This website is a semi-functional mirror of the original Project Euler. More information is available on GitHub.
projecteuler.net

Bouncy numbers

Problem 112

Published on 30 December 2005 at 06:00 pm [Server Time]

Working from left-to-right if no digit is exceeded by the digit to its left it is called an increasing number; for example, 134468.

Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420.

We shall call a positive integer that is neither increasing nor decreasing a "bouncy" number; for example, 155349.

Clearly there cannot be any bouncy numbers below one-hundred, but just over half of the numbers below one-thousand (525) are bouncy. In fact, the least number for which the proportion of bouncy numbers first reaches 50% is 538.

Surprisingly, bouncy numbers become more and more common and by the time we reach 21780 the proportion of bouncy numbers is equal to 90%.

Find the least number for which the proportion of bouncy numbers is exactly 99%.


Answer:
Go to back to Problems