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Introduction

Many works address the problem of ranking documents by their
relevance.

Most of them rely on supervised algorithms such as classification and
regression.

Annotated: Neural Network, SVM
Statistics: TF-IDF, Readability, POS-Tag
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Introduction

The quality of results produced by supervised algorithms is dependent
on the existence of a large, domain-dependent training data set.

Amazon, Yelp
Netflix, IMDB

Unsupervised methods are an attractive alternative to avoid the
labor-intense and error-prone task of manual annotation of training
datasets.
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MRR - Ranking documents by their relevance

Graph-based

Vertices are the documents (review), and the edges are defined in
terms of the similarity between pairs of documents (ratings score and
textual).

f (u, v) = α ∗ sim txt(u, v) + (1− α) ∗ sim star(u, v) (1)

α : tune similarity function
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MRR - Ranking documents by their relevance

Similarity Functions

Textual
Cosine similarity of TF-IDF vectors

sim txt(u, v) = cos(tfidf (t.t), tfidf (v .t)) (2)

Stars
Euclidean distance normalized by Min-Max scaling

sim star(u, v) = 1− |u.rs − v .rs| −min(rs)

max(rs)−min(rs)
(3)
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MRR - Ranking documents by their relevance

Graph Centrality

Hypothesis: a relevant document has a high centrality index since it is
similar to many other documents.

Centrality index produces a ranking of vertices’ importance, indicating
the ranking of the most relevant document.
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MRR - Graph-Specific Similarity Threshold

Graph Pruning

Centrality is dependent on the existence of edges between nodes.

Prune the graph based on a minimum similarity between review.

E : mean of graph similarity

W ′(u, v) =

{
1, f (u, v) ≥ E ∗ β
0, otherwise

(4)

β : tune prune function
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Main steps of the MRR algorithm

♠♠
♥

4

♠♠
♥
♦♦

3

♦♦
♥♥

3

♦
♣♣

2

(A) Similarity Function
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(B) Graph-Speci �c Threshold
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(C) PageRank Scores

0.55

0.55 0.85

0.45

0.90

0.88

0.87

0.92

0.85

0.870.90

0.88
0.92

0.34

0.22

0.15

0.08

0.08

♠♠
♥
♦♦♦
♣♣

4
0.32

0.01

(A) Builds a similarity graph G between pairs of documents;

(B) Prune by removing all edges lower than the similarity threshold;

(C) Employ PageRank to obtain the centrality scores;
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MRR Algorithm

Algorithm 1 - MRR Algorithm (R, α, β): S

1: for each u, v ∈ R do
2: W [u, v ]← α ∗ sim txt(u, v)+(1-α) ∗ sim star(u, v)
3: end for
4: E ← mean(W )
5: for each u, v ∈ R do
6: if W [u, v ] ≥ E ∗ β then
7: W ′[u, v ]← 1
8: else
9: W ′[u, v ]← 0

10: end if
11: end for
12: S ← PageRank(W ′)
13: Return S
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Experiment Design

Dataset: reviews (rating score and text) of electronics and books
from the Amazon website.

Gold Standard: Human perception of helpfulness:

h(r ∈ R) =
vote+(r)

vote+(r) + vote−(r)
(5)

Metric: Normalized Discounted Cumulative Gain as NDCG@n
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Amazon Dataset

Electronics Books
Votes 48.20 (± 302.84) 29.71 (± 73.58)
Positive 40.12 (± 291.99) 20.60 (± 64.18)
Negative 8.08 (± 22.27) 9.11 (± 21.44)
Rating 3.73 (± 1.50) 3.41 (± 1.54)
Words 350.32 (± 402.02) 287.44 (± 273.75)
Products 383 461
Total 19,756 24,234

Table: Profiling of the Amazon dataset.
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MRR Evaluation

Experiments:

Baselines comparison;

Graph-Specific Threshold Assessment;

Parameter Sensibility; and

Run-time Performance.
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Experiment Design

Baselines:

TSUR et al. (2009) as REVRANK;

Core Virtual Review (200 most frequent words),
Rank by similarity distance to Core

Wu et al. (2011) as PR HS LEN;

Sentences similarity based on POS-Tags,
PageRank, Hits and Length

SVM Regression:

a) textual features TF-IDF and the star score,
b) the same features used by Wu et al. (2011)
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Relevance Ranking Assessment

NDCG@1 NDCG@5

SVM WU 0.80770 0.91817
SVM TFIDF 0.85539 0.93119
REVRANK 0.66052 0.68172
PR HS LEN 0.72689 0.77131
MRR 0.79877 0.81876

Table: Mean Performance on Book Reviews

MRR statistically outperformed all unsupervised baselines
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Relevance Ranking Assessment

NDCG@1 NDCG@5

SVM WU 0.76416 0.91535
SVM TFIDF 0.88986 0.94621
REVRANK 0.67903 0.72133
PR HS LEN 0.87434 0.87184
MRR 0.89403 0.89246

Table: Mean Performance on Electronic Reviews

MRR statistically outperformed all unsupervised baselines

MRR is comparable to supervised methods
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Graph-Specific Threshold Assessment

MRR performance is always better using a Graph-Specific threshold.
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Parameter Sensibility: α and β

α in all settings had a low influence (4%)

β produced the highest variation (17%).

Nevertheless when 0.8 ≤ β ≤ 0.9, the MRR varying only 6% .
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Run-time Assessment

Time required for producing a ranking for 383 products (log scale)

MRR presents a significantly lower running time
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Final Remarks

Contributions:

Unsupervised method: does not depend on an annotated training set;

Faster than other graph-centrality methods;

It performs well in different domains (e.g. closed vs. open-ended);

Significantly superior to the unsupervised baselines, and comparable
to a supervised approach in a specific setting.
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Further Work

Next steps:

Others clustering techniques for graph;

Methods to select the most relevant reviews;

Segmented Bushy Path widely explored in text summarization;
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Thanks

Thank You! Question?

source: https://github.com/vwoloszyn/MRR

contact: henrique.santos.003@acad.pucrs.br
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