

Victor

Stinner

Python
Incompatible

Changes

Maintain Python upstream (python.org)
and downstream (Fedora and RHEL) for
Red Hat
Python core developer since 2010
Happy Fedora and vim user!
Went through many Python incompatible
changes since 2010…
https://twitter.com/VictorStinner

Victor STINNER

Past
D-day
API migration

A long time ago...
in a galaxy far, far away
There was Python 2.

Let’s travel 15 years in the past, before
Python 3...

In the Python 2 era, Django started to
become a real competitor of PHP
frameworks and Ruby on Rails.
One common issue in Django was
handling non-ASCII characters
French people are aware of these issues
with non-ASCII first names! (Stéphane)
In Python in general, handling Unicode
errors was a frequently asked question.

Python 2 Unicode errors

"abc" is a bytes string
"é"+u"ç" raises a Unicode error
Getting Unicode correctly is complicated
in Python 2.

Python 2: bytes vs Unicode

Python 3 fix the root issue: Unicode
becomes a first class citizen
"abc" is now a Unicode string
Migrating Python 2 to Python 3 is
painful: you have to handle all bytes vs
Unicode issues at once

Python 3 uses Unicode

Python 2.2 introduces iterators (PEP 234)
and generators (PEP 255)
Python 2 map() and zip() return a list:
consume more memory than a
generator
itertools imap() and izip() have to
be used explicitly
dict.items() returns a list,
dict.iteritems() creates a generator

Iterators and generators

Python 3 map() and zip() create a
generator
dict.items() creates a generator
Just use list(dict.items()) to get a
list

Python 3 uses generators

Python evolved as Python 3 to get a sane
default behavior
Use Unicode
Create generators
Python 3 is “consistent” again
… but is backward incompatible

Python 3

PEP 20: “There should be one –and
preferably only one– obvious way to do
it.”
Consistent coding style
Easier to teach
Easier to review

Why incompatible changes?

Python 3 initial plan was simple
Everybody has to run 2to3 on their code
at once to make it compatible with
Python 3
Problem: dependencies
Problem: maintainers wanted to keep
Python 2 support
Problem: the migration took 10 years

Python 3 D-Day

The C API is used by many third party C
extensions to extend Python
It’s a big part of Python success
Without C API, there is no Cython, no
numpy, no psycopg2, etc.

Then comes the C API

Python 3.11 optimizations changes
multiple core C structures
PyCodeObject

PyFrameObject

PyThreadState

Problem: some C extensions directly
access members of these structures

Python 3.11 C API changes

code->f_code
→ PyCode_GetCode(code)
frame->f_back
→ PyFrame_GetBack(frame)
tstate->frame
→ PyThreadState_GetFrame(tstate)
Problem: These functions requires
Python 3.11 or #ifdef

Update C extensions

Smoother

API updatesPresent

six allows writing a single code base
working with old and new Python
Add support for the new Python 3, rather
than removing support for the old
Python 2
New migration approach: port
incrementally the code
D-day approach abandoned: we learnt!

Python 3: six module

Python 2.7 support just ended upstream,
many projects still supported Python 2.7
Revert open() “U” mode removal
Revert collections ABC aliases removal
→ Removed again in Python 3.11
These changes affected too many
packages: give more time to update

Revert 3.10 changes

Revert unittest aliases removal
Revert configparser removals
Revert asyncore removal
Changes postponed to Python 3.12
Affected too many packages, it takes
time to update them (fix, release)

Revert 3.11 changes

Since 2020 (Python 3.9), one Python
release per year (PEP 602)
Backward compatibility policy (PEP 387)
updated to deprecate for 2 years:
2 Python releases
Example: deprecate in 3.11 and 3.12,
remove in 3.13 (3 years)

PEP 387

Python 2.7 (2010) hides them by default
Python 3.7 shows them in the __main__
module (PEP 565)
python -W default: display once
python -W error: raise an exception
python -X dev: Python development
mode

DeprecationWarning

Add new API
Deprecate only in the documentation
Emit DeprecationWarning
Explain how to update existing code
without losing support for old Python
versions (NEW!)
Remove the old API

Smooth deprecation

download_pypi_top.py: Download
source code of the PyPI top 5,000
projects
search_pypi_top.py: Search for code
pattern with a regex
Help updating affected projects
https://github.com/vstinner/misc/
tree/main/cpython/

Code search

Add new API
Doc and/or tool to update
Identify and update affected projects
Wait for releases of affected projects
Deprecate old API
Remove old API
Take ~3-5 years

Ideal migration

PEP 387 updated
Should no longer be used to write new
code
No scheduled the removal
No DeprecationWarning
Only in the documentation
Still documented and tested

Soft Deprecation

Some core Python dependencies have a
single unavailable maintainer
Busy with work, life duties, get bored,
sick, etc. (it’s not only about bus)
How to update projects when the
maintainer doesn’t reply?
Problem of funding maintenance of
these projects
Thankless work

Unmaintained projects

Projects behind closed doors
From short scripts to large applications
Old projects no longer maintained
Turnover
pyupgrade and upgrade_pythoncapi.py
or: keep an old Python (security!)

Hidden projects

C API: Provide new functions to old
Python
2020: Project created
upgrade_pythoncapi.py script
2021: Python 2.7 support for Mercurial
2022: Python 3.11 functions
10 projects are using it
https://pythoncapi-compat.readthedocs.io

pythoncapi-compat

Update your C extensions to use new
Python 3.11 functions
Copy pythoncapi_compat.h file to get
these functions on Python 3.10 and older
Keep support with Python 2.7
No need to update
pythoncapi_compat.h until you need a
new function

pythoncapi-compat

New functions must not return borrowed
references but strong references
New functions must not steal references
Well define ownership rules and lifetimes
of arguments and structure members
It should ease supporting the C API on
Python implementations other than
CPython

C API guidelines

C API now splitted in 3 categories (3
directories):
Limited C API (stable ABI)
Public C API
Internal C API

C API headers

My team tests Python 3.13 since alpha1
to detect issues as soon as possible
Rebuild Fedora Python packages (4000+)
with Python 3.12
Lot of work to identify the root cause,
report issue to upstream, propose a fix
Collaboration to get the fix merged and
get a release

Fedora COPR

Proactively search for affected projects
Document how to update code without
losing support with old Python versions
Helping to update affected projects give
a better insight on how to update code
Fedora provides early feedback
pythoncapi-compat for C API
Soft deprecation

What’s new?

Future
Better API

Python 3.2 implements Stable ABI (PEP
384): the limited C API
Build once, works all Python versions
Python 3.10: Maintaining the Stable ABI
(PEP 652), tests the ABI, better doc
2021: CI now fails on any ABI changes
(not just the stable ABI)
Cryptography and PySide binaries on
PyPI use the stable ABI

Stable ABI

New C API designed in 2019 to be
efficient on PyPy (and CPython)
ujson made 3x faster on PyPy with HPy
Universal ABI: build one, work on all
CPython and PyPy versions
numpy WIP port to HPy
https://hpyproject.org/

HPy project

Test Python nightly build in your CI
Bugs discovered earlier are easier to fix
Report issues to CPython bug tracker
If possible, start by testing Python alpha
versions

Test next Python

Q & A

Drawing by Djamila Knopf
Python and Red Hat are registered
trademarks

Sources

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39

