directed graph, we need to find out whether there
is a cycle in the graph.

Cycle
● A (simple) cycle is a path <v0, v1, …, vk> in which v0 = vk.

○ <4, 6, 7, 5, 4> is a cycle in this graph.

Application of Cycle Detection
● Detect whether there is a deadlock.

○ Deadlock is a situation where two or more processes (running program) are unable to
proceed because each is waiting for the other to release a resource they need in order
to continue.

○ In a deadlock, the processes are stuck and the system cannot make any progress.

https://www.geeksforgeeks.org/deadlock-detection-recovery/

https://www.geeksforgeeks.org/deadlock-detection-recovery/

Problem 1

Graph Representation-Incidence Matrix
● Each row corresponds to an edge and each column corresponds to a

node.
● Each row is an edge.
● If an edge is from node 1 to node 2, the value of column 1 will be -1 and

the value of column 2 will be 1.
● 0 otherwise.

Linear Dependent to Detect Cycle
● If the rows of the incidence matrix of graph G are linearly dependent,

then there is a cycle in G.

https://math.stackexchange.com/questions/3906422/submatrix-of-si
gned-incidence-matrix-of-a-graph-containing-a-cycle

https://math.stackexchange.com/questions/3906422/submatrix-of-signed-incidence-matrix-of-a-graph-containing-a-cycle
https://math.stackexchange.com/questions/3906422/submatrix-of-signed-incidence-matrix-of-a-graph-containing-a-cycle

Termination
● If we get ALL 0 row after addition, then the graph has a cycle.
● If we do addition on all the edges and we don’t get ALL 0, then the graph

does not have a cycle.
● Hint : You cannot terminate until there remains only one row in the sets.

P1 in colab

Problem 2

Graph Representation-Adjacency Matrix
● Each row and each column corresponde to a node.
● A cell (x, y) = 1 if there is an edge from node x to node y.
● 0 otherwise.

Matrix Multiplication

https://www.ics.uci.edu/~irani/w15-6B/BoardNotes/MatrixMultiplication.pdf

https://www.ics.uci.edu/~irani/w15-6B/BoardNotes/MatrixMultiplication.pdf

Matrix Multiplication
● If there are non-zero numbers in the diagonal, there are cycles in the

graph.

P2 in colab

Code implementation
● You should only complete functions p1_has_cycle() and p2_has_cycle().

○ True for the graph has cycle.
○ False for the graph does not has cycle.

● To reduce the execution time, you may use scipy.sparse.csr_matrix to
implement your code rather than list or numpy array.
○ Faster for computing sparse matix.
○ You can also use numpy to solve P1 and P2.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

Python Tips

List
● Generate an empty list.

○ L = List() or L = []

● Get a sublist of a list L.
○ From A to B : L[A : B]
○ From begin to B : L[:B]
○ From A to end : L[A :]

● a = b, if b is a class object (e.g. numpy array), this operation is sampe as
”given b an alias”, that is, a and b point to the same memory address.

Useful functions

What you should do in HW1
● Open this colab link, and copy the this file to your drive.
● Finish p1_has_cycle(), and p2_has_cycle().
● You can modify seed, #edges, #nodes for debug/test.

https://colab.research.google.com/drive/1gJHkHBVH_-vmDcplnxQksk8b7IkGmppH?usp=sharing

Grading
● Problem 1 (50%)

○ Group 0 (8% x 5 = 40%)
■ 1000 <= #edges <= 6000, 1000 <= #nodes <= 6000

○ Group 1 (10%)
■ 10000 <= #edges <=12000, 10000 <= #nodes <= 12000

● Problem 2 (50%)
○ Group 0 (8% x 5 = 40%)

■ 1000 <= #edges <= 6000, 1000 <= #nodes <= 6000
○ Group 1 (10%)

■ 10000 <= #edges <=12000, 10000 <= #nodes <= 12000
● Time limit : 5mins for each problem.

Note : There are no self-loops. We will execute Group 0 and Group 1 consecutively for each problem.

Submission Rule
● Download the ipynb file, named it {學號}_HW1.ipynb, and submit it to NTU

Cool.
○ e.g. b08201054_HW1.ipynb

Policy
● No plagiarism. The first time, you will receive a score of 0 on your

homework, and the second time, you will fail this course.
● Deadline : 2023/10/4 23:59, score * 0.8 per day, 0 for more than 3

days.
● Incorrect format : score * 0.9

Q & A

