This website is a semi-functional mirror of the original Project Euler. More information is available on GitHub.
Modified Fibonacci golden nuggets
Problem 140
Published on 03 February 2007 at 07:00 am [Server Time]
Consider the infinite polynomial series AG(x) = xG1 + x2G2 + x3G3 + ..., where Gk is the kth term of the second order recurrence relation Gk = Gk−1 + Gk−2, G1 = 1 and G2 = 4; that is, 1, 4, 5, 9, 14, 23, ... .
For this problem we shall be concerned with values of x for which AG(x) is a positive integer.
The corresponding values of x for the first five natural numbers are shown below.
x | AG(x) |
(√5−1)/4 | 1 |
2/5 | 2 |
(√22−2)/6 | 3 |
(√137−5)/14 | 4 |
1/2 | 5 |
We shall call AG(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 20th golden nugget is 211345365.
Find the sum of the first thirty golden nuggets.
Go to back to Problems