Solid Type System

VS

Runtime Checks and Unit Tests

Vladimir Pavkin

Plan

e Fail Fast concept
e Type Safe Patterns

Fail Fast

Immediate and
visible failure

Where can it fail?

e Handled runtime exceptions & assertions

Handling runtime exceptions

Where can it fail?

e Runtime checks
e Handled runtime exceptions & assertions

Runtime checks

if(container == null)

1f(container.isInstanceOf[ContainerA])

Where can it fail?

e Runtime checks
e Handled runtime exceptions & assertions

Unit tests

Where can it fail?

e Runtime checks
e Handled runtime exceptions & assertions

Linters

Where can it fail?

e Compiler

e Runtime checks
e Handled runtime exceptions & assertions

The goal

To move as much as possible to
the Compiler

How?

Just give it
enough type information.

Type system to the rescue!

Before we start...

Examples
domain?

Beefcakes!

=

j (w oy

No offense intended :)

0] ¢4

No! Unhandled runtime failure!

Can we handle this?

var man = becomeAMan(person)
if(man !'= null)

name
else

Still not nice.

e code client has to clutter code with runtime checks (or fail)
e compiler won't complain if you forget to check

If you control the source code,
don't ever use null as a return result.
[t's like farting in an elevator.

Some random guy at a random Scala forum

The problem is

insufficient type information!
Return type should be something like

Option

Better API

def becomeAMan(douchebag: Person): Option[Man] =
1T (douchebag.weight > 70)
Some(new Man(douchebag.renameTo("Arny")))
else
None

e code is documentation
e client has to deal with None result at compile time.

Use wrapped value?

def (douchebag: Person): Option[WorkoutResult] =
becomeAMan(douchebag).map(man => man.workout())

Unwrap?

def (douchebag: Person): Boolean =
becomeAMan(douchebag) match {
case Some(man) => true
case None => false

3

Exceptions

Classic

def workout(man: Man): WorkoutResult =
1T ('man.hasShaker)
throw new Error("Not enough protein!!!1111")
else
// do some squats or stare in the mirror for 1h

Agdain!

e Client either uses try/catch or fails at runtime!
e Return type doesn't tell anything about possible failure

Let's add some
types!

scala.Either

scalaz.\/

Declare possible failure

& James Chapelard SWNSHEMEDIA

Better API

def workout(man:Man): ProteinFail \/ WorkoutResult =
1T (!'man.hasShaker)
ProteinFail("Not enough protein!!!1111").1left
else
somewWorkoutResult.right

e code is documentation
e client has to deal with errors at compile time.

scalaz.\/

Use wrapped value?

workout(man).map(result => submitToFacebook(result))

Unwrap?

def (w: ProteinFail \/ WorkoutResult): String
w match {
case -\/(fail) =>
case \/-(result) =>
S

1sInstanceOf[Man]

1sInstanceOf | T]

So runtime.

// Add another client type
case class PrettyGirl(name:String) extends GymClient

It still compiles.

And we charge girls as much as
douchebags!

It's an unhandled runtime failure!

1sInstanceOf[T]

sealed ADT

pattern matching

sealed = can't be extended in
other files

Algebraic Data Type

1) Product types
2) Sum types

Compiler knows
all the possible class/trait
children.

Sealed ADT + pattern matching

sealed trait GymClient
case class Man(name: String) extends GymClient
case class Douchebag(name: String) extends GymClient

def gymPrice(h: GymClient): Int = h match {
case Man("Arny") => 0
case _: Man => 100
case _: Douchebag => 200

}

What if we add girls now?

sealed trait GymClient

case class Man(name: String) extends GymClient

case class Douchebag(name: String) extends GymClient
case class PrettyGirl(name:String) extends GymClient

def gymPrice(h: GymClient): Int = h match {
case Man("Arny") => 0
case _: Man => 100
case _: Douchebag => 200

}

Compiler saved us again!

Tagging

Gym DB

Safer: Tags

Gym DB: safer keys

case class Beefcake(id: String @@ Beefcake,
name: String)
case class GymPass(id: String @@ GymPass,
ownerId: String @@ Beefcake)

Phantom Types

PullUp

PullUp

PullUp

Path Dependent Types
IIIEEME'_EEII EWE“.

The Two Gyms

The Two Gyms

Runtime solution
class Beefcake(val : Gym){
def (other: Beefcake): Unit = {

require(this.gym == other.gym)
println()
h
h

Path Dependent Types

class A {

class B
ks
val = new A
val = new A
var b = new al.B
b = new a2.B

Type depends on the value it belongs to.

Type safe solution

class Gym(val name: String){
class Beefcake(val gym: Gym){
def talkTo(other: Beefcake): Unit =
println("Wazzup, Hetch!™)

}
}

val normalGym = new Gym("nicefitness")

val swagGym = new Gym('"kimberly")

val normalGuy = new normalGym.Beefcake(normalGym)
val swagGuy = new swagGym.Beefcake(swagGym)
normalGuy.talkTo(swagGuy)

This is not a talk
about Scala type system.

Not covered:

e Trait composition
e Existential types
e Macros

e Type Classes

e Shapeless

Q&A

Thank you!

goo.gl/UOWYAB

https://raw.githubusercontent.com/vpavkin/types-vs-test-slides/master/slides.pdf
http://goo.gl/U0WYAB

