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Abstract—The integration of Finite Element Method (FEM)
with Graph Neural Networks (GNN) is gaining traction in ad-
dressing complex real-world problems through neural networks.
A significant challenge in this domain is managing boundary
conditions within FEM frameworks. To advance research in this
area, we introduce a pioneering Physical-Informed GNN architec-
ture. This novel design is specifically tailored to accurately model
Dirichlet boundary conditions using neural network method-
ologies. Furthermore, we delve into the relationship between
neural networks and the Galerkin method. To this end, we have
developed innovative neural network strategies for effectively
modeling the Galerkin matrix. The efficacy of our proposed
architecture is substantiated through a comprehensive series of
experimental validations. This research not only addresses key
challenges in FEM-GNN coupling but also opens new avenues
for exploring the synergies between computational methods and
neural network architectures in solving complex engineering
problems.

I. INTRODUCTION

Finite Element Method (FEM) is a predominant approach
in Partial Differential Problem(PDE), particularly in structure
mechanics problems, due to its precision and capability to
handle non-Euclidean topologies. Despite its advantages, FEM
is time-consuming and memory-intensive for large-sclae sys-
tems, often requiring linear or non-linear solving operatios.
With the advancements in Deep Learning, Graph Neural
Networks (GNN) have emerged as a promising solution for
processing non-Euclidean data. Inspired by Physics-Informed
Neural Networks (PINN) [15], the PI-GNN [5] model repre-
sents an innovative integration of FEM and GNN, aiming to
efficiently process physical loss and non-Euclidean data with
more flexibility than traditional grid data in PINN. However, to
handle the Dirichlet boundary condition applied to the FEM, it
intuitively adopts the static condensation formula to propagate
the information from the Dirichlet boundary to the inner part of
the solving domain. Which means that the Dirichlet boundary
condition is decoupled in this model.

In this study, we focus on linear elasticity problems, explor-
ing both the forward (solve loading force from displacement)
and reverse (solve displacement from loading force) processes.
Our approach includes adapting the static condensation for-
mula in FEM to intuitively handle Dirichlet boundary con-
ditions by propagating information from the boundary to the
domain’s interior.

Our key contributions are :

1) Introduction of Static Condensation Equivelant Archi-
tecture (SCEA) for modeling the Dirichlet boundary
condition in the FEM problem.

2) Developmenet of Galerkin Equivelant Architecture
(GEA), which takes several forms including the local
pseudo linear, local pseudo bilinear, and global version.

3) Extensive experiementation to analyze the relation be-
tween the observation ratio and the precision of the
model for various scenarios(invariant, boundary-variant,
and force-variant), in which could we visualize the
generalization competence for physical loss.

4) Proposal of a fast and differentialble assemble method
representing the assemble step in FEM as sparse-dense
tensor multiplication.

The source code for this project is publicly available
and can be accessed at the following GitHub repository:
https://github.com/walkerchi/ETHz-SP.

II. BACKGROUND

A. Abbreviation

Abbreviation Description
FEM Finite Element Method
PDE Partial Differential Equation
DoF Degree of Freedom
DBC Dirichlet Boundary Condition
NBC Neuman Boundary Condition
NB Non-Boundary

MLP Multi Layer Perceptron
GNN Graph Neural Network
GCN Graph Convolutional Neural Network
GAT Graph Attention Neural Network
SIGN Scalable Inception Graph Neural Networks
PINN Physics Informed Neural Network
SCEA Static Condenseing Equivelant Architecture
GEA Galerkin Equivelant Architecture
MSE Mean Square Error

TABLE I: Abbreviation Table

B. Symbol Table

C. Finite Element Method

Finite Element Method is a commonly used method for
solving Partial Differential Equation for it’s scalability and
accuracy. The canonical FEM process takes the steps as
followed.

1) First, generate a M in a given PDE domain Ω

https://github.com/walkerchi/ETHz-SP
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Symbol Physical/Mathematical Meanning Shape
d dimension of the problems R
σ stress Rd×d

ε strain, ε = 1
2
(∇u+∇u⊤) Rd×d

u displacement Rd

n
normal unit vector
on the boundary Rd

Ω the PDE domain
Γ boundary of domain Γ ⊂ ∂Ω
M mesh {V, C}
V vertices/nodes in the mesh N|V|

C elements/cells in the mesh N|C|×h

h
number of basis

for each element/cells N

B basis function B = {bi} |V| × (Rd → R)
E connections in the graph {(u, v)|bu(v) ̸= 0}
K Galerkin matrix RD×D

sparse
D,DI ,DD Total/inner/DBC DoF N

KII,ID,DD
Galerkin matrix within

NB/NB & DBC/ DBC DoF

RDI×DI
sparse

RDI×DD

RDD×DD

C stiffness tensor Rd×d×d×d

PV assemble tensor for nodes/vertices R|C|×h×|V|
sparse

PE assemble tensor for edges RC×h×h×|E|
sparse

A adjacency matrix of the graph R|V|×|V|
sparse

D degree matrix of a graph R|V|×|V|
diagonal

Ni neighbors of node i in a graph N|Ni|

TABLE II: Symbol Table

2) Second, turn the strong form PDE to weak form PDE.
Take the poisson equation as an example ∆u = −f ⇔∫
Ω
∇u∇vdv =

∫
Ω
fvdv1.

3) Third, choose the basis function function B = {bi|bi ∈
Rd → R} and quadrature rules Q = {ξi, ϕi|ξi ∈ R, ϕi ∈
Rd} for each element in the mesh M.

4) Fourth, compute the Galerkin matrix and load vec-
tor for each element. Take the poisson equation as
an example Kij =

∑
k ξk∇bi(ϕk)∇bj(ϕk)|J |, Fi =∑

k ξkbi(ϕk)f(ϕk)|J |2.
5) Fifth, the galerkin discretilized weak form becomes∫

Ω
∇u∇vdv =

∫
Ω
fvdv ≈ Kijui = Fj . By solving

this linear system, we got the variable u for each basis.

In a canonical FEM process. We first generate a mesh M in
a given PDE domain D.

D. Linear Elasiticity

As for continuum mechanics, the relationship between stress
and strain is modeled by a 4-th order tensor according to the
following Equation 1

σij = Cijklεkl (1)

Assume the most simple model, Linear Elasticity, which
could be formulated as Equation 2

σij = λδijεkk + 2µεij (2)

1u is called ”trial space”, v is called ”test space”
2J is the jacobian matrix, which define the transformation between the

standard element to the global deformed element

E. Static Condensing

Normally there are three boundary conditions for PDE
equation

1) Dirichlet Boundary Condition : u = g on ΓD

2) Neuman Boundary Condition : ∂u
∂n = h on ΓN

The NBC can be easily coupled in the weak form. As for
the DBC, static condensing is usually used to solve the DBC.
Considering the Dirichlet Boundary ΓD, we could partite the
Galerkin matrix into 2×2 block and load vector into 2 blocks
shown in Equation 3[

KII KID

K⊤
ID KDD

] [
uI

uD

]
=

[
FI

FD

]
(3)

Where, KII is the galerkin matrix for non-boundary DoF of
shape RDI×DI

sparse . And KID is the commute galerkin matrix for
non-boundary DoF and DBC DoF, which is of shape RDI×DD

sparse
. The KDD is the galerkin matrix for DBC Dof of shape
RDD×DD

sparse . In the DBC, the unkown and known parts are
notated in Figure 1, where orange parts are unknown parts and
blue parts are known parts. In this way, we could conclude that
the purpose of static condensatsion is calculate uI , FD using
K,uD, FI

KII KID

KDI KDD

uI

uD

FI

FD

× =

Fig. 1: Static Condenstation: blue parts are known, while
orange parts are unkown

According to Equation 3, we could obtain two essenstial
formulars for static condensing in Equation 4{

KIIuI = FI −KIDuD

K⊤
IDuI +KDDuD = FD

(4)

F. Graph Neural Network

Graph Neural Network is a popular deep learning tool
to handel non-euclidean data like social network [21] and
particle interaction [14]. And GNN is well researched for it’s
application on large scale graph with highly parallelism and
hardware optimization [1].

Chebyshev Spectral Convolutional Neural Network [2] first
introduce spectral approch to Graph Neural Network. Mean-
while, Graph Convoultional Network [11] is the first order
approximation of ChebNet, which takes a simple form as
Equation 5

H l+1 = Lσ(WH l + b) (5)

where L is the laplacian matrix which could be computed
by L = D− 1

2 ÂD− 1
2 . To prevent the self-information from

lost during the propogation, adjacency matrix with self loop
Â is adapted here. Furthermore, to ensure the consistent of
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information scale for all nodes, the propogation weight is
normalized by the square root inverse of degree of two nodes
connected by a edge.

Since Attention [19] obtain remarkable achievement in
Nature Language Processing and Computer Vision, it’s also
applied to GNN [20], which is Graph Attention Network. The
aggregation of GAT takes the form as Equation 6. Where W
is the learnable weight, Ni ∪ {i} denotes all the neighbors of
vertice i including itself. The compute the aggregation weight,
a softmax is used as in Equation 7

H l+1 = σ

 ∑
j∈Ni∪{i}

αijWhj

 (6)

αij =
exp(LeakyReLU(a⊤[Whi∥Whj ]))∑

k∈Ni∪{i} exp(LeakyReLU(a⊤[Whi∥Whk]))
(7)

Inspired by U-Net [16], Graph U-Net [6] is proposed to
learn the multi-scale information of the graph. As for the
pooling part, topk pooling is normally adopted, which takes
the form as Equation 8. Where i is the selected vertice index,
p is projection vector

i = topk(p
⊤H) (8)

Oversmoothing [17] is a command curse caused by the
message-passing framework. Since multiple propagations will
make far-away node features indistinguishable. However,
Scalable Inception Graph Neural Networks [3] keep multi-
propagation node features and concatenate them as the latent
feature. The architecture of SIGN is shown in Figure 2 and
Equation 9.

H = MLP(∥ni=0MLPi(L
iX)) (9)

X

I

L

Ln

·

·

·

MLP0

MLP1

MLPn

...

MLP

Fig. 2: SIGN overview: The node feature X is propogated by
multiple times {I ·X,L ·X, · · · , Ln ·X}. And these features
are concatenated to maintain the information in each stage.

G. GNN for FEM

Since the mesh from FEM is non-euclidean, some re-
searchers tried to use GNN to achieve the same goal as what
FEM does.

Some study use the element as node to build the graph [4, 9],
while others use the vertices in the mesh to build the graph [5,
12, 18]. We call the former graph the ‘Element Graph’, the
latter one ‘Vertice Graph’.

As for the element graph, study [9] directly encoder the
boundary condition into the feature of the element, using
a encoder-decoder GNN structure to simulate FEM. And
study [4] assume KID is a dense matrix, therefore, they
use dense connection between the boundary elements and the
interior elements.

For the vertice graph, study [5] use the naive method to
tackle the condensing, and directly process the load according
to Equation 4. To learn the latent physical rule, they use
Physical Informed Neural Network to train the model.

III. METHODOLOGY

A. Mesh to Graph

For this work, we choose vertice graph rather than element
graph. Since element graph is closer to Finite Volume Method
and it’s not equivelant to Finite Element Method from physical
view.

We use the Algorithm 1 to generate the graph connections
E from the given elements C. It’s easily implemented
in Pytorch [13] and could easily paralleled on GPU.
Line 4 could use torch.vmap(torch.meshgrid)
to parallel it. And for Line 5, we could use
torch.sparse_coo_tensor.coalesce to remove the
duplicated edges.

Algorithm 1 Mesh To Graph

1: function MESH2GRAPH(C)
2: Input: C ▷ Elements
3: Output: E ▷ Edges of the graph
4: E ← {(vi, vj) | vi, vj ∈ Ck}
5: E ← coo coalesce(E)
6: return E
7: end function

According to the Algorithm 1. Each element is considered
as a fully connected subgraph. The process of converting from
mesh M to graph G could be visualized as Figure 3

mesh to graph→

Fig. 3: Mesh To Graph: Each element is considered as a fully
connected subgraph

B. Fast Assemble

The assembly process is also a time-consuming part of
FEM. Traditionally, for loop is used to do the assembly.
However, it’s not paralleled and of low efficiency. In this sub-
section, we proposed a fast python-scope assembling method
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Fig. 4: Edge Assemble: The assemble process could be con-
sidered as a sparse matrix multiplication.

called ‘Fast Assemble’, which is fast and easy to parallel, thus
unlocking the potential of GPU and NPU.

Fast Edge Assemble The Pseudo code of Fast Edge Assem-
ble is presented below as Algorithm 2. It’s output is of shape
RD×D. The coo in Line 46 denotes the Coordinate List. And
csr represents Compressed Sparse Row sparse matrix storage
format, which is fast for multiplication and indexing.

The assemble process for Galerkin matrix could be viewed
as a sparse matrix multiplication (non-symmetry) shown in
Figure 4

Algorithm 2 Fast Edge Assemble

1: function BUILD EDGE PROJECTION(E ,C)
2: Input: E , C ▷ edges, elements
3: Output: PE ▷ Edge assemble matrix
4: Eid ← coo([1, · · · , |E|], E .u, E .v).tocsr()
5: Eid,local ← Eid(Cki, Ckj)
6: PE ← coo(1, Eid,local, [1, · · · , h2|C|])
7: return PE
8: end function
9: function FAST EDGE ASSEMBLE(C, K̂local)

10: Input: C, K̂local ▷ Elements, local Galerkin matirx
11: Output: K ▷ Global Galerkin matrix
12: E ← MESH2GRAPH(C)
13: PE ← BUILD EDGE PROJECTION(E , C)
14: K̂nkl

global ← P
nhij
E K̂hklij

local

15: K ← block coo(K̂nkl
global, E)

16: return K
17: end function

Fast Node Assemble There is also an algorithm for ‘Fast
Node Assemble‘, the result of which is RD. The similar
pseudo code is shown in Algorithm 3

If the topology of mesh stays consistent, then the com-
putational cost for both Fast Edge Assemble and Fast Node
Assemble is only a sparse matrix multiplication. Therefore,
the algorithm is fast and easy to parallel and can be directly
implemented on GPU using Pytorch [13].

C. Static Condenseing Equivelant Architecture

Suppose a naive situation 1, that for DBC vertice, all
dimension are constraints. For example, in the FEM problem,
all three dimension of the boundary node are fixed with certain
displacement.

Algorithm 3 Fast Node Assemble

1: function BUILD NODE PROJECTION(C)
2: Input: E , C ▷ edges, elements
3: Output: PV ▷ Edge assemble matrix
4: PV ← coo(1, C, [1, · · · , h2|C|])
5: return PV
6: end function
7: function FAST EDGE ASSEMBLE(C, F̂local)
8: Input: C, F̂local ▷ Elements, local load vector
9: Output: K ▷ Global load vector

10: PE ← BUILD NODE PROJECTION(C)
11: F̂nk

global ← Pnhi
E F̂hki

local

12: F ← block coo(F̂nkl
global, E)

13: return F
14: end function

Assumption 1. The DBC is applied to all dimensions of a
vertice

In Equation 4, we substitute the first formula with GNN
which is formulated in Equation 10

GNNθ1(AII , f
′
I , x) ≈ K−1

II (xI)(f)

B-GNNθ2(AIB , uB , xB) ≈ −KIBuB

(10)

The backbone GNN, denoted as GNNθ1 and parameterized
by θ1, is designed to solve the linear system. In contrast,
the Bi-partite GNN, B-GNNθ2 , with parameters θ2, models
the propagation from boundary displacement to inner load-
ing force. The architecture of B-GNNθ2 , as described by
Equation 11, comprises two Multi-Layer Perceptrons (MLPs).
Figure 5 provides a detailed visualization of this process.

B-GNNθ2(x) = MLP2(ADIMLP1(x)) (11)

MLP MLP

Fig. 5: Bi-Partite Graph Neural Network: Orange circles
represent boundary nodes, while blue circles denote inner
nodes. Rectangles indicate the node features. Boundary node
features are processed by a Multi-Layer Perceptron (MLP)
before aggregation at the inner nodes, followed by another
MLP to map the aggregated features.

By substituting the mutual Galerkin KIB and inverse of
inner Galerkin K−1

II with GNN. We could obtain the static
condensation as Equation 12
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uI = K−1
II (fI −KIBuB)

↓
uI = GNNθ1(AII , fI + B-GNNθ2(ABI , uB), xI) (12)

To visualize the architecture more intuitively, we draw the
pipeline in Figure 6.

FI

FD

Backbone GNN ui

uDBipartite GNN

ADI

AII

ADD

AID

+

Fig. 6: SCEA: The Static Condense Equivelant Architecture
overview. The Bipartite GNN is a kind of GNN that propagate
message on a bi-partite graph. The Backbone GNN could be
any canonical GNN. For example, GCN and GAT.

The Bipartite GNN is built specially for propagating infor-
mation from DBC nodes to inner nodes. It takes the form of
Equation 13

FD ≈ MLPI(AIDMLPD(uD)) (13)

D. Physical Loss

To illustrate the physical loss in detail, we take the Linear
Elasticity PDE here.

In order to optimize the parameters in GNN to predict a
better displacement u.

Strong Form Loss The most intuitive loss is the strong
form loss. Which is directly the left and right side residual of
the linear system equation. Normally, Mean Square Error is
usually used. Therefore, we formulate the strong form loss as
following Equation 14

Lphy strong = ∥Ku− f∥2 (14)

Weak Form Loss Apart from the linear system, we could
also get a equation at the weak form equation. Therefore, we
could also formulate the another loss as Equation 15

Lphy weak =∥∥∥∥∥∥∥PV

∫
Ω

∂u
∂x 0
0 ∂u

∂y
∂u
∂y

∂u
∂x


eid

DeijBebjd|J |e − febdNb|J |edv


∥∥∥∥∥∥∥
2

(15)

where D and B are denoted using vigoit notation. The
matrix PV is referred to as the vertice assemble matrix, which
is a transformation mapping from R|C|×b→|V|. The gradient
(∇u)ed is calculated by multiplying the gradient of the shape
functions (∇N)ebduebd with the nodal values uebd. Here, e
stands for element, b for basis, d for dimension, and i, j are
used for indices in the context of reduction.

E. Galerkin Equivelant Architecture

As for another problem, we want to model the forward
process which is K,u → f rather than K, f → u. We
could either predict the local Galerkin matrix to get the global
Galerkin matrix by Fast Edge Assemble 2 or predict the global
Galerkin matrix directly.

Local Pseudo Linear GEA Assume we could predict the
local Galerkin matrix directly from the vertice coordinates by
a simple neural network MLPθ(x) ≈ K̂local, then we could
propose the first Local Pseudo Linear GEA as Equation 19.

K = bsr matrix(PEK̂local) (16)
↓ (17)
K = bsr matrix(PEMLPθ(x)) (18)

Local Pseudo Bilinear GEA Since the Local Pseudo
Linear GEA cannot maintain the bilinear feature of the vigoit
notation. Therefore, we proposed another approach: Local
Pseudo Bilinear GEA with assumption MLPθ1(x) ≈ B and
θ2,ij + θ2,ji − θ2,ii ≈ D. Then we could also obtain the
prediction for global Galerkin 16.

K = bsr matrix(PEB
⊤DB) (19)

↓ (20)

K = bsr matrix(PEMLPθ1(x)
⊤ (21)

(θ2 + θ⊤2 − diag(θ))MLPθ1(x)) (22)

Global GEA We could also predict the global Galerkin
matrix directly using an Edge-GNN 23.

Ke = MLP([xu||xv]) (23)

For all these methods, the loss function is defined as
Equation 24

L = ∥Ku− f∥ (24)
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Method GNN iterative method direct method
Memory Consumption O(e) O(e) O(n

3
2 )

Time Complexity O(e) O(le) O(n
3
2 )

TABLE III: Approaximated Complexity for each method

F. Complexity Analysis

There are many methods to solve the sparse linear system
Au = f . We could mainly categorized them into two parts: the
iterative methods such as Conjugated Gradient, Bi-Conjugated
Gradient Stable, etc. and direct methods Cholesky or LU
decomposition.

Assume a sparse matrix with e non-zero entries and of size
n × n, where typically e ≫ n. For the operation of matrix-
vector multiplication Au, both time and memory complexities
are O(e). These complexities are detailed in Table III, where
different methods are compared. Iterative methods, which
dynamically assess convergence, introduce an iteration count
l. Commonly, the maximum number of iterations is capped at
10, 000, and the convergence threshold for the residual is set
to 10−5.

IV. EXPERIMENTS

A. Setup

Baselines
• GCN [11]: Since GCN suffers from over-smoothing, we

make GCN to be 3 layers in depth with 64 hidden size.
The activation function is defaulted to ReLU [8].

• GAT [20]: The GAT also suffers from an over-smoothing
problem. We fix the depth, hidden size, and activation
function of GAT the same as GCN. The number of head
for multi-head attention is fixed at 4.

• GraphUNet [6] : The topk pooling will sample 50% of
vertices. The ensure the information could reach the other
side on the mesh. The depth of the GraphUNet is fixed
at 3.

• SIGN [3] : SIGN is a decoupled method, it will keep the
information for each propagation step. Therefore, it won’t
suffer from the over-smoothing. Each MLP is assumed to
be 3 layers with a hidden size 64 and activation function
ReLU. The number of propagation n in Equation 9 and
Figure 2 is set to be 8. In this way, the information will
reach the same distance as GraphUNet.

• NodeEdgeGNN: Sometimes, relative position is preferred
instead of normalized position. Therefore, we need a
artificial GNN that only process the edge feature. So we
propose a GNN called NodeEdgeGNN. Inspired by [14],
we build basic block of graph convolution as Equation 25.

H l+1
E ← σ

(
WE

(
[H l

V,u∥H l
V,v∥H l

E ]
)
+ bE

)
H l+1

V,i ← σ

WV
1

|Ni ∪ {i}|
∑
j∈Ni

H l+1
E,ij + bV

 (25)

The depth, hidden size and activation function are set the
same as GCN.

• MLP :Like the neural operator, without topology informa-
tion, we could also implement the prediction task using
MLP.

Hardware
The experiments are carried on a laptop with i5-11300H

CPU with 16GB RAM and a Nvidia MX450 GPU with 2GB
RAM.

Dataset
The mesh M is generated using Gmsh [7], a fast mesh

generating library in C++. Each element Ck is supposed to be
a triangle with three bases h = 3. The basis function for the
triangle element is shown in Equation 26.

b1 = 1− x− y

b2 = x (26)
b3 = y

where x, y here is the local coordinate, which is considered
be constrained by x, y ∈ [0, 1] ∩ x+ y ≤ 1.

We applied different boundary conditions and load condi-
tions for mesh, which is shown from Figure 7 to Figure 9.
The models are expected to train on the condition in Figure 7,
and test on all these three Figures 789.
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Fig. 7: Rectangle shape with triangle mesh. The upper bound-
ary is applied with a downward force f = sin(2πx), the
bottom boundary are fixed in all two dimensions
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Fig. 8: Rectangle shape with triangle mesh. The upper bound-
ary is applied with a downward force f = sin(πx), the bottom
boundary are fixed in all two dimensions

Loss
To combine the physical loss with data loss, we proposed

three methods, which are
• equal : the total loss is the direct sum of data loss and

physical loss.
L = Ldata + Lphy (27)
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Fig. 9: Rectangle shape with triangle mesh. The upper bound-
ary is applied with a downward force f = sin(2πx), the left
and right boundaries are fixed with all two dimensions.

• weight : the total loss is the weighted sum of data loss
and physical loss.

L = Ldata + λLphy (28)

where λ = 0.01
• auto weight [10]: the data loss is the parameters

(θdata, θphy) controlled weighted sum of data loss and
physical loss.

L =
Ldata

2θ2data
+
Lphy

2θ2phy
+ log(1+ θ2data)+ log(1+ θ2phy) (29)

B. Observed Data Variant

In this experiment, when the condense type is none,
it means that all the DBC is added to the training set. As
for static. Then part of the static condensation will be
executed, it takes form as Equation 30. When the nn is
adopted, then the exact SCEA will be applied according to
Equation 12

u ≈ GNNθ(AII , fI −KIDuD) (30)

The train ratio means how many portions of data
except DBC are observable. When train ratio becomes
1.0, then all the data are known. On the contrary, when train
ratio is 0.0, only DBC are known.

Invariant Test
In the invariant test, the dataset utilized for testing is

identical to the one used for training.
When the training ratio is set to 0.0, it implies

exclusive reliance on the physical loss for condense type
settings of either static or nn. This configuration allows for
an assessment of the loss function’s effectiveness in adhering
to physical constraints. Conversely, for a condense type
of none, Dirichlet Boundary Conditions (DBC) are employed,
forming a data-driven training set.

There are some interesting observations.
• When the train ratio is set to 0.0, SIGN with

either static or nn demonstrates optimal performance,
indicating its capability to infer latent physical rules
effectively in the absence of observed data.

• At a train ratio of 0.0, the performance of static
and nn condense types is nearly identical. This suggests
that the B-GNN is adept at modeling the propagation of
boundary conditions.
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test on rectangle_sin2 with characteristic length 0.1
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Fig. 10: Invariant Test(with load condition f = sin(2πx) and
bottom boundary fixed and strong physical loss(Equation 14)
with equal total loss L = Ldata + λLphy is adopted)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
train_ratio

10 5

10 4

10 3

10 2

10 1

100

101
m

se
test on rectangle_sin2 with characteristic length 0.1

model
GAT
GCN
GraphUNet
MLP
NodeEdgeGNN
SIGN
condense_type
none
nn
static

Fig. 11: Invariant Test(with load condition f = sin(2πx) and
bottom boundary fixed and strong physical loss(Equation 14)
with equal total loss L = Ldata

2θ2
data

+
Lphy

2θ2
phy

+ log(1+θ2data)+ log(1+

θ2phy) is adopted)

Frequency Variant Test
In the frequency variant test, distinct datasets are used for

training and testing. The model is trained using the dataset
depicted in Figure 7 and evaluated on the dataset illustrated in
Figure 8. The outcomes of this test are presented in Figure ??.

Boundary Variant Test
In boundary variant test, the training dataset and testing

dataset are different. The model is trained on dataset shown
in Figure 7 and tested on dataset shown in Figure 9. The result
is shown in Figure 13.

For the frequency variant and boundary variant tests, we
present only the results using the auto weight loss, as defined
in Equation 29.

Based on these tests, we can draw the following conclu-
sions:
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Fig. 12: Frequency Variant Test(with load condition f =
sin(πx) and bottom boundary fixed and strong physical
loss(Equation 14) with auto weight total loss(Equation 29) is
adopted)
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Fig. 13: Boundary Variant Test(with load condition f =
sin(2πx) and left+right boundary fixed and strong physical
loss(Equation 14) with auto weight total loss(Equation 29) is
adopted)

• Performance in the frequency variant test surpasses that
in the boundary variant test.

• A notable disparity exists between the physical loss
and data loss, indicating that achieving generalization in
models trained with physical loss is challenging.

C. Case Study

In this subsection, we visualize the prediction result from
SCEA. Specifically, we adopt the GNN SIGN trained only on
the condition of the bottom Dirichlet boundary and top loading
force of f(x) = sin(2x). The model is trained for 1000 epochs
with a learning rate of 0.01. The target loss function is strong
form loss as shown in Equation 14.

We first test the prediction result on the same boundary and
loading condition as the training dataset as shown in Figure 14.
As can be seen, the result is pretty close to the ground truth.

To better investigate if the model has learned the frequency
information from the loading function, we perform the fre-
quency variant test, which changes the test loading frequency
from 2 to 1, meaning the test mesh is somewhat different from
the training mesh. The result is shown in Figure ??. The result
is not as good as expected, meaning the model seldom learns
anything from the loading information.

On the other hand, to study the influence of the Dirichlet
boundary condition topology, we also change the boundary
condition of the dataset, which is shown in Figure 16. The
result is also not as good as expected. Since one can hardly
find any common from ground truth and prediction. It means
that the model also cannot learn the boundary information
from the one-shot training.

D. Generalization

To thoroughly evaluate the generalization capabilities of
models trained with physical loss, we generated a compre-
hensive collection of random datasets. These datasets are
primarily categorized into two topological types: triangles and
quadrilaterals.

The triangle datasets were created by introducing a slight
deviation to a standard unit triangle. This process is methodi-
cally detailed in Equation 31. Each triangle is slightly altered
to introduce variability, yet maintaining a basic triangular
structure. On the other hand, the generation of quadrilateral
datasets follows a similar approach but adheres to the formula
outlined in Equation 32. These quadrilaterals vary in shape
and size, offering a diverse range of geometries for analysis.
Representative examples from these datasets are illustrated in
Figures 17 and 18, showcasing the range of variability within
each category.

V =

[
0 0 1
0 1 0

]
+N (0, 0.4) (31)

V =

[
0 0 1 1
0 1 0 1

]
+N (0, 0.4) (32)

In total, 840 distinct datasets were produced, each char-
acterized by unique boundary conditions and loading forces.
This extensive collection is designed to rigorously test the
model’s ability to adapt and learn from varied geometrical
configurations and stress scenarios.

The experimental setup involves training the model on these
datasets for a duration of 200 epochs, with a set learning rate of
0.005. This training regimen is aimed at thoroughly exposing
the model to a wide spectrum of data, thereby challenging its
learning and generalization mechanisms.

The outcomes of this training are depicted in Figure 19. A
cursory examination of this figure reveals a notable struggle in
the model’s ability to consistently learn and replicate physical
patterns across the diverse range of datasets. This observation
is further substantiated by the recorded loss metrics, as shown
in Figure 20. Here, a significant discrepancy is observed be-
tween the data loss and physical loss metrics. Such a disparity
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Fig. 14: model trained with loading function f(x) = sin(2x) and bottom Dirichlet boundary using physical loss is tested on
loading function of f(x) = sin(2x) and same boundary condition

Fig. 15: model trained with loading function f(x) = sin(2x) and bottom Dirichlet boundary using physical loss is tested on
loading function of f(x) = sin(x) and same boundary condition

Fig. 16: model trained with loading function f(x) = sin(2x) and bottom Dirichlet boundary using physical loss is tested on
loading function of f(x) = sin(2x) with left and right Dirichlet boundary
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Fig. 17: Randomly generated triangle dataset

could be attributed to the fundamental differences in their
calculation methods. The physical loss computation involves
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Fig. 18: Randomly generated triangle dataset

the gradient of the shape function, focusing on the variation
of geometric properties, whereas the data loss calculation is
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solely concerned with the discrepancies in function values.
This divergence in approach may underlie the challenges faced
by the model in achieving a high degree of generalization
across varied datasets.

E. Galerkin Prediction

In our study, we focus on the forward problem, specifically
targeting the direct prediction of the Galerkin matrix. To this
end, we employ the Galerkin Equivalent Architecture (GEA)
method, which encompasses several sub-methods.

For our experiments, we utilize the Pratt bridge truss dataset,
which is composed of trusses. The structure of these trusses
is depicted in Figure 21.

The models undergo extensive training for 20,000 epochs
using the Adam optimizer. To enhance the learning process, we
implement a cosine scheduler that progressively reduces the
learning rate with each epoch. The Multi-Layer Perceptron
(MLP) used in our models is configured with four layers
and includes residual connections, enhancing its capacity for
learning complex patterns.

Among the various approaches, the most intuitive is the
pseudo bilinear method, as described in Equation 19. The
efficacy of this method is evaluated by comparing the predicted
Galerkin matrix with the ground truth, as shown in Figure 22.

In addition to the Local Pseudo Bilinear Galerkin Equivalent
Architecture, we also explore other variants. The results of
another such variant are illustrated in Figure 23.

Furthermore, we extend our analysis to the global Galerkin
prediction, as outlined in Equation 23. The comparison of
predictions with the actual Galerkin matrices is visually rep-
resented in Figure 24.

Upon examining Figures 22, 23, and 24, it becomes evident
that, despite the challenges inherent in predicting the Galerkin
matrix as indicated by the loss function in Equation 24, the
Global Galerkin Equivalent Architecture demonstrates supe-
rior performance compared to the local variants.

V. CONCLUSION

In this study, we delve into two principal problems in the
realm of structural analysis. The first is the reverse problem,
focused on deducing the displacement of a structure given
the applied loading force. The second, known as the forward
problem, involves predicting the loading force from known
displacements. To address the reverse problem, we introduce
the Static Condensation Equivalent Architecture (SCEA). This
innovative approach integrates the concept of static condensa-
tion into Graph Neural Network (GNN) frameworks, offering
a novel perspective in computational mechanics.

For the forward problem, we propose the Galerkin Equiv-
alent Architecture (GEA). This architecture is not a singular
solution but rather a suite of implementations, each tailored to
capture the complex interactions in structural systems under
varying conditions.

Our experimental findings shed light on the underlying
connections between Graph Neural Networks (GNNs) and
the Finite Element Method (FEM). These insights not only
demonstrate the potential of GNNs in accurately modeling

structural responses but also pave the way for future explo-
rations in this interdisciplinary field. The SCEA and GEA,
with their respective focuses, contribute significantly to our
understanding of the intricate relationship between machine
learning algorithms and traditional finite element analysis,
opening new avenues for research and development in struc-
tural engineering and computational mechanics.
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