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Introduction

Getting Help

The latest release of wannier90 and documentation can always be found at http://www.wannier.org.

The development version may be cloned/downloaded from the official repository of the wannier90 code
on GitHub (see https://github.com/wannier-developers/wannier90).

There is a wannier90mailing list for discussing issues in the development, theory, coding and algorithms
pertinent to MLWF. You can register for this mailing list by following the links at http://www.
wannier.org/forum.html. Alternatively, for technical issues about the wannier90 code, check the
official repository of wannier90 on GitHub where you may raise issues or ask questions about about
its functionalities.

Finally, many frequently asked questions are answered in Appendix B. An expanded FAQ session may
be found on the Wiki page of the GitHub repository at https://github.com/wannier-developers/
wannier90/wiki/FAQ.

Citation

We ask that you acknowledge the use of wannier90 in any publications arising from the use of this
code through the following reference

[ref] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D.
Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.M. Lihm, D. Marchand, A.
Marrazzo, Y. Mokrousov, J.I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T.
Ponweiser, J. Qiao, F. Thöle, S.S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I.
Souza, A.A. Mostofi, J.R. Yates,
Wannier90 as a community code: new features and applications, J. Phys. Cond. Matt. 32,
165902 (2020)
https://doi.org/10.1088/1361-648X/ab51ff

If you are using versions 2.x of the code, cite instead:

[ref] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari,
An updated version of wannier90: A Tool for Obtaining Maximally-Localised Wannier
Functions, Comput. Phys. Commun. 185, 2309 (2014)
http://dx.doi.org/10.1016/j.cpc.2014.05.003
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It would also be appropriate to cite the original articles:

Maximally localized generalized Wannier functions for composite energy bands,
N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

Maximally localized Wannier functions for entangled energy bands,
I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

Credits

The Wannier90 Developer Group includes Giovanni Pizzi (EPFL, CH), Valerio Vitale (Cambridge,
GB), David Vanderbilt (Rutgers University, US), Nicola Marzari (EPFL, CH), Ivo Souza (Universi-
dad del Pais Vasco, ES), Arash A. Mostofi (Imperial College London, GB), and Jonathan R. Yates
(University of Oxford, GB).

The present release of wannier90 was written by the Wannier90 Developer Group together with Ry-
otaro Arita (Riken and U. Tokyo, JP), Stefan Blügel (FZ Jülich, DE), Frank Freimuth (FZ Jülich,
DE), Guillame Géranton (FZ Jülich, DE), Marco Gibertini (EPFL and University of Geneva, CH),
Dominik Gresch (ETHZ, CH), Charles Johnson (Imperial College London, GB), Takashi Koretsune
(Tohoku University and JST PRESTO, JP), Julen Ibañez-Azpiroz (Universidad del Pais Vasco, ES),
Hyungjun Lee (EPFL, CH), Jae-Mo Lihm (Seoul National University, KR), Daniel Marchand (EPFL,
CH), Antimo Marrazzo (EPFL, CH), Yuriy Mokrousov (FZ Jülich, DE), Jamal I. Mustafa (UC Berke-
ley, USA), Yoshiro Nohara (Tokyo, JP), Yusuke Nomura (U. Tokyo, JP), Lorenzo Paulatto (Sorbonne
Paris, FR), Samuel Poncé (Oxford University, GB), Thomas Ponweiser (RISC Software GmbH, AT),
Florian Thöle (ETHZ, CH), Stepan Tsirkin (Universidad del Pais Vasco, ES), Małgorzata Wierzbowska
(Polish Academy of Science, PL).

Contributors to the code include: Daniel Aberg (w90pov code), Lampros Andrinopoulos (w90vdw
code), Pablo Aguado Puente (gyrotropic routines), Raffaello Bianco (k-slice plotting), Marco Buon-
giorno Nardelli (dosqc v1.0 subroutines upon which transport.f90 is based), Stefano De Gironcoli
(pw2wannier90.x interface to Quantum ESPRESSO), Pablo Garcia Fernandez (matrix elements of the
position operator), Nicholas D. M. Hine (w90vdw code), Young-Su Lee (specialised Gamma point
routines and transport), Antoine Levitt (preconditioning), Graham Lopez (extension of pw2wannier90
to add terms needed for orbital magnetisation), Radu Miron (constrained centres), Nicolas Poilvert
(transport routines), Michel Posternak (original plotting routines), Rei Sakuma (Symmetry-adapted
Wannier functions), Gabriele Sclauzero (disentanglement in spheres in k-space), Matthew Shelley
(transport routines), Christian Stieger (routine to print the U matrices), David Strubbe (various bug-
fixes/improvements), Timo Thonhauser (extension of pw2wannier90 to add terms needed for orbital
magnetisation), Junfeng Qiao (spin Hall conductivity).

We also acknowledge individuals not already mentioned above who participated in the first Wannier90
community meeting (San Sebastian, 2016) for useful discussions: Daniel Fritsch, Victor Garcia Suarez,
Jan-Philipp Hanke, Ji Hoon Ryoo, Jürg Hutter, Javier Junquera, Liang Liang, Michael Obermeyer,
Gianluca Prandini, Paolo Umari.

wannier90 Version 2.x was written by: Arash A. Mostofi, Giovanni Pizzi, Ivo Souza, Jonathan R.
Yates. wannier90 Version 1.0 was written by: Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee.
wannier90 is based on the Wannier Fortran 77 code written for isolated bands by Nicola Marzari and
David Vanderbilt and for entangled bands by Ivo Souza, Nicola Marzari, and David Vanderbilt.
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wannier90 c© 2007-2020 The Wannier Developer Group and individual contributors

Licence

All the material in this distribution is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA.
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Chapter 1

Methodology

wannier90 computes maximally-localised Wannier functions (MLWF) following the method of Marzari
and Vanderbilt (MV) [1]. For entangled energy bands, the method of Souza, Marzari and Vanderbilt
(SMV) [2] is used. We introduce briefly the methods and key definitions here, but full details can be
found in the original papers and in Ref. [3].

First-principles codes typically solve the electronic structure of periodic materials in terms of Bloch
states, ψnk. These extended states are characterised by a band index n and crystal momentum k.
An alternative representation can be given in terms of spatially localised functions known as Wannier
functions (WF). The WF centred on a lattice site R, wnR(r), is written in terms of the set of Bloch
states as

wnR(r) =
V

(2π)3

∫
BZ

[∑
m

U (k)
mnψmk(r)

]
e−ik.R dk , (1.1)

where V is the unit cell volume, the integral is over the Brillouin zone (BZ), and U(k) is a unitary
matrix that mixes the Bloch states at each k. U(k) is not uniquely defined and different choices will
lead to WF with varying spatial localisations. We define the spread Ω of the WF as

Ω =
∑
n

[
〈wn0(r)|r2|wn0(r)〉 − |〈wn0(r)|r|wn0(r)〉|2

]
. (1.2)

The total spread can be decomposed into a gauge invariant term ΩI plus a term Ω̃ that is dependant
on the gauge choice U(k). Ω̃ can be further divided into terms diagonal and off-diagonal in the WF
basis, ΩD and ΩOD,

Ω = ΩI + Ω̃ = ΩI + ΩD + ΩOD (1.3)

where

ΩI =
∑
n

[
〈wn0(r)|r2|wn0(r)〉 −

∑
Rm

|〈wnR(r)|r|wn0(r)〉|2
]

(1.4)

ΩD =
∑
n

∑
R6=0

|〈wnR(r)|r|wn0(r)〉|2 (1.5)

ΩOD =
∑
m 6=n

∑
R

|〈wmR(r)|r|wn0(r)〉|2 (1.6)

The MV method minimises the gauge dependent spread Ω̃ with respect the set of U(k) to obtain
MLWF.

wannier90 requires two ingredients from an initial electronic structure calculation.
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1. The overlaps between the cell periodic part of the Bloch states |unk〉

M (k,b)
mn = 〈umk|unk+b〉, (1.7)

where the vectors b, which connect a given k-point with its neighbours, are determined by
wannier90 according to the prescription outlined in Ref. [1].

2. As a starting guess the projection of the Bloch states |ψnk〉 onto trial localised orbitals |gn〉

A(k)
mn = 〈ψmk|gn〉, (1.8)

Note that M(k,b), A(k) and U(k) are all small, N ×N matrices1 that are independent of the basis set
used to obtain the original Bloch states.

To date, wannier90 has been used in combination with electronic codes based on plane-waves and
pseudopotentials (norm-conserving and ultrasoft [4]) as well as mixed basis set techniques such as
FLAPW [5].

1.1 Entangled Energy Bands

The above description is sufficient to obtain MLWF for an isolated set of bands, such as the valence
states in an insulator. In order to obtain MLWF for entangled energy bands we use the “disentangle-
ment” procedure introduced in Ref. [2].

We define an energy window (the “outer window”). At a given k-point k, N (k)
win states lie within this

energy window. We obtain a set of N Bloch states by performing a unitary transformation amongst
the Bloch states which fall within the energy window at each k-point:

|uopt
nk 〉 =

∑
m∈N(k)

win

Udis(k)
mn |umk〉 (1.9)

where Udis(k) is a rectangular N (k)
win × N matrix2. The set of Udis(k) are obtained by minimising the

gauge invariant spread ΩI within the outer energy window. The MV procedure can then be used to
minimise Ω̃ and hence obtain MLWF for this optimal subspace.

It should be noted that the energy bands of this optimal subspace may not correspond to any of the
original energy bands (due to mixing between states). In order to preserve exactly the properties of a
system in a given energy range (e.g., around the Fermi level) we introduce a second energy window.
States lying within this inner, or “frozen”, energy window are included unchanged in the optimal
subspace.

1Technically, this is true for the case of an isolated group of N bands from which we obtain N MLWF. When using
the disentanglement procedure of Ref. [2], A(k), for example, is a rectangular matrix. See Section 1.1.

2As Udis(k) is a rectangular matrix this is a unitary operation in the sense that (Udis(k))†Udis(k) = 1N .



Chapter 2

Parameters

2.1 Usage

wannier90.x can be run in parallel using MPI libraries to reduce the computation time.

For serial execution use: wannier90.x [-pp] [seedname]

• seedname: If a seedname string is given the code will read its input from a file seedname.win.
The default value is wannier. One can also equivalently provide the string seedname.win instead
of seedname.

• -pp: This optional flag tells the code to generate a list of the required overlaps and then exit.
This information is written to the file seedname.nnkp.

For parallel execution use: mpirun -np NUMPROCS wannier90.x [-pp] [seedname]

• NUMPROCS: substitute with the number of processors that you want to use.

Note that the mpirun command and command-line flags may be different in your MPI implementation:
read your MPI manual or ask your computer administrator.

Note also that this requires that the wannier90.x executable has been compiled in its parallel version
(follow the instructions in the file README.install in the main directory of the wannier90 distribution)
and that the MPI libraries and binaries are installed and correctly configured on your machine.

2.2 seedname.win File

The wannier90 input file seedname.win has a flexible free-form structure.

The ordering of the keywords is not significant. Case is ignored (so num_bands is the same as
Num_Bands). Characters after !, or # are treated as comments. Most keywords have a default value
that is used unless the keyword is given in seedname.win. Keywords can be set in any of the following
ways

15



16 wannier90: User Guide

num_wann 4

num_wann = 4

num_wann : 4

A logical keyword can be set to true using any of the following strings: T, true, .true..

For further examples see Section 10.1 and the the wannier90 Tutorial.

2.3 Keyword List
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Keyword Type Description

System Parameters
num_wann I Number of WF
num_bands I Number of bands passed to the code

unit_cell_cart P Unit cell vectors in Cartesian coor-
dinates

atoms_cart * P Positions of atoms in Cartesian co-
ordinates

atoms_frac * R Positions of atoms in fractional co-
ordinates with respect to the lattice
vectors

mp_grid I Dimensions of the Monkhorst-Pack
grid of k-points

kpoints R List of k-points in the Monkhorst-
Pack grid

gamma_only L Wavefunctions from underlying ab
initio calculation are manifestly real

spinors L WF are spinors
shell_list I Which shells to use in finite differ-

ence formula
search_shells I The number of shells to search when

determining finite difference formula
skip_B1_tests L Check the condition B1 of Ref. [1]

nnkpts I Explicit list of nearest-neighbour k-
points.

kmesh_tol R The tolerance to control if two
kpoint belong to the same shell

Table 2.1: seedname.win file keywords defining the system. Argument types are represented by, I for
a integer, R for a real number, P for a physical value, L for a logical value and S for a text string.
* atoms_cart and atoms_frac may not both be defined in the same input file.
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Keyword Type Description

Job Control
postproc_setup L To output the seedname.nnkp file
exclude_bands I List of bands to exclude from the

calculation
select_projections I List of projections to use in Wan-

nierisation
auto_projections L To automatically generate initial

projections
restart S Restart from checkpoint file
iprint I Output verbosity level

length_unit S System of units to output lengths
wvfn_formatted L Read the wavefunctions from a

(un)formatted file
spin S Which spin channel to read

devel_flag S Flag for development use
timing_level I Determines amount of timing infor-

mation written to output
optimisation I Optimisation level

translate_home_cell L To translate final Wannier centres to
home unit cell when writing xyz file

write_xyz L To write atomic positions and final
centres in xyz file format

write_vdw_data L To write data for futher processing
by w90vdw utility

write_hr_diag L To write the diagonal elements of
the Hamiltonian in the Wannier ba-
sis to seedname.wout (in eV)

Table 2.2: seedname.win file keywords defining job control. Argument types are represented by, I for
a integer, R for a real number, P for a physical value, L for a logical value and S for a text string.
translate_home_cell only relevant if write_xyz is .true.

Keyword Type Description

Plot Parameters
wannier_plot L Plot the WF

wannier_plot_list I List of WF to plot
wannier_plot_supercell I Size of the supercell for plotting the

WF
wannier_plot_format S File format in which to plot the WF
wannier_plot_mode S Mode in which to plot the WF,

molecule or crystal
wannier_plot_radius R Cut-off radius of WF*
wannier_plot_scale R Scaling parameter for cube files

wannier_plot_spinor_mode S Quantity to plot for spinor WF
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wannier_plot_spinor_phase L Include the “phase” when plotting
spinor WF

bands_plot L Plot interpolated band structure
kpoint_path P K-point path for the interpolated

band structure
bands_num_points I Number of points along the first sec-

tion of the k-point path
bands_plot_format S File format in which to plot the in-

terpolated bands
bands_plot_project I WF to project the band structure

onto
bands_plot_mode S Slater-Koster type interpolation or

Hamiltonian cut-off
bands_plot_dim I Dimension of the system

fermi_surface_plot L Plot the Fermi surface
fermi_surface_num_points I Number of points in the Fermi sur-

face plot
fermi_energy P The Fermi energy

fermi_energy_min P Lower limit of the Fermi energy
range

fermi_energy_max P Upper limit of the Fermi energy
range

fermi_energy_step R Step for increasing the Fermi energy
in the specified range

fermi_surface_plot_format S File format for the Fermi surface
plot

hr_plot L This parameter is not used anymore.
Use write_hr instead.

write_hr L Write the Hamiltonian in the WF
basis

write_rmn L Write the position operator in the
WF basis

write_bvec L Write to file the matrix elements of
the bvectors and their weights

write_tb L Write lattice vectors, Hamiltonian,
and position operator in WF basis

hr_cutoff P Cut-off for the absolute value of the
Hamiltonian

dist_cutoff P Cut-off for the distance between WF
dist_cutoff_mode S Dimension in which the distance be-

tween WF is calculated
translation_centre_frac R Centre of the unit cell to which final

WF are translated
use_ws_distance L Improve interpolation using mini-

mum distance between WFs, see
Chap. 9

ws_distance_tol R Absolute tolerance for the distance
to equivalent positions.
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ws_search_size I Maximum extension in each direc-
tion of the super-cell of the Born-von
Karmann cell to search for points in-
side the Wigner-Seitz cell

write_u_matrices L Write U(k) and Udis(k) matrices to
files

Table 2.5: seedname.win file keywords controlling the plot-
ting. Argument types are represented by, I for a integer,
R for a real number, P for a physical value, L for a logical
value and S for a text string. * Only applies when wan-
nier_plot_format is cube.
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Keyword Type Description

Disentanglement Parameters
dis_win_min P Bottom of the outer energy window
dis_win_max P Top of the outer energy window
dis_froz_min P Bottom of the inner (frozen) energy

window
dis_froz_max P Top of the inner (frozen) energy win-

dow
dis_num_iter I Number of iterations for the minimi-

sation of ΩI

dis_mix_ratio R Mixing ratio during the minimisa-
tion of ΩI

dis_conv_tol R The convergence tolerance for find-
ing ΩI

dis_conv_window I The number of iterations over which
convergence of ΩI is assessed.

dis_spheres_num I Number of spheres in k-space where
disentaglement is performed

dis_spheres_first_wann I Index of the first band to be consid-
ered a Wannier function

dis_spheres R List of centres and radii, for disen-
tanglement only in spheres

Table 2.3: seedname.win file keywords controlling the disentanglement. Argument types are repre-
sented by, I for a integer, R for a real number, P for a physical value, L for a logical value and S for a
text string.
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Keyword Type Description

Wannierise Parameters
num_iter I Number of iterations for the minimi-

sation of Ω
num_cg_steps I During the minimisation of Ω the

number of Conjugate Gradient steps
before resetting to Steepest Descents

conv_window I The number of iterations over which
convergence of Ω is assessed

conv_tol P The convergence tolerance for find-
ing Ω

precond L Use preconditioning
conv_noise_amp R The amplitude of random noise ap-

plied towards end of minimisation
procedure

conv_noise_num I The number of times random noise
is applied

num_dump_cycles I Control frequency of check-pointing
num_print_cycles I Control frequency of printing

write_r2mn L Write matrix elements of r2 between
WF to file

guiding_centres L Use guiding centres
num_guide_cycles I Frequency of guiding centres

num_no_guide_iter I The number of iterations after which
guiding centres are used

trial_step * R The trial step length for the
parabolic line search during the min-
imisation of Ω

fixed_step * R The fixed step length to take dur-
ing the minimisation of Ω, instead
of doing a parabolic line search

use_bloch_phases ** L To use phases for initial projections
site_symmetry*** L To construct symmetry-adapted

Wannier functions
symmetrize_eps*** R The convergence tolerance used in

the symmetry-adapted mode
slwf_num I The number of objective WFs for se-

lective localization
slwf_constrain L Whether to constrain the centres of

the objective WFs
slwf_lambda R Value of the Lagrange multiplier for

constraining the objective WFs
slwf_centres P The centres to which the objective

WFs are to be constrained

Table 2.4: seedname.win file keywords controlling the wannierisation. Argument types are represented
by, I for a integer, R for a real number, P for a physical value, L for a logical value and S for a text
string. * fixed_step and trial_step may not both be defined in the same input file. **Cannot be used in
conjunction with disentanglement. ***Cannot be used in conjunction with the inner (frozen) energy window.
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Keyword Type Description

Transport Parameters
transport L Calculate quantum conductance and

density of states
transport_mode S Bulk or left-lead_conductor_right-

lead calculation
tran_win_min P Bottom of the energy window for

transport calculation
tran_win_max P Top of the energy window for trans-

port calculation
tran_energy_step R Sampling interval of the energy val-

ues
fermi_energy R The Fermi energy
tran_num_bb I Size of a bulk Hamiltonian
tran_num_ll I Size of a left-lead Hamiltonian
tran_num_rr I Size of a right-lead Hamiltonian
tran_num_cc I Size of a conductor Hamiltonian
tran_num_lc I Number of columns in a left-

lead_conductor Hamiltonian
tran_num_cr I Number of rows in a

conductor_right-lead Hamilto-
nian

tran_num_cell_ll I Number of unit cells in PL of left
lead

tran_num_cell_rr I Number of unit cells in PL of right
lead

tran_num_bandc I Half-bandwidth+1 of a band-
diagonal conductor Hamiltonian

tran_write_ht L Write the Hamiltonian for transport
calculation

tran_read_ht L Read the Hamiltonian for transport
calculation

tran_use_same_lead L Left and right leads are the same
tran_group_threshold R Distance that determines the group-

ing of WFs
hr_cutoff P Cut-off for the absolute value of the

Hamiltonian
dist_cutoff P Cut-off for the distance between WF

dist_cutoff_mode S Dimension in which the distance be-
tween WF is calculated

one_dim_axis S Extended direction for a one-
dimensional system

translation_centre_frac R Centre of the unit cell to which final
WF are translated

Table 2.6: seedname.win file keywords controlling transport. Argument types are represented by, I for
a integer, R for a real number, P for a physical value, L for a logical value and S for a text string.
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2.4 System

2.4.1 integer :: num_wann

Number of WF to be found.

No default.

2.4.2 integer :: num_bands

Total number of bands passed to the code in the seedname.mmn file.

Default num_bands=num_wann

2.4.3 Cell Lattice Vectors

The cell lattice vectors should be specified in Cartesian coordinates.

begin unit_cell_cart
[units]

A1x A1y A1z

A2x A2y A2z

A3x A3y A3z

end unit_cell_cart

Here A1x is the x-component of the first lattice vector A1, A2y is the y-component of the second lattice
vector A2, etc.

[units] specifies the units in which the lattice vectors are defined: either Bohr or Ang.

The default value is Ang.

2.4.4 Ionic Positions

The ionic positions may be specified in fractional coordinates relative to the lattice vectors of the unit
cell, or in absolute Cartesian coordinates. Only one of atoms_cart and atoms_frac may be given in
the input file.

Cartesian coordinates

begin atoms_cart
[units]

P RPx RPy RPz
Q RQx RQy RQz
...

end atoms_cart
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The first entry on a line is the atomic symbol. The next three entries are the atom’s position R =
(Rx, Ry, Rz) in Cartesian coordinates. The first line of the block, [units], specifies the units in which
the coordinates are given and can be either bohr or ang. If not present, the default is ang.

Fractional coordinates

begin atoms_frac
P FP1 FP2 FP3
Q FQ1 FQ2 FQ3
...

end atoms_frac

The first entry on a line is the atomic symbol. The next three entries are the atom’s position in
fractional coordinates F = F1A1 + F2A2 + F3A3 relative to the cell lattice vectors Ai, i ∈ [1, 3].

2.4.5 integer, dimension :: mp_grid(3)

Dimensions of the regular (Monkhorst-Pack) k-point mesh. For example, for a 2× 2× 2 grid:

mp_grid : 2 2 2

No default.

2.4.6 K-points

Each line gives the coordinate K = K1B1 + K2B2 + K3B3 of a k-point in relative (crystallographic)
units, i.e., in fractional units with respect to the primitive reciprocal lattice vectors Bi, i ∈ [1, 3]. The
position of each k-point in this list assigns its numbering; the first k-point is k-point 1, the second is
k-point 2, and so on.

begin kpoints

K1
1 K1

2 K1
3

K2
1 K2

2 K2
3

...

end kpoints

There is no default.

Note: There is an utility provided with wannier90, called kmesh.pl, which helps to generate the
explicit list of k points required by wannier90. See Sec. A.1.

2.4.7 logical :: gamma_only

If gamma_only=true, then wannier90 uses a branch of algorithms for disentanglement and localisation
that exploit the fact that the Bloch eigenstates obtained from the underlying ab initio calculation are
manifestly real. This can be the case when only the Γ-point is used to sample the Brillouin zone. The
localisation procedure that is used in the Γ-only branch is based on the method of Ref. [6].
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The default value is false.

2.4.8 logical :: spinors

If spinors=true, then wannier90 assumes that the WF correspond to singularly occupied spinor states
and num_elec_per_state=1.

The default value is false.

2.4.9 Shells

The MV scheme requires a finite difference expression for ∇k defined on a uniform Monkhorst-Pack
mesh of k-points. The vectors {b} connect each mesh-point k to its nearest neighbours. Nsh shells of
neighbours are included in the finite-difference formula, with Ms vectors in the sth shell. For ∇k to be
correct to linear order, we require that the following equation is satisfied (Eq. B1 of Ref. [1]):

Nsh∑
s

ws

Ms∑
i

bi,sα b
i,s
β = δαβ , (2.1)

where bi,s, i ∈ [1,Ms], is the ith vector belonging to the sth shell with associated weight ws, and α
and β run over the three Cartesian indices.

2.4.10 integer :: shell_list(:)

shell_list is vector listing the shells to include in the finite difference expression. If this keyword is
absent, the shells are chosen automatically.

2.4.11 integer :: search_shells

Specifies the number of shells of neighbours over which to search in attempting to determine an
automatic solution to the B1 condition Eq. 2.1. Larger values than the default may be required in
special cases e.g. for very long thin unit cells.

The default value is 36.

2.4.12 logical :: skip_B1_tests

If set to .true., does not check the B1 condition Eq. 2.1. This should only be used if one knows why
the B1 condition should not be verified. A typical use of this flag is in conjunction with the Z2PACK
code: http://www.physics.rutgers.edu/z2pack/.

The default value is .false..

2.4.13 integer, dimension(:, 5) :: nnkpts

Specifies the nearest-neighbour k-points which are written to the .nnkp file. This can be used to
explicitly specify which overlap matrices should be calculated.

http://www.physics.rutgers.edu/z2pack/
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begin nnkpts
1 2 0 0 0
.
.
end nnkpts

Each nearest neighbour k + b is given by a line of 5 integers. The first specifies the k-point number
nkp of k. The second is the k-point number of the neighbour. The final three integers specify the
reciprocal lattice vector which brings the k-point specified by the second integer to k + b.

This format is the same as in the .nnkp file, except that the number of neighbours per k-point is not
specified. However, the number of neighbours still needs to be a multiple of the number of k-points.

This input parameter can be used only if postproc_setup = .true., and is not intended to be used
with a full Wannier90 run. It can be used also if the k-points do not describe a regular mesh.

2.4.14 real(kind=dp) :: kmesh_tol

Two kpoints belong to the same shell if the distance between them is less than kmesh_tol. Units are
Ang.

The default value is 0.000001 Ang.

2.5 Projection

The projections block defines a set of localised functions used to generate an initial guess for the unitary
transformations. This data will be written in the seedname.nnkp file to be used by a first-principles
code.

begin projections
.
.
end projections

If guiding_centres=true, then the projection centres are used as the guiding centres in the Wan-
nierisation routine.

For details see Section 3.1.

2.6 Job Control

2.6.1 logical :: postproc_setup

If postproc_setup=true, then the wannier code will write seedname.nnkp file and exit. If wannier90
is called with the option -pp, then postproc_setup is set to true, over-riding its value in the
seedname.win file.

The default value is false.
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2.6.2 integer :: iprint

This indicates the level of verbosity of the output from 0 (“low”), the bare minimum, to 3 (“high”),
which corresponds to full debugging output.

The default value is 1.

2.6.3 integer :: optimisation

This indicates the level of optimisation used in the code. This is a trade between speed and memory. A
positive number indicates fastest execution time at the cost of more memory. Zero or negative numbers
indicates a smaller memory footprint - at increased execution time.

At the moment the only values that have an effect are optimisation<=0 (low memory) and optimisation>0
(fast)

The default value is 3.

2.6.4 character(len=20) :: length_unit

The length unit to be used for writing quantities in the output file seedname.wout.

The valid options for this parameter are:

– Ang (default)

– Bohr

2.6.5 character(len=50) :: devel_flag

Not a regular keyword. Its purpose is to allow a developer to pass a string into the code to be used
inside a new routine as it is developed.

No default.

2.6.6 integer :: exclude_bands(:)

A k-point independent list of states to excluded from the calculation of the overlap matrices; for example
to select only valence states, or ignore semi-core states. This keyword is passed to the first-principles
code via the seedname.nnkp file. For example, to exclude bands 2, 6, 7, 8 and 12:

exclude_bands : 2, 6-8, 12

2.6.7 integer :: select_projections(:)

A list of projections to be included in the wannierisation procedure. In the case that num_proj is
greater than num_wann, this keyword allows a subset of the projections in the projection matrices to
be used. For example, to select the projections given by the indices 2, 6, 7, 8 and 12:

select_projections : 2, 6-8, 12
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2.6.8 logical :: auto_projections

If .true. and no projections block is defined, then wannier90 writes an additional block in the .nnkp
file during the pre-processing step, to instruct the interface code to automatically generate the A(k)

mn.

For additional information on the behavior and on the added block, see Sec. 5.1.9.

Note: the interface code (e.g. pw2wannier90.x) must have at least one implementation of a method
to automatically generate initial projections in order for this option to be usable.

The default value of this parameter is false.

2.6.9 character(len=20) :: restart

If restart is present the code will attempt to restart the calculation from the seedname.chk file.
The value of the parameter determines the position of the restart

The valid options for this parameter are:

– default. Restart from the point at which the check file seedname.chk was written

– wannierise. Restart from the beginning of the wannierise routine

– plot. Go directly to the plotting phase

– transport. Go directly to the transport routines

2.6.10 character(len=20) :: wvfn_formatted

If wvfn_formatted=true, then the wavefunctions will be read from disk as formatted (ie ASCII) files;
otherwise they will be read as unformatted files. Unformatted is generally preferable as the files will
take less disk space and I/O is significantly faster. However such files will not be transferable between
all machine architectures and formatted files should be used if transferability is required (i.e., for test
cases).

The default value of this parameter is false.

2.6.11 character(len=20) :: spin

For bands from a spin polarised calculation spin determines which set of bands to read in, either up
or down.

The default value of this parameter is up.

2.6.12 integer :: timing_level

Determines the amount of timing information regarding the calculation that will be written to the
output file. A value of 1 produces the least information.

The default value is 1.
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2.6.13 logical :: translate_home_cell

Determines whether to translate the final Wannier centres to the home unit cell at the end of the
calculation. Mainly useful for molecular systems in which the molecule resides entirely within the
home unit cell and user wants to write an xyz file (write_xyz=.true.) for the WF centres to compare
with the structure.

The default value is false.

2.6.14 logical :: write_xyz

Determines whether to write the atomic positions and final Wannier centres to an xyz file, seedname_centres.xyz,
for subsequent visualisation.

The default value is false.

2.6.15 logical :: write_vdw_data

Determines whether to write seedname.vdw for subsequent post-processing by the w90vdw utility (in
the utility/w90vdw/ directory of the distribution) for calculating van der Waals energies. Brillouin
zone sampling must be at the Gamma-point only.

The default value is false.

2.7 Disentanglement

These keywords control the disentanglement routine of Ref. [2], i.e., the iterative minimisation of ΩI.
This routine will be activated if num_wann< num_bands.

2.7.1 real(kind=dp) :: dis_win_min

The lower bound of the outer energy window for the disentanglement procedure. Units are eV.

The default is the lowest eigenvalue in the system.

2.7.2 real(kind=dp) :: dis_win_max

The upper bound of the outer energy window for the disentanglement procedure. Units are eV.

The default is the highest eigenvalue in the given states (i.e., all states are included in the disentan-
glement procedure).

2.7.3 real(kind=dp) :: dis_froz_min

The lower bound of the inner energy window for the disentanglement procedure. Units are eV.

If dis_froz_max is given, then the default for dis_froz_min is dis_win_min.
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2.7.4 real(kind=dp) :: dis_froz_max

The upper bound of the inner (frozen) energy window for the disentanglement procedure. If dis_froz_max
is not specified, then there are no frozen states. Units are eV.

No default.

2.7.5 integer :: dis_num_iter

In the disentanglement procedure, the number of iterations used to extract the most connected sub-
space.

The default value is 200.

2.7.6 real(kind=dp) :: dis_mix_ratio

In the disentanglement procedure, the mixing parameter to use for convergence (see pages 4-5 of
Ref. [2]). A value of 0.5 is a ‘safe’ choice. Using 1.0 (i.e., no mixing) often gives faster convergence,
but may cause the minimisation of ΩI to be unstable in some cases.

Restriction: 0.0 < dis_mix_ratio≤ 1.0

The default value is 0.5

2.7.7 real(kind=dp) :: dis_conv_tol

In the disentanglement procedure, the minimisation of ΩI is said to be converged if the fractional
change in the gauge-invariant spread between successive iterations is less than dis_conv_tol for
dis_conv_window iterations. Units are Å2.

The default value is 1.0E-10

2.7.8 integer :: dis_conv_window

In the disentanglement procedure, the minimisation is said to be converged if the fractional change in
the spread between successive iterations is less than dis_conv_tol for dis_conv_window iterations.

The default value of this parameter is 3.

2.7.9 integer :: dis_spheres_num

Number of spheres in reciprocal space where the k-dependent disentanglement is performed. No dis-
entanglement is performed for those k-points that are not included in any of the spheres.

The default is 0, which means disentangle at every k-point in the full BZ (the standard mode in
Wannier90).
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2.7.10 integer :: dis_spheres_first_wann

Index of the first band that has to be considered as a Wannier function. Used only if dis_spheres_num
is greater than zero. At k-points where disentanglement is not performed the bands from dis_spheres_first_wann
to dis_spheres_first_wann+num_wann are used to wannierise. The bands excluded using exclude_bands
should not be counted.

The default is 1, the band at the lowest energy.

2.7.11 dis_spheres

Each line gives the coordinate K = K1B1 +K2B2 +K3B3 of a k-point representing the center of one of
the spheres used for k-dependent disentanglement. The same crystallographic units as for kpoints are
used here. Each k-point coordinate Ki must the followed by the respectice sphere radius ri in inverse
angstrom (on the same line).

The number of lines must be equal to dis_spheres_num.

begin dis_spheres
K1

1 K1
2 K1

3 r1

K2
1 K2

2 K2
3 r2

...
end dis_spheres

There is no default.

2.8 Wannierise

Iterative minimisation of Ω̃, the non-gauge-invariant part of the spread functional.

2.8.1 integer :: num_iter

Total number of iterations in the minimisation procedure. Set num_iter=0 if you wish to generate
projected WFs rather than maximally-localized WFs (see Example 8 in the Tutorial).

The default value is 100

2.8.2 integer :: num_cg_steps

Number of conjugate gradient steps to take before resetting to steepest descents.

The default value is 5

2.8.3 integer :: conv_window

If conv_window> 1, then the minimisation is said to be converged if the change in Ω over conv_window
successive iterations is less than conv_tol. Otherwise, the minimisation proceeds for num_iter itera-
tions (default).
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The default value is -1

2.8.4 real(kind=dp) :: conv_tol

If conv_window> 1, then this is the convergence tolerance on Ω, otherwise not used. Units are Å2.

The default value is 1.0E-10

2.8.5 logical :: precond

Whether or not to use preconditioning to speed up the minimization of the spreads. This is based on
the same idea as the classical Tetter-Payne-Allan preconditionning for DFT and dampens the high-
frequency oscillations of the gradient due to contributions from large real lattice vectors. It is useful
when the optimization is slow, especially on fine grids. When optimisation<3, this uses a slower
algorithm to save memory.

The default value is false.

2.8.6 real(kind=dp) :: conv_noise_amp

If conv_noise_amp> 0, once convergence (as defined above) is achieved, some random noise f is added
to the search direction, and the minimisation is continued until convergence is achieved once more. If
the same value of Ω as before is arrived at, then the calculation is considered to be converged. If not,
then random noise is added again and the procedure repeated up to a maximum of conv_noise_num
times. conv_noise_amp is the amplitude of the random noise f that is added to the search direction:
0 < |f | < conv_noise_amp. This functionality requires conv_window > 1. If conv_window is not
specified, it is set to the value 5 by default.

If conv_noise_amp≤ 0, then no noise is added (default).

The default value is -1.0

2.8.7 integer :: conv_noise_num

If conv_noise_amp > 0, then this is the number of times in the minimisation that random noise is
added.

The default value is 3

2.8.8 integer :: num_dump_cycles

Write sufficient information to do a restart every num_dump_cycles iterations.

The default is 100

2.8.9 integer :: num_print_cycles

Write data to the master output file seedname.wout every num_print_cycles iterations.
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The default is 1

2.8.10 logical :: write_r2mn

If write_r2mn = true, then the matrix elements 〈m|r2|n〉 (where m and n refer to WF) are written
to file seedname.r2mn at the end of the Wannierisation procedure.

The default value of this parameter is false.

2.8.11 logical :: guiding_centres

Use guiding centres during the minimisation, in order to avoid local minima.

wannier90 uses a logarithm definition of the spread functional. As we are taking the log of a complex
argument there is a possibility that the algorithm might make inconsistent choices for the branch cut.
This manifests itself as complex WF with a large spread. By using guiding centres the code will attempt
to make a consistent choice of branch cut. Experience shows that with guiding_centres set to true
this problem is avoided and doing so does not cause any problems. For this reason we recommend
setting guiding_centres to true where possible (it is only not possible if an explicit projection block
is not defined).

The default value is false.

2.8.12 integer :: num_guide_cycles

If guiding_centres is set to true, then the guiding centres are used only every num_guide_cycles.

The default value is 1.

2.8.13 integer :: num_no_guide_iter

If guiding_centres is set to true, then the guiding centres are used only after num_no_guide_iter
minimisation iterations have been completed.

The default value is 0.

2.8.14 real(kind=dp) :: trial_step

The value of the trial step for the parabolic fit in the line search minimisation used in the minimisation of
the spread function. Cannot be used in conjunction with fixed_step (see below). If the minimisation
procedure doesn’t converge, try decreasing the value of trial_step to give a more accurate line search.

The default value is 2.0

2.8.15 real(kind=dp) :: fixed_step

If this is given a value in the input file, then a fixed step of length fixed_step (instead of a parabolic
line search) is used at each iteration of the spread function minimisation. Cannot be used in conjunction
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with trial_step. This can be useful in cases in which minimisation with a line search fails to converge.

There is no default value.

2.8.16 logical :: use_bloch_phases

Determines whether to use the Bloch functions as the initial guess for the projections. Can only be
used if disentanglement = false.

The default value is false.

2.8.17 logical :: site_symmetry

Construct symmetry-adapted Wannier functions. For the detail of the theoretical background, see
Ref. [7]. Cannot be used in conjunction with the inner (frozen) energy window.

The default value is false.

2.8.18 real(kind=dp) :: symmetrize_eps

Convergence threshold to check whether the symmetry condition (Eq. (19) in Ref. [7]) on the unitary
matrix U(k) is satisfied or not. See also Eq. (29) in Ref. [7]. Used when site_symmetry = .true.

The default value is 1.0E-3.

2.8.19 integer :: slwf_num

The number of objective Wannier functions for selective localisation in the selectively localised Wan-
nier function (SLWF) method of Ref. [8]. These functions are obtained by minimising the spread
functional only with respect to the degrees of freedom of a subset of slwf_num < num_wann functions.
At convergence, the objective WFs will have a minimum cumulative spread, whereas the remaining
num_wann − slwf_num functions are left unoptimised. The initial guesses for the objective WFs are
given by the first slwf_num orbitals in the projections block. If slwf_num = num_wann no selective
minimisation is performed. In this case, wannier90 will simply generate a set of num_wann MLWFs.

The default is num_wann.

2.8.20 logical :: slwf_constrain

If slwf_constrain=true, then the centres of the objective Wannier functions are constrained to either
the centres of the first slwf_num orbitals in the projections block or to new positions specified in the
slwf_centres block (see Sec. 2.8.22). In this case, a modified spread functional, Ωc, with the addition
of a constraint term, as described in Ref. [8].

The default is false
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2.8.21 real(kind=dp) :: slwf_lambda

The value of the Lagrange multiplier λ for the constraint term in term added to modify the spread
functional: λ

∑J ′

n=1 (rn − r0n)2, where J ′ is slwf_num, and rn and r0n are the centre and target centre,
respectively, for the nth objective WF.

The default is 0.0.

2.8.22 Constraints on centres

If slwf_constrain=true, then by default the centres to which the slwf_num objective Wannier function
centres are constrained are given by the first slwf_num rows of the projections block.

Optionally, the slwf_centres block may be used to define alternative target centres for some or all of
the slwf_num objective Wannier functions.

The block below shows an example of how to set the constraints:

begin slwf_centres
2 0.0 0.0 0.0
4 0.25 0.0 0.0

end slwf_centres

• The first line sets the constraint for the centre of objective WF number 2 (as defined by the order
of WFs in the projections block) to (0.0,0.0,0.0) in fractional co-ordinates.

• The second line sets the constraint for the centre of objective WF number 4 (as defined by the
order of WFs in the projections block) to (0.25,0.0,0.0) in fractional co-ordinates.

• The target centres of all other objective Wannier functions remain as the centres given in the
corresponding rows of the projections block.

2.9 Post-Processing

Capabilities:

– Plot the WF

– Plot the interpolated band structure

– Plot the Fermi surface

– Output the Hamiltonian in the WF basis

– Transport calculation (quantum conductance and density of states)

2.9.1 logical :: wannier_plot

If wannier_plot = true, then the code will write out the Wannier functions in a format specified by
wannier_plot_format

The default value of this parameter is false.
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2.9.2 integer :: wannier_plot_list(:)

A list of WF to plot. The WF numbered as per the seedname.wout file after the minimisation of the
spread.

The default behaviour is to plot all WF. For example, to plot WF 4, 5, 6 and 10:

wannier_plot_list : 4-6, 10

2.9.3 integer :: wannier_plot_supercell

The code generates the WFs on a grid corresponding to a ‘super-unit-cell’. If wannier_plot_supercell
is provided as a single integer, then the size of the super-unit-cell is wannier_plot_supercell times
the size of the unit cell along all three linear dimensions (the ‘home’ unit cell is kept approxi-
mately in the middle); otherwise, if three integers are provided, the size of the super-unit-cell is
wannier_plot_supercell(i) times the size of the unit cell along the i−th linear dimension.

The default value is 2.

2.9.4 character(len=20) :: wannier_plot_format

WF can be plotted in either XCrySDen (xsf) format or Gaussian cube format. The valid options for
this parameter are:

– xcrysden (default)

– cube

If wannier_plot_format=xsf: the code outputs the WF on the entire super-unit-cell specified by
wannier_plot_supercell.

If wannier_plot_format=cube: the code outputs the WF on a grid that is smaller than the super-
unit-cell specified by wannier_plot_supercell. This grid is determined by wannier_plot_mode,
wannier_plot_radius and wannier_plot_scale, described in detail below.

The code is able to output Gaussian cube files for systems with non-orthogonal lattice vectors. Many vi-
sualisation programs (including XCrySDen), however, are only able to handle cube files for systems with
orthogonal lattice vectors. One visualisation program that is capable of dealing with non-orthogonal
lattice vectors is VESTA (http://jp-minerals.org/vesta/en/).1

2.9.5 character(len=20) :: wannier_plot_mode

Choose the mode in which to plot the WF, either as a molecule or as a crystal.

The valid options for this parameter are:

– crystal (default)
1It’s worth noting that another visualisation program, VMD (http://www.ks.uiuc.edu/Research/vmd), is able to

deal with certain special cases of non-orthogonal lattice vectors; see http://www.ks.uiuc.edu/Research/vmd/plugins/
molfile/cubeplugin.html for details.

http://jp-minerals.org/vesta/en/
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/cubeplugin.html
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/cubeplugin.html


38 wannier90: User Guide

– molecule

If wannier_plot_format=cube:

• if wannier_plot_mode = molecule, then wherever the WF centre sits in the supercell, the origin
of the cube is shifted (for the purpose of plotting only, ie, nothing is done to the U matrices etc)
to coincide with the centre of mass of the atomic positions specified by the user in the *.win
input file. These atomic positions are also written to the cube file, so when it is visualised, the
WF appears superimposed on the molecular structure.

• if wannier_plot_mode = crystal, then the WF is not shifted, but instead the code searches
for atoms that are within a radius of wannier_plot_scale × wannier_plot_radius of the WF
centre and writes the coordinates of these atoms to the cube file. In this way, when the cube file
is visualised, the WF appears superimposed on the nearest atoms to the WF centre.

• crystal mode can be used for molecules, and molecule mode can be used for crystals.

2.9.6 real(kind=dp) :: wannier_plot_radius

If wannier_plot_format=cube, then wannier_plot_radius is the radius of the sphere that must fit
inside the parallelepiped in which the WF is plotted. wannier_plot_radius must be greater than 0.
Units are Å.

The default value is 3.5.

2.9.7 real(kind=dp) :: wannier_plot_scale

If wannier_plot_format=cube and wannier_plot_mode=crystal, then the code searches for atoms
that are within a radius of wannier_plot_scale × wannier_plot_radius of the WF centre and writes
the coordinates of these atoms to the cube file. In this way, when the cube file is visualised, the WF
appears superimposed on the nearest atoms to the WF centre. wannier_plot_scale must be greater
than 0. This parameter is dimensionless.

The default value is 1.0.

2.9.8 character(len=20) :: wannier_plot_spinor_mode

If spinors = true then this parameter controls the quantity to plot. For a spinor WF with components
[φ, ψ] the quatity plotted is

– total (default).
√

[|φ|2 + |ψ|2

– up. |φ| × sign(Re{φ}) if wannier_plot_spinor_mode = true, otherwise |φ|

– down. |ψ| × sign(Re{ψ}) if wannier_plot_spinor_mode = true, otherwise |ψ|

Note: making a visual representation of a spinor WF is not as straightforward as for a scalar WF.
While a scalar WF is typically a real valued function, a spinor WF is a complex, two component spinor.
wannier90 is able to plot several different quantities derived from a spinor WF which should give you
a good idea of the nature of the WF.
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2.9.9 logical :: wannier_plot_spinor_phase

If wannier_plot_spinor_phase = true phase information will be taken into account when plotting a
spinor WF.

2.9.10 logical :: bands_plot

If bands_plot = true, then the code will calculate the band structure, through Wannier interpolation,
along the path in k-space defined by bands_kpath using bands_num_points along the first section of
the path and write out an output file in a format specified by bands_plot_format.

The default value is false.

2.9.11 kpoint_path

Defines the path in k-space along which to calculate the bandstructure. Each line gives the start and
end point (with labels) for a section of the path. Values are in fractional coordinates with respect to
the primitive reciprocal lattice vectors.

begin kpoint_path
G 0.0 0.0 0.0 L 0.0 0.0 1.0
L 0.0 0.0 1.0 N 0.0 1.0 1.0
...

end kpoint_path

There is no default

2.9.12 integer :: bands_num_points

If bands_plot = true, then the number of points along the first section of the bandstructure plot
given by kpoint_path. Other sections will have the same density of k-points.

The default value for bands_num_points is 100.

2.9.13 character(len=20) :: bands_plot_format

Format in which to plot the interpolated band structure. The valid options for this parameter are:

– gnuplot (default)

– xmgrace

Note: it is possible to request output in both formats eg bands_format = gnuplot xmgrace

2.9.14 integer :: bands_plot_project(:)

If present wannier90 will compute the contribution of this set of WF to the states at each point of the
interpolated band structure. The WF are numbered according to the seedname.wout file. The result is
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written in the seedname_band.dat file, and a corresponding gnuplot script to seedname_band_proj.dat
.

For example, to project on to WFs 2, 6, 7, 8 and 12:

bands_plot_project : 2, 6-8, 12

2.9.15 character(len=20) :: bands_plot_mode

To interpolate the band structure along the k-point path, either use the Slater-Koster interpolation
scheme or truncate the Hamiltonian matrix in the WF basis. Truncation criteria are provided by
hr_cutoff and dist_cutoff.

The valid options for this parameter are:

– s-k (default)

– cut

2.9.16 integer :: bands_plot_dim

Dimension of the system. If bands_plot_dim < 3 and bands_plot_mode = cut, lattice vector R =
N1A1 + N2A2 + N3A3, where Ni = 0 if Ai is parallel to any of the confined directions specified by
one_dim_axis, are exclusively used in the band structure interpolation.

The valid options for this parameter are:

– 3 (default)

– 2

– 1

2.9.17 logical :: fermi_surface_plot

If fermi_surface_plot = true, then the code will calculate, through Wannier interpolation, the
eigenvalues on a regular grid with fermi_surface_num_points in each direction. The code will write
a file in bxsf format which can be read by XCrySDen in order to plot the Fermi surface.

The default value is false.

2.9.18 integer :: fermi_surface_num_points

If fermi_surface_plot = true, then the number of divisions in the regular k-point grid used to
calculate the Fermi surface.

The default value for fermi_surface_num_points is 50.
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2.9.19 real(kind=dp) :: fermi_energy

The Fermi energy in eV. This parameter is written into the bxsf file. If fermi_energy is specified,
fermi_energy_min, fermi_energy_max, and fermi_energy_step should not be specified, and vice-
versa.

The default value is 0.0

2.9.20 real(kind=dp) :: fermi_energy_min

Instead of specifyfing a single Fermi energy, it is possible to scan the Fermi level over a range of values,
and recompute certain quantities for each εF .2 This is the minimum value in the range (in eV).

There is no default value.

2.9.21 real(kind=dp) :: fermi_energy_max

The maximum value in the range of Fermi energies. Units are eV.

The default value is fermi_energy_min+1.0.

2.9.22 real(kind=dp) :: fermi_energy_step

Difference between consecutive values of the Fermi energy when scanning from fermi_energy_min to
fermi_energy_max. Units are eV.

The default value is 0.01.

2.9.23 character(len=20) :: fermi_surface_plot_format

Format in which to plot the Fermi surface. The valid options for this parameter are:

– xcrysden (default)

2.9.24 logical :: write_hr

If write_hr = true, then the Hamiltonian matrix in theWF basis will be written to a file seedname_hr.dat.

The default value is false.

2.9.25 logical :: write_rmn

If write_rmn = true, then the position operator in theWF basis will be written to a file seedname_r.dat.

The default value is false.
2Scanning the Fermi level is currently supported only by the postw90 module berry, for berry_task=ahc,morb. For

all other functionalities that require a knowledge of εF , use fermi_energy instead.
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2.9.26 logical :: write_bvec

If write_bvec = true, then the the matrix elements of bvector and their weights will be written to a
file seedname.bvec.

The default value is false.

2.9.27 logical :: write_tb

If write_tb = true, then the lattice vectors, together with the Hamiltonian and position-operator
matrices in the WF basis, will be written to a file seedname_tb.dat, in units of Angstrom and eV.

The default value is false.

2.9.28 logical :: transport

If transport = true, then the code will calculate quantum conductance and density of states of a
one-dimensional system. The results will be written to files seedname_qc.dat and seedname_dos.dat,
respectively. Since both quantities are a function of energy, they will be evaluated from tran_win_min
to tran_win_max with an interval of tran_energy_step.

The default value of this parameter is false.

2.9.29 character(len=20) :: transport_mode

If transport_mode = bulk, quantum conductance and density of states are calculated for a perfectly-
periodic one-dimensional system. In this case, the transport part can either use the Hamiltonian
matrix in the WF basis generated by wannier90 or a Hamiltonian matrix provided by the external file
seedname_htB.dat.

If transport_mode = lcr, quantum conductance and density of states are calculated for a system
where semi-infinite, left and right leads are connected through a central conductor region. In this
case, the transport part will work independently from the disentanglement and wannierise procedure.
Details of the method is described in Ref. [9].

If tran_read_ht = true then the Hamiltonian matrices must be provided by the five external files:
seedname_htL.dat, seedname_htLC.dat, seedname_htC.dat, seedname_htCR.dat, seedname_htR.dat.
If tran_read_ht = false then the Hamiltonian matrices are found automatically provided the super-
cell adheres to conditions outlined in Section 7.3.

The valid options for this parameter are:

– bulk (default)

– lcr

2.9.30 real(kind=dp) :: tran_win_min

The lower bound of the energy window for the transport calculation. Units are eV.
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The default value is -3.0.

2.9.31 real(kind=dp) :: tran_win_max

The upper bound of the energy window for the transport calculation. Units are eV.

The default value is 3.0.

2.9.32 real(kind=dp) :: tran_energy_step

Sampling interval of the energy values from tran_win_min to tran_win_max. Units are eV.

The default value is 0.01.

2.9.33 real(kind=dp) :: fermi_energy

The Fermi energy in eV. The energy axis of the quantum conductance and density of states data will
be shifted rigidly by this amount.

The default value is 0.0

2.9.34 integer :: tran_num_bb

Size of a bulk Hamiltonian matrix. This number is equal to the number of WFs in one principal layer.

A one-dimensional system can be viewed as an array of principal layers which are defined in a way
that localized basis functions inside a certain principal layer only interact with those in the nearest
neighbor principal layer. In wannier90 a principal layer will be an integer multiple of a unit cell, and
the size is determined by hr_cutoff and/or dist_cutoff. The criterion is rather arbitrary when WFs
are adopted as a localized basis set, and it is up to a user’s choice.

The default value is 0.

2.9.35 integer :: tran_num_ll

Size of a left-lead Hamiltonian matrix. If transport_mode = lcr and tran_read_ht = false then
tran_num_ll is the number of Wannier functions in a principal layer.

The default value is 0.

2.9.36 integer :: tran_num_rr

Size of a right-lead Hamiltonian matrix.

The default value is 0.
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2.9.37 integer :: tran_num_cc

Size of a conductor Hamiltonian matrix.

The default value is 0.

2.9.38 integer :: tran_num_lc

Number of columns in a left-lead_conductor Hamiltonian matrix. Number of rows must be equal to
tran_num_ll.

The default value is 0.

2.9.39 integer :: tran_num_cr

Number of rows in a conductor_right-lead Hamiltonian matrix. Number of columns must be equal to
tran_num_rr.

The default value is 0.

2.9.40 integer :: tran_num_cell_ll

Number of unit cells in one principal layer of left lead. Used if transport_mode = lcr and tran_read_ht =
false.

The default value is 0.

2.9.41 integer :: tran_num_cell_rr

Number of unit cells in one principal layer of right lead. Not used at present.

The default value is 0.

2.9.42 integer :: tran_num_bandc

Half-bandwidth+1 of a band-diagonal conductor Hamiltonian matrix.

The Hamiltonian matrix of a central conductor part, which is read from seedname_htC.dat, will
be diagonally dominant when tran_num_cc is very large. tran_num_bandc is used to construct a
compact matrix which contains the non-zero band-diagonal part of a full conductor Hamiltonian matrix.
Setting this parameter is only meaningful when tran_num_bandc is greater than tran_num_lc and
tran_num_cr.

The default value is 0.
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2.9.43 logical :: tran_write_ht

If tran_write_ht = true, then the Hamiltonian matrix formatted for the transport calculation will
be written to a file seedname_htB.dat.

The default value is false.

2.9.44 logical :: tran_read_ht

If tran_write_ht = true, then the Hamiltonian matrix formatted for the transport calculation will
be read from a set of files described in the parameter transport_mode. Set tran_write_ht = false
to perform automated lcr calculations (see Section 7.3).

The default value is false.

2.9.45 logical :: tran_use_same_lead

If tran_use_same_lead = true, then the left and the right leads are the same. In this case, seedname_htR.dat
is not required.

The default value is true.

2.9.46 real(kind=dp) :: tran_group_threshold

Used to group and sort Wannier functions according to the positions of their centres. Wannier functions
in a group are within tran_group_threshold from one another in x,y and z directions. Units are Å

The default is 0.15

2.9.47 real(kind=dp) :: translation_centre_frac(3)

Centre of the unit cell to which the final Wannier centres are translated. Numbers are in fractional
coordinates with respect to the lattice vectors.

The default value is (0.0,0.0,0.0).

2.9.48 logical :: use_ws_distance

Improves the interpolation of the k-space Hamiltonian, by applying a translation to each WF by a
basis vector of the super-lattice that minimises the distance between their centres. The translation
is dependent on both WF and on the unit cell vector to which they belong, i.e., translate function
Wj(r−R) inside the Wigner-Seitz cell centred on WF Wi(r).

For a longer explanation, see Chapter 9.

If false the code puts all the WF in the home cell, only possible choice until wannier90 v2.0.1.

The default value is true (default changed since v.3.0). Introduced in v2.1.
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2.9.49 real(kind=dp) :: ws_distance_tol

Tolerance when determining whether two values ‖dijR + R̃nml‖ and ‖dijR + R̃n′m′l′‖ (as defined in
chapter 9) for the shortest distance between two Wannier functions are equivalent. If the difference in
distance (in Angstrom) is less than ws_distance_tol, they are taken to be equivalent.

The default value is 10−5.

2.9.50 :: ws_search_size

Maximum absolute value for the integers n,m, l that identify the super-lattice vectors R̃nml (see
chapter 9) when searching for points inside the Wigner-Seitz cell. If ws_search_size is provided as
a single integer, then the number of repetitions of the Born-von Karman cell is the same along all
three linear dimensions; otherwise, if three integers are provided, the number of repetitions along the
i−th linear dimension is ws_search_size(i). The variable is used both in hamiltonian.F90 and in
ws_distance.F90. In the latter case, its value is incremented by one in order to account for WFs
whose centre wanders away from the original reference unit cell.
The default value is generally sufficient, but might need to be increased in case of elongated cells.

The default value is 2.

2.9.51 logical :: write_u_matrices

Write the U(k) and Udis(k) matrices obtained at the end of wannierization to files seedname_u.mat
and seedname_u_dis.mat, respectively.

The default value is false.

2.9.52 real(kind=dp) :: hr_cutoff

The absolute value of the smallest matrix element of the Hamiltonian in the WF basis. If hmn(R) >
hr_cutoff, then the matrix element hmn(R) is retained and used in the band structure interpola-
tion (when bands_plot_mode = cut) or in the transport calculation. Otherwise it is deemed to be
insignificant and is discarded. Units are eV.

The default value is 0.0.

2.9.53 real(kind=dp) :: dist_cutoff

The largest distance between two WFs for which the Hamiltonian matrix element is retained and used
in the band interpolation (when bands_plot_mode = cut) or in the transport calculation. Units are
Å.

The default value is 1000.0.
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2.9.54 character(len=20) :: dist_cutoff_mode

Dimension in which the distance between two WFs is calculated. The vector connecting two WFs may
be projected to a line (one_dim) or a plane (two_dim). The size of the projected vector is calculated,
and dist_cutoff is applied. When one_dim or two_dim is used, one_dim_axis must be given to
specify extended or confined direction.

The valid options for this parameter are:

– three_dim (default)

– two_dim

– one_dim

2.9.55 character(len=20) :: one_dim_axis

Extended direction for a one-dimensional system or confined direction for a two-dimensional system.
This direction must be parallel to one of the Cartesian axes.

The valid options for this parameter are:

– x

– y

– z

No default.





Chapter 3

Projections

3.1 Specification of projections in seedname.win

Here we describe the projection functions used to construct the initial guess A(k)
mn for the unitary

transformations.

Each projection is associated with a site and an angular momentum state defining the projection
function. Optionally, one may define, for each projection, the spatial orientation, the radial part, the
diffusivity, and the volume over which real-space overlaps Amn are calculated.

The code is able to

1. project onto s,p,d and f angular momentum states, plus the hybrids sp, sp2, sp3, sp3d, sp3d2.

2. control the radial part of the projection functions to allow higher angular momentum states, e.g.,
both 3s and 4s in silicon.

The atomic orbitals of the hydrogen atom provide a good basis to use for constructing the projec-
tion functions: analytical mathematical forms exist in terms of the good quantum numbers n, l
and m; hybrid orbitals (sp, sp2, sp3, sp3d etc.) can be constructed by simple linear combination
|φ〉 =

∑
nlmCnlm|nlm〉 for some coefficients Cnlm.

The angular functions that use as a basis for the projections are not the canonical spherical harmonics
Ylm of the hydrogenic Schrödinger equation but rather the real (in the sense of non-imaginary) states
Θlmr , obtained by a unitary transformation. For example, the canonical eigenstates associated with
l = 1, m = {−1, 0, 1} are not the real px, py and pz that we want. See Section 3.4 for our mathematical
conventions regarding projection orbitals for different n, l and mr.

We use the following format to specify projections in <seedname>.win:

Begin Projections
[units]
site:ang_mtm:zaxis:xaxis:radial:zona

...
End Projections

Notes:
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units:
Optional. Either Ang or Bohr to specify whether the projection centres specified in this block (if given
in Cartesian co-ordinates) are in units of Angstrom or Bohr, respectively. The default value is Ang.

site:
C, Al, etc. applies to all atoms of that type
f=0,0.50,0 – centre on (0.0,0.5,0.0) in fractional coordinates (crystallographic units) relative to the
direct lattice vectors
c=0.0,0.805,0.0 – centre on (0.0,0.805,0.0) in Cartesian coordinates in units specified by the optional
string units in the first line of the projections block (see above).

ang_mtm:
Angular momentum states may be specified by l and mr, or by the appropriate character string. See
Tables 3.1 and 3.2. Examples:
l=2,mr=1 or dz2 – a single projection with l = 2, mr = 1 (i.e., dz2)
l=2,mr=1,4 or dz2,dx2-y2 – two functions: dz2 and dxz
l=-3 or sp3 – four sp3 hybrids
Specific hybrid orbitals may be specified as follows:
l=-3,mr=1,3 or sp3-1,sp3-3 – two specific sp3 hybrids
Multiple states may be specified by separating with ‘;’, e.g.,
sp3;l=0 or l=-3;l=0 – four sp3 hybrids and one s orbital

zaxis (optional):
z=1,1,1 – set the z-axis to be in the (1,1,1) direction. Default is z=0,0,1

xaxis (optional):
x=1,1,1 – set the x-axis to be in the (1,1,1) direction. Default is x=1,0,0

radial (optional):
r=2 – use a radial function with one node (ie second highest pseudostate with that angular momentum).
Default is r=1. Radial functions associated with different values of r should be orthogonal to each other.

zona (optional):
zona=2.0 – the value of Za for the radial part of the atomic orbital (controls the diffusivity of the radial
function). Units always in reciprocal Angstrom. Default is zona=1.0.

Examples

1. CuO, s,p and d on all Cu; sp3 hybrids on O:

Cu:l=0;l=1;l=2

O:l=-3 or O:sp3

2. A single projection onto a pz orbital orientated in the (1,1,1) direction:

c=0,0,0:l=1,mr=1:z=1,1,1 or c=0,0,0:pz:z=1,1,1

3. Project onto s, p and d (with no radial nodes), and s and p (with one radial node) in silicon:

Si:l=0;l=1;l=2

Si:l=0;l=1:r=2
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3.2 Spinor Projections

When spinors=.true. it is possible to select a set of localised functions to project onto ‘up’ states
and a set to project onto ‘down’ states where, for complete flexibility, it is also possible to set the local
spin quantisation axis.

Note, however, that this feature requires a recent version of the interface between the ab-initio code
and Wannier90 (i.e., written after the release of the 2.0 version, in October 2013) supporting spinor
projections.

Begin Projections
[units]
site:ang_mtm:zaxis:xaxis:radial:zona(spin)[quant_dir]

...
End Projections

spin (optional):
Choose projection onto ‘up’ or ‘down’ states
u – project onto ‘up’ states.
d – project onto ‘down’ states.
Default is u,d

quant_dir (optional):
1,0,0 – set the spin quantisation axis to be in the (1,0,0) direction. Default is 0,0,1

Examples

• 18 projections on an iron site

Fe:sp3d2;dxy;dxx;dyz

• same as above

Fe:sp3d2;dxy;dxx;dyz(u,d)

• same as above

Fe:sp3d2;dxy;dxz;dyz(u,d)[0,0,1]

• same as above but quantisation axis is now x

Fe:sp3d2;dxy;dxz;dyz(u,d)[1,0,0]

• now only 9 projections onto up states

Fe:sp3d2;dxy;dxz;dyz(u)

• 9 projections onto up-states and 3 on down

Fe:sp3d2;dxy;dxz;dyz(u)
Fe:dxy;dxz;dyz(d)

• projections onto alternate spin states for two lattice sites (Cr1, Cr2)

Cr1:d(u)
Cr2:d(d)
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3.3 Short-Cuts

3.3.1 Random projections

It is possible to specify the projections, for example, as follows:

Begin Projections
random
C:sp3
End Projections

in which case wannier90 uses four sp3 orbitals centred on each C atom and then chooses the appropriate
number of randomly-centred s-type Gaussian functions for the remaining projection functions. If the
block only consists of the string random and no specific projection centres are given, then all of the
projection centres are chosen randomly.

3.3.2 Bloch phases

Setting use_bloch_phases = true in the input file absolves the user of the need to specify explicit
projections. In this case, the Bloch wave-functions are used as the projection orbitals, namely A(k)

mn =
〈ψmk|ψnk〉 = δmn.

3.4 Orbital Definitions

The angular functions Θlmr(θ, ϕ) associated with particular values of l and mr are given in Tables 3.1
and 3.2.

The radial functions Rr(r) associated with different values of r should be orthogonal. One choice would
be to take the set of solutions to the radial part of the hydrogenic Schrödinger equation for l = 0, i.e.,
the radial parts of the 1s, 2s, 3s. . . orbitals, which are given in Table 3.3.
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l mr Name Θlmr(θ, ϕ)

0 1 s 1√
4π

1 1 pz
√

3
4π cos θ

1 2 px
√

3
4π sin θ cosϕ

1 3 py
√

3
4π sin θ sinϕ

2 1 dz2
√

5
16π (3 cos2 θ − 1)

2 2 dxz
√

15
4π sin θ cos θ cosϕ

2 3 dyz
√

15
4π sin θ cos θ sinϕ

2 4 dx2-y2
√

15
16π sin2 θ cos 2ϕ

2 5 dxy
√

15
16π sin2 θ sin 2ϕ

3 1 fz3
√

7
4
√
π

(5 cos3 θ − 3 cos θ)

3 2 fxz2
√

21
4
√

2π
(5 cos2 θ − 1) sin θ cosϕ

3 3 fyz2
√

21
4
√

2π
(5 cos2 θ − 1) sin θ sinϕ

3 4 fz(x2-y2)
√

105
4
√
π

sin2 θ cos θ cos 2ϕ

3 5 fxyz
√

105
4
√
π

sin2 θ cos θ sin 2ϕ

3 6 fx(x2-3y2)
√

35
4
√

2π
sin3 θ(cos2 ϕ− 3 sin2 ϕ) cosϕ

3 7 fy(3x2-y2)
√

35
4
√

2π
sin3 θ(3 cos2 ϕ− sin2 ϕ) sinϕ

Table 3.1: Angular functions Θlmr(θ, ϕ) associated with particular values of l and mr for l ≥ 0.
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l mr Name Θlmr(θ, ϕ)

−1 1 sp-1 1√
2
s + 1√

2
px

−1 2 sp-2 1√
2
s − 1√

2
px

−2 1 sp2-1 1√
3
s − 1√

6
px + 1√

2
py

−2 2 sp2-2 1√
3
s − 1√

6
px − 1√

2
py

−2 3 sp2-3 1√
3
s + 2√

6
px

−3 1 sp3-1 1
2(s + px + py + pz)

−3 2 sp3-2 1
2(s + px − py − pz)

−3 3 sp3-3 1
2(s − px + py − pz)

−3 4 sp3-4 1
2(s − px − py + pz)

−4 1 sp3d-1 1√
3
s − 1√

6
px + 1√

2
py

−4 2 sp3d-2 1√
3
s − 1√

6
px − 1√

2
py

−4 3 sp3d-3 1√
3
s + 2√

6
px

−4 4 sp3d-4 1√
2
pz + 1√

2
dz2

−4 5 sp3d-5 − 1√
2
pz + 1√

2
dz2

−5 1 sp3d2-1 1√
6
s− 1√

2
px− 1√

12
dz2 + 1

2dx2-y2

−5 2 sp3d2-2 1√
6
s + 1√

2
px− 1√

12
dz2 + 1

2dx2-y2

−5 3 sp3d2-3 1√
6
s− 1√

2
py− 1√

12
dz2− 1

2dx2-y2

−5 4 sp3d2-4 1√
6
s + 1√

2
py− 1√

12
dz2− 1

2dx2-y2

−5 5 sp3d2-5 1√
6
s− 1√

2
pz + 1√

3
dz2

−5 6 sp3d2-6 1√
6
s + 1√

2
pz + 1√

3
dz2

Table 3.2: Angular functions Θlmr(θ, ϕ) associated with particular values of l and mr for l < 0, in
terms of the orbitals defined in Table 3.1.
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r Rr(r)

1 2α3/2 exp(−αr)

2 1
2
√

2
α3/2(2− αr) exp(−αr/2)

3
√

4
27α

3/2(1− 2αr/3 + 2α2r2/27) exp(−αr/3)

Table 3.3: One possible choice for the radial functions Rr(r) associated with different values of r:
the set of solutions to the radial part of the hydrogenic Schrödinger equation for l = 0, i.e., the radial
parts of the 1s, 2s, 3s. . . orbitals, where α = Z/a = zona.

3.5 Projections via the SCDM-k method in pw2wannier90

For many systems, such as aperiodic systems, crystals with defects, or novel materials with complex
band structure, it may be extremely hard to identify a-priori a good initial guess for the projection
functions used to generate the A(k)

mn matrices. In these cases, one can use a different approach, known
as the SCDM-k method[10], based on a QR factorization with column pivoting (QRCP) of the density
matrix from the self-consistent field calculation, which allows one to avoid the tedious step of specifying
a projection block altogether, hence to avoid . This method is robust in generating well localised
function with the correct spatial orientations and in general in finding the global minimum of the spread
functional Ω. Any electronic-structure code should in principle be able to implement the SCDM-k
method within their interface with Wannier90, however at the moment (develop branch on the GitHub
repository July 2019) only the Quantum ESPRESSO package has this capability implemented in the
pw2wannier90 interface program. Moreover, the pw2wannier90 interface program supports also the
SCDM-k method for spin-noncollinear systems. The SCDM-k can operate in two modes:

1. In isolation, i.e., without performing a subsequent Wannier90 optimisation (not recommended).
This can be achieved by setting num_iter=0 and dis_num_iter=0 in the <seedname>.win input
file. The rationale behind this is that in general the projection functions obtained with the
SCDM-k are already well localised with the correct spatial orientations. However, the spreads of
the resulting functions are usually larger than the MLWFs ones.

2. In combination with the Marzari-Vanderbilt (recommended option). In this case, the SCDM-k is
only used to generate the initial A(k)

mn matrices as a replacement scheme for the projection block.

The following keywords need to be specified in the pw2wannier90.x input file <seedname>.pw2wan:
scdm_proj scdm_entanglement scdm_mu scdm_sigma





Chapter 4

Code Overview

wannier90 can operate in two modes:

1. Post-processing mode: read in the overlaps and projections from file as computed inside a first-
principles code. We expect this to be the most common route to using wannier90, and is
described in Ch. 5;

2. Library mode: as a set of library routines to be called from within a first-principles code that
passes the overlaps and projections to the wannier90 library routines and in return gets the
unitary transformation corresponding to MLWF. This route should be used if the MLWF are
needed within the first-principles code, for example in post-LDA methods such as LDA+U or
SIC, and is described in Ch. 6.
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Wannier_libWannier_prog

Wannerise PlotOverlap Disentangle Transport

Hamiltonian

Kmesh

Constants

Parameters

io

Utility

Figure 4.1: Schematic overview of the module structure of wannier90. Modules may only use data
and subroutines from lower modules.



Chapter 5

wannier90 as a post-processing tool

This is a description of how to use wannier90 as a post-processing tool.

The code must be run twice. On the first pass either the logical keyword postproc_setup must be set
to .true. in the input file seedname.win or the code must be run with the command line option -pp.
Running the code then generates the file seedname.nnkp which provides the information required to
construct the M (k,b)

mn overlaps (Ref. [1], Eq. (25)) and A(k)
mn (Ref. [1], Eq. (62); Ref. [2], Eq. (22)).

Once the overlaps and projection have been computed and written to files seedname.mmn and seedname.amn,
respectively, set postproc_setup to .false. and run the code. Output is written to the file seedname.wout.

5.1 seedname.nnkp file

OUTPUT, if postproc_setup = .true.

The file seedname.nnkp provides the information needed to determine the required overlap elements
M

(k,b)
mn and projections A(k)

mn. It is written automatically when the code is invoked with the -pp
command-line option (or when postproc_setup=.true. in seedname.win. There should be no need
for the user to edit this file.

Much of the information in seedname.nnkp is arranged in blocks delimited by the strings begin block_name
. . . end block_name, as described below.

5.1.1 Keywords

The first line of the file is a user comment, e.g., the date and time:

File written on 12Feb2006 at 15:13:12

The only logical keyword is calc_only_A, eg,

calc_only_A : F

5.1.2 Real_lattice block

begin real_lattice

59
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2.250000 0.000000 0.000000
0.000000 2.250000 0.000000
0.000000 0.000000 2.250000

end real_lattice

The real lattice vectors in units of Angstrom.

5.1.3 Recip_lattice block

begin recip_lattice
2.792527 0.000000 0.000000
0.000000 2.792527 0.000000
0.000000 0.000000 2.792527

end recip_lattice

The reciprocal lattice vectors in units of inverse Angstrom.

5.1.4 Kpoints block

begin kpoints
8
0.00000 0.00000 0.00000
0.00000 0.50000 0.00000
.
.
.
0.50000 0.50000 0.50000

end kpoints

The first line in the block is the total number of k-points num_kpts. The subsequent num_kpts lines
specify the k-points in crystallographic co-ordinates relative to the reciprocal lattice vectors.

5.1.5 Projections block

begin projections
n_proj
centre l mr r

z-axis x-axis zona
centre l mr r

z-axis x-axis zona
.
.

end projections

Notes:

n_proj: integer; the number of projection centres, equal to the number of MLWF num_wann.
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centre: three real numbers; projection function centre in crystallographic co-ordinates relative to the
direct lattice vectors.

l mr r: three integers; l and mr specify the angular part Θlmr(θ, ϕ), and r specifies the radial part
Rr(r) of the projection function (see Tables 3.1, 3.2 and 3.3).

z-axis: three real numbers; default is 0.0 0.0 1.0; defines the axis from which the polar angle θ in
spherical polar coordinates is measured.

x-axis: three real numbers; must be orthogonal to z-axis; default is 1.0 0.0 0.0 or a vector per-
pendicular to z-axis if z-axis is given; defines the axis from with the azimuthal angle ϕ in spherical
polar coordinates is measured.

zona: real number; the value of Z
a associated with the radial part of the atomic orbital. Units are in

reciprocal Angstrom.

5.1.6 spinor_projections block

begin spinor_projections
n_proj
centre l mr r
z-axis x-axis zona
spin spn_quant

centre l mr r
z-axis x-axis zona
spin spn_quant

.

.
end spinor_projections

Notes: Only one of projections and spinor_projections should be defined. Variables are the same as
the projections block with the addition of spin and spn_quant.

spin: integer. ‘1’ or ‘-1’ to denote projection onto up or down states.

spn_quant: three real numbers. Defines the spin quantisation axis in Cartesian coordinates.

5.1.7 nnkpts block

begin nnkpts
10
1 2 0 0 0
.
.

end nnkpts

First line: nntot, the number of nearest neighbours belonging to each k-point of the Monkhorst-Pack
mesh

Subsequent lines: nntot×num_kpts lines, ie, nntot lines of data for each k-point of the mesh.
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Each line of consists of 5 integers. The first is the k-point number nkp. The second to the fifth specify
it’s nearest neighbours k + b: the second integer points to the k-point that is the periodic image of the
k + b that we want; the last three integers give the G-vector, in reciprocal lattice units, that brings
the k-point specified by the second integer (which is in the first BZ) to the actual k + b that we need.

5.1.8 exclude_bands block

begin exclude_bands
8
1
2
.
.

end exclude_bands

To exclude bands (independent of k-point) from the calculation of the overlap and projection matrices,
for example to ignore shallow-core states. The first line is the number of states to exclude, the following
lines give the states for be excluded.

5.1.9 auto_projections block

begin auto_projections
8
0

end auto_projections

This block is only printed if auto_projections=true in the input. The choice of an additional block
has been made in order to maintain back-compatibility with codes that interface with wannier90, e.g.
pw2wannier90. The first entry in the block (in the example above, 8) is the total number of target
projections and it is equal to the number of sought Wannier functions.

The second entry is a reserved flag with the value of zero. The implementations of the interface codes
MUST check for this value to be zero and stop otherwise. In the future, one possible extension that
we plan is to combine the automatic generation of initial projections with the selection of projections
via a projections block. This will allow the user to specify only a subset of initial projections in the
projections block and leave the interface code to automatically generate the remaining ones. In that
case the constraint on the second entry will be lifted, so that it can take on the meaning of the number
of projections that need to be generated automatically.

The selected columns of the density matrix (SCDM) method [10] is one way of generating the initial
A

(k)
mn in an automatic way. This has been implemented in the pw2wannier90 interface code (you need

v6.3 with the files provided in the pwscf folder of Wannier90, or v6.4), see for instance Example 27 in
the wannier90 tutorial that shows how to use it.

Moreover, also the automatic generation of initial projections with spinor WFs is implemented in the
pw2wannier90 interface. See Example 31 in the wannier90 tutorial that shows how to use it.
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5.1.10 An example of projections

As a concrete example: one wishes to have a set of four sp3 projection orbitals on, say, a carbon atom at
(0.5,0.5,0.5) in fractional co-ordinates relative to the direct lattice vectors. In this case seedname.win
will contain the following lines:

begin projections
C:l=-1

end projections

and seedname.nnkp, generated on the first pass of wannier90 (with postproc_setup=T), will contain:

begin projections
4
0.50000 0.50000 0.50000 -1 1 1

0.000 0.000 1.000 1.000 0.000 0.000 2.00
0.50000 0.50000 0.50000 -1 2 1

0.000 0.000 1.000 1.000 0.000 0.000 2.00
0.50000 0.50000 0.50000 -1 3 1

0.000 0.000 1.000 1.000 0.000 0.000 2.00
0.50000 0.50000 0.50000 -1 4 1

0.000 0.000 1.000 1.000 0.000 0.000 2.00
end projections

where the first line tells us that in total four projections are specified, and the subsquent lines provide
the projection centre, the angular and radial parts of the orbital (see Section 3.4 for definitions), the
z and x axes, and the diffusivity and cut-off radius for the projection orbital.

pwscf, or any other ab initio electronic structure code, then reads seedname.nnkp file, calculates the
projections and writes them to seedname.amn.

5.2 seedname.mmn file

INPUT.

The file seedname.mmn contains the overlaps M (k,b)
mn .

First line: a user comment, e.g., the date and time

Second line: 3 integers: num_bands, num_kpts, nntot

Then: num_kpts× nntot blocks of data:

First line of each block: 5 integers. The first specifies the k (i.e., gives the ordinal corresponding to
its position in the list of k-points in seedname.win). The 2nd to 5th integers specify k + b. The
2nd integer, in particular, points to the k-point on the list that is a periodic image of k + b, and in
particular is the image that is actually mentioned in the list. The last three integers specify the G
vector, in reciprocal lattice units, that brings the k-point specified by the second integer, and that thus
lives inside the first BZ zone, to the actual k + b that we need.
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Subsequent num_bands× num_bands lines of each block: two real numbers per line. These are the real
and imaginary parts, respectively, of the actual scalar product M (k,b)

mn for m,n ∈ [1, num_bands]. The
order of these elements is such that the first index m is fastest.

5.3 seedname.amn file

INPUT.

The file seedname.amn contains the projection A(k)
mn.

First line: a user comment, e.g., the date and time

Second line: 3 integers: num_bands, num_kpts, num_wann

Subsequently num_bands × num_wann × num_kpts lines: 3 integers and 2 real numbers on each line.
The first two integers are the band indices m and n. The third integer specifies the k by giving the
ordinal corresponding to its position in the list of k-points in seedname.win. The real numbers are the
real and imaginary parts, respectively, of the actual A(k)

mn.

5.4 seedname.dmn file

INPUT.

The file seedname.dmn contains the data needed to construct symmetry-adapted Wannier functions [7].
Required if site_symmetry = .true.

First line: a user comment, e.g., the date and time

Second line: 4 integers: num_bands, nsymmetry, nkptirr, num_kpts.
nsymmetry: the number of symmetry operations
nkptirr: the number of irreducible k-points

Blank line

num_kpts integers: Mapping between full k- and irreducible k-points. Each k-point is related to some
k-point in the irreducible BZ. The information of this mapping is written. Each entry corresponds to a
k-point in the full BZ, in the order in which they appear in the k-point list in seedname.win file. The
(integer) value of each entry is the k-point index in the IBZ to which the k-point maps. The number
of unique values is equal to the number of k-points in the IBZ. The data is written 10 values per line.

Blank line

nkptirr integers: List of irreducible k-points. Each entry corresponds to a k-point of the IBZ. The
(integer) value of each entry is the k-point index corresponding to the k-point list in seedname.win
file. The values should be between 1 and num_kpts. The data is written 10 values per line.

Blank line

nkptirr blocks of nsymmetry integer data (each block separated by a blank line): List of k-points
obtained by acting the symmetry operations on the irreducible k-points. The data is written 10 values
per line.

Blank line
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nsymmetry× nkptirr blocks of data:
The information of D matrix in Eq. (15) of Ref. [7]. Each block contains num_wann × num_wann
lines and is separated by a blank line. The data are stored in d_matrix_wann(m,n,isym,ikirr) with
m, n ∈ [1, num_wann], isym ∈ [1, nsymmetry], and ikirr ∈ [1, nkptirr]. The order of the elements is
such that left indices run faster than right indices (m: fastest, ikirr: slowest).

Blank line

nsymmetry× nkptirr blocks of data:
The information of d̃ matrix in Eq. (17) of Ref. [7]. Each block contains num_bands × num_bands
lines and is separated by a blank line. The data are stored in d_matrix_band(m,n,isym,ikirr) with
m, n ∈ [1, num_bands], isym ∈ [1, nsymmetry], and ikirr ∈ [1, nkptirr]. The order of the elements is
such that left indices run faster than right indices (m: fastest, ikirr: slowest).

5.5 seedname.eig file

INPUT.

Required if any of disentanglement, plot_bands, plot_fermi_surface or write_hr are .true.

The file seedname.eig contains the Kohn-Sham eigenvalues εnk (in eV) at each point in the Monkhorst-
Pack mesh.

Each line consist of two integers and a real number. The first integer is the band index, the second
integer gives the ordinal corresponding to the k-point in the list of k-points in seedname.win, and the
real number is the eigenvalue.

E.g.,

1 1 -6.43858831271328
2 1 19.3977795287297
3 1 19.3977795287297
4 1 19.3977795287298

5.6 Interface with pwscf

Interfaces between wannier90 and many ab-initio codes such as pwscf, abinit (http://www.abinit.
org), siesta (http://www.icmab.es/siesta/), fleur, VASP and Wien2k (http://www.wien2k.
at) are available. Here we describe the seamless interface between wannier90 and pwscf, a plane-wave
DFT code that comes as part of the Quantum ESPRESSO package (see http://www.quantum-espresso.
org). You will need to download and compile pwscf (i.e., the pw.x code) and the post-processing inter-
face pw2wannier90.x. Please refer to the documentation that comes with the Quantum ESPRESSO
distribution for instructions.

1. Run ‘scf’/‘nscf’ calculation(s) with pw

2. Run wannier90 with postproc_setup = .true. to generate seedname.nnkp

3. Run pw2wannier90. First it reads an input file, e.g., seedname.pw2wan, which defines prefix
and outdir for the underlying ‘scf’ calculation, as well as the name of the file seedname.nnkp, and

http://www.abinit.org
http://www.abinit.org
http://www.icmab.es/siesta/
http://www.wien2k.at
http://www.wien2k.at
http://www.quantum-espresso.org
http://www.quantum-espresso.org
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does a consistency check between the direct and reciprocal lattice vectors read from seedname.nnkp
and those defined in the files specified by prefix. pw2wannier90 generates seedname.mmn,
seedname.amn and seedname.eig. seedname.dmn and seedname.sym files are additionally cre-
ated when write_dmn = .true. (see below).

4. Run wannier90 with postproc_setup = .false. to disentangle bands (if required), localise
MLWF, and use MLWF for plotting, bandstructures, Fermi surfaces etc.

Examples of how the interface with pwscf works are given in the wannier90 Tutorial.

5.6.1 seedname.pw2wan

A number of keywords may be specified in the pw2wannier90 input file:

• outdir – Location to write output files. Default is ‘./’

• prefix – Prefix for the pwscf calculation. Default is ‘ ’

• seedname – Seedname for the wannier90 calculation. Default is ‘wannier’

• spin_component – Spin component. Takes values ‘up’, ‘down’ or ‘none’ (default).

• wan_mode – Either ‘standalone’ (default) or ‘library’

• write_unk – Set to .true. to write the periodic part of the Bloch functions for plotting in
wannier90. Default is .false.

• reduce_unk – Set to .true. to reduce file-size (and resolution) of Bloch functions by a factor of
8. Default is .false. (only relevant if write_unk=.true.)1

• wvfn_formatted – Set to .true. to write formatted wavefunctions. Default is .false. (only
relevant if write_unk=.true.)

• write_amn – Set to .false. if A(k)
mn not required. Default is .true.

• write_mmn – Set to .false. if M (k,b)
mn not required. Default is .true.

• write_spn – Set to .true. to write out the matrix elements of S between Bloch states (non-
collinear spin calculation only). Default is .false.

• spn_formatted – Set to .true. to write spn data as a formatted file. Default is .false. (only
relevant if write_spn=.true.)

• write_uHu – Set to .true. to write out the matrix elements

〈unk+b1 |Hk|umk+b2〉.

Default is .false.

• uHu_formatted – Set to .true. to write uHu data as a formatted file. Default is .false. (only
relevant if write_uHu=.true.)

1Note that there is a small bug with this feature in v3.2 (and subsequent patches) of quantum-espresso. Please use
a later version (if available) or the CVS version of pw2wannier90.f90, which has been fixed.
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• write_uIu – Set to .true. to write out the matrix elements of

〈unk+b1 |umk+b2〉.

Default is .false.

• uIu_formatted – Set to .true. to write uIu data as a formatted file. Default is .false. (only
relevant if write_uIu=.true.)

• write_unkg – Set to .true. to write the first few Fourier components of the periodic parts of
the Bloch functions.

• write_dmn – Set to .true. to construct symmetry-adapted Wannier functions. Default is
.false.

• read_sym – Set to .true. to customize symmetry operations to be used in symmetry-adapted
mode. When read_sym = .true., an additional input seedname.sym is required. Default is
.false. (only relevant if write_dmn=.true.).

For examples of use, refer to the wannier90 Tutorial.

5.6.2 seedname.sym

If read_sym = .true., then this additional input file is required for pw2wannier90.x
if read_sym = .false., then this file is written by pw2wannier90.x (only for reference – it is not used
in subsequent calculations)

The file seedname.sym contains the information of symmetry operations used to create symmetry-
adapted Wannier functions. If read_sym = .false. (default), pw2wannier90.x uses the full symme-
try recognized by pw.x. If read_sym = .true., you can specify symmetry operations to be used in
symmetry-adapted mode.

First line: an integer: nsymmetry (number of symmetry operations)

Second line: blank

Then: nsymmetry blocks of data. Each block (separated by a blank line) consists of four lines. The
order of the data in each block is as follows:

R(1,1) R(2,1) R(3,1)
R(1,2) R(2,2) R(3,2)
R(1,3) R(2,3) R(3,3)
t(1) t(2) t(3)

Here, R is the rotational part of symmetry operations (3×3 matrix), and t is the fractional translation
in the unit of “alat” (refer the definition of “alat” to the manual of pwscf). Both data are given in
Cartesian coordinates. The symmetry operations act on a point r as rR− t.





Chapter 6

wannier90 as a library

This is a description of the interface between any external program and the wannier code. There
are two subroutines: wannier_setup and wannier_run. Calling wannier_setup will return informa-
tion required to construct the M (k,b)

mn overlaps (Ref. [1], Eq. (25)) and A
(k)
mn = 〈ψmk|gn〉 projections

(Ref. [1], Eq. (62); Ref. [2], Eq. (22)). Once the overlaps and projection have been computed, calling
wannier_run activates the minimisation and plotting routines in wannier90.

IMPORTANT NOTE: the library mode ONLY works in serial. Please call it from a serial code, or
if compiled in parallel, make sure to run it from a single MPI process.

You can find a minimal example of how the library mode can be used among the tests, in the file
test-suite/library-mode-test/test_library.F90 in the Wannier90 git repository.

6.1 Subroutines

6.1.1 wannier_setup

wannier_setup(seed_name,mp_grid,num_kpts,real_lattice,recip_lattice,
kpt_latt,num_bands_tot,num_atoms,atom_symbols,atoms_cart,
gamma_only,spinors,nntot,nnlist,nncell,num_bands,num_wann,proj_site,
proj_l,proj_m,proj_radial,proj_z,proj_x,proj_zona,
exclude_bands,proj_s,proj_s_qaxis)

• character(len=*), intent(in) :: seed_name
The seedname of the current calculation.

• integer, dimension(3), intent(in) :: mp_grid
The dimensions of the Monkhorst-Pack k-point grid.

• integer, intent(in) :: num_kpts
The number of k-points on the Monkhorst-Pack grid.

• real(kind=dp), dimension(3,3), intent(in) :: real_lattice
The lattice vectors in Cartesian co-ordinates in units of Angstrom.

• real(kind=dp), dimension(3,3), intent(in) :: recip_lattice
The reciprocal lattice vectors in Cartesian co-ordinates in units of reciprocal Angstrom.

69
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• real(kind=dp), dimension(3,num_kpts), intent(in) :: kpt_latt
The positions of the k-points in fractional co-ordinates relative to the reciprocal lattice vectors.

• integer, intent(in) :: num_bands_tot
The total number of bands in the first-principles calculation (note: including semi-core states).

• integer, intent(in) :: num_atoms
The total number of atoms in the system.

• character(len=20), dimension(num_atoms), intent(in) :: atom_symbols
The elemental symbols of the atoms.

• real(kind=dp), dimension(3,num_atoms), intent(in) :: atoms_cart
The positions of the atoms in Cartesian co-ordinates in Angstrom.

• logical, intent(in) :: gamma_only
Set to .true. if the underlying electronic structure calculation has been performed with only
Γ-point sampling and, hence, if the Bloch eigenstates that are used to construct A(k)

mn and M (k,b)
mn

are real.

• logical, intent(in) :: spinors
Set to .true. if underlying electronic structure calculation has been performed with spinor
wavefunctions.

• integer, intent(out) :: nntot
The total number of nearest neighbours for each k-point.

• integer, dimension(num_kpts,num_nnmax), intent(out) :: nnlist
The list of nearest neighbours for each k-point.

• integer,dimension(3,num_kpts,num_nnmax), intent(out) :: nncell
The vector, in fractional reciprocal lattice co-ordinates, that brings the nnth nearest neighbour
of k-point nkp to its periodic image that is needed for computing the overlap M (k,b)

mn .

• integer, intent(out) :: num_bands
The number of bands in the first-principles calculation used to form the overlap matricies (note:
excluding eg. semi-core states).

• integer, intent(out) :: num_wann
The number of MLWF to be extracted.

• real(kind=dp), dimension(3,num_bands_tot), intent(out) :: proj_site
Projection function centre in crystallographic co-ordinates relative to the direct lattice vectors.

• integer, dimension(num_bands_tot), intent(out) :: proj_l
l specifies the angular part Θlmr(θ, ϕ) of the projection function (see Tables 3.1, 3.2 and 3.3).

• integer, dimension(num_bands_tot), intent(out) :: proj_m
mr specifies the angular part Θlmr(θ, ϕ), of the projection function (see Tables 3.1, 3.2 and 3.3).

• integer, dimension(num_bands_tot), intent(out) :: proj_radial
r specifies the radial part Rr(r) of the projection function (see Tables 3.1, 3.2 and 3.3).

• real(kind=dp), dimension(3,num_bands_tot), intent(out) :: proj_z
Defines the axis from which the polar angle θ in spherical polar coordinates is measured. Default
is 0.0 0.0 1.0.
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• real(kind=dp), dimension(3,num_bands_tot), intent(out) :: proj_x
Must be orthogonal to z-axis; default is 1.0 0.0 0.0 or a vector perpendicular to proj_z if
proj_z is given; defines the axis from with the azimuthal angle ϕ in spherical polar coordinates
is measured.

• real(kind=dp), dimension(num_bands_tot), intent(out) :: proj_zona
The value of Z

a associated with the radial part of the atomic orbital. Units are in reciprocal
Angstrom.

• integer, dimension(num_bands_tot), intent(out) :: exclude_bands
Kpoints independant list of bands to exclude from the calculation of the MLWF (e.g., semi-core
states).

• integer, dimension(num_bands_tot), optional,intent(out) :: proj_s
’1’ or ’-1’ to denote projection onto up or down spin states

• real(kind=dp), dimension(3,num_bands_tot), intent(out) :: proj_s_qaxisx
Defines the spin quantisation axis in Cartesian coordinates.

Conditions:

? num_kpts = mp_grid(1)× mp_grid(2)× mp_grid(3).

? num_nnmax = 12

This subroutine returns the information required to determine the required overlap elements M (k,b)
mn

and projections A(k)
mn, i.e., M_matrix and A_matrix, described in Section 6.1.2.

For the avoidance of doubt, real_lattice(1,2) is the y−component of the first lattice vector A1, etc.

The list of nearest neighbours of a particular k-point nkp is given by nnlist(nkp,1:nntot).

Additionally, the parameter shell_list may be specified in the wannier90 input file.

6.1.2 wannier_run

wannier_run(seed_name,mp_grid,num_kpts,real_lattice,recip_lattice,
kpt_latt,num_bands,num_wann,nntot,num_atoms,atom_symbols,
atoms_cart,gamma_only,M_matrix_orig,A_matrix,eigenvalues,
U_matrix,U_matrix_opt,lwindow,wann_centres,wann_spreads,
spread)

• character(len=*), intent(in) :: seed_name
The seedname of the current calculation.

• integer, dimension(3), intent(in) :: mp_grid
The dimensions of the Monkhorst-Pack k-point grid.

• integer, intent(in) :: num_kpts
The number of k-points on the Monkhorst-Pack grid.

• real(kind=dp), dimension(3,3), intent(in) :: real_lattice
The lattice vectors in Cartesian co-ordinates in units of Angstrom.
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• real(kind=dp), dimension(3,3), intent(in) :: recip_lattice
The reciprical lattice vectors in Cartesian co-ordinates in units of inverse Angstrom.

• real(kind=dp), dimension(3,num_kpts), intent(in) :: kpt_latt
The positions of the k-points in fractional co-ordinates relative to the reciprocal lattice vectors.

• integer, intent(in) :: num_bands
The total number of bands to be processed.

• integer, intent(in) :: num_wann
The number of MLWF to be extracted.

• integer, intent(in) :: nntot
The number of nearest neighbours for each k-point.

• integer, intent(in) :: num_atoms
The total number of atoms in the system.

• character(len=20), dimension(num_atoms), intent(in) :: atom_symbols
The elemental symbols of the atoms.

• real(kind=dp), dimension(3,num_atoms), intent(in) :: atoms_cart
The positions of the atoms in Cartesian co-ordinates in Angstrom.

• logical, intent(in) :: gamma_only
Set to .true. if the underlying electronic structure calculation has been performed with only
Γ-point sampling and, hence, if the Bloch eigenstates that are used to construct A(k)

mn and M (k,b)
mn

are real.

• complex(kind=dp), dimension(num_bands,num_bands,nntot,num_kpts),
intent(in) :: M_matrix

The matrices of overlaps between neighbouring periodic parts of the Bloch eigenstates at each
k-point, M ((k,b))

mn (Ref. [1], Eq. (25)).

• complex(kind=dp), dimension(num_bands,num_wann,num_kpts),
intent(in) :: A_matrix

The matrices describing the projection of num_wann trial orbitals on num_bands Bloch states at
each k-point, A(k)

mn (Ref. [1], Eq. (62); Ref. [2], Eq. (22)).

• real(kind=dp), dimension(num_bands,num_kpts), intent(in) :: eigenvalues
The eigenvalues εnk corresponding to the eigenstates, in eV.

• complex(kind=dp), dimension(num_wann,num_wann,num_kpts),
intent(out) :: U_matrix

The unitary matrices at each k-point (Ref. [1], Eq. (59))

• complex(kind=dp), dimension(num_bands,num_wann,num_kpts),
optional, intent(out) :: U_matrix_opt

The unitary matrices that describe the optimal sub-space at each k-point (see Ref. [2], Sec-
tion IIIa). The array is packed (see below)

• logical, dimension(num_bands,num_kpts), optional, intent(out) :: lwindow
The element lwindow(nband,nkpt) is .true. if the band nband lies within the outer energy
window at kpoint nkpt.
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• real(kind=dp), dimension(3,num_wann), optional, intent(out) :: wann_centres
The centres of the MLWF in Cartesian co-ordinates in Angstrom.

• real(kind=dp), dimension(num_wann), optional, intent(out) :: wann_spreads
The spread of each MLWF in Å2.

• real(kind=dp), dimension(3), optional, intent(out) :: spread
The values of Ω, ΩI and Ω̃ (Ref. [1], Eq. (13)).

Conditions:

? num_wann ≤ num_bands

? num_kpts = mp_grid(1)× mp_grid(2)× mp_grid(3).

If num_bands = num_wann then U_matrix_opt is the identity matrix and lwindow=.true.

For the avoidance of doubt, real_lattice(1,2) is the y−component of the first lattice vector A1, etc.

M_matrix(m,n,nn,nkp) = 〈umk|unk+b〉
A_matrix(m,n,nkp) = 〈ψmk|gn〉

eigenvalues(n,nkp) = εnk

where

k = kpt_latt(1:3,nkp)

k + b = kpt_latt(1:3,nnlist(nkp,nn)) + nncell(1:3,nkp,nn)

and {|gn〉} are a set of initial trial orbitals. These are typically atom or bond-centred Gaussians that
are modulated by appropriate spherical harmonics.

Additional parameters should be specified in the wannier90 input file.





Chapter 7

Transport Calculations with wannier90

By setting transport = TRUE, wannier90 will calculate the quantum conductance and density of states
of a one-dimensional system. The results will be written to files seedname_qc.dat and seedname_dos.dat,
respectively.

The system for which transport properties are calculated is determined by the keyword transport_mode.

7.1 transport_mode = bulk

Quantum conductance and density of states are calculated for a perfectly periodic one-dimensional
conductor. If tran_read_ht = FALSE the transport properties are calculated using the Hamiltonian in
the Wannier function basis of the system found by wannier90. Setting tran_read_ht = TRUE allows
the user to provide an external Hamiltonian matrix file seedname_htB.dat, from which the properties
are found. See Section 2.9 for more details of the keywords required for such calculations.

7.2 transport_mode = lcr

Quantum conductance and density of states are calculated for a system where semi-infinite, left and
right leads are connected through a central conductor region. This is known as the lcr system. Details
of the method is described in Ref. [9].

In wannier90 two options exist for performing such calculations:

• If tran_read_ht = TRUE the external Hamiltonian files seedname_htL.dat, seedname_htLC.dat,
seedname_htC.dat, seedname_htCR.dat, seedname_htR.dat are read and used to compute the
transport properties.

• If tran_read_ht = FALSE, then the transport calculation is performed automatically using the
Wannier functions as a basis and the 2c2 geometry described in Section 7.3.

75



76 wannier90: User Guide

7.3 Automated lcr Transport Calculations: The 2c2 Geometry

Calculations using the 2c2 geometry provide a method to calculate the transport properties of an lcr
system from a single wannier90 calculation. The Hamiltonian matrices which the five external files
provide in the tran_read_ht = TRUE case are instead built from the Wannier function basis directly.
As such, strict rules apply to the system geometry, which is shown in Figure 7.1. These rules are as
follows:

• Left and right leads must be identical and periodic.

• Supercell must contain two principal layers (PLs) of lead on the left, a central conductor region
and two principal layers of lead on the right.

• The conductor region must contain enough lead such that the disorder does not affect the principal
layers of lead either side.

• A single k-point (Gamma) must be used.

PL3 PL4PL1 ConductorPL2

h

H

LC

L

00

hCR

10

LH   , HR

01CH

PL1

Figure 7.1: Schematic illustration of the supercell required for 2c2 lcr calculations, showing where
each of the Hamiltonian matrices are derived from. Four principal layers (PLs) are required plus the
conductor region.

In order to build the Hamiltonians, Wannier functions are first sorted according to position and then
type if a number of Wannier functions exist with a similar centre (eg. d -orbital type Wannier functions
centred on a Cu atom). Next, consistent parities of Wannier function are enforced. To distingiush
between different types of Wannier function and assertain relative parities, a signature of each Wannier
function is computed. The signature is formed of 20 integrals which have different spatial dependence.
They are given by:

I =
1

V

∫
V
g(r)w(r)dr (7.1)

where V is the volume of the cell, w(r) is the Wannier function and g(r) are the set of functions:

g(r) =
{

1, sin
(

2π(x−xc)
Lx

)
, sin

(
2π(y−yc)

Ly

)
, sin

(
2π(z−zc)

Lz

)
, sin

(
2π(x−xc)

Lx

)
sin
(

2π(y−yc)
Ly

)
,

sin
(

2π(x−xc)
Lx

)
sin
(

2π(z−zc)
Lz

)
, ...
}

(7.2)

upto third order in powers of sines. Here, the supercell has dimension (Lx, Ly, Lz) and the Wannier
function has centre rc = (xc, yc, zc). Each of these integrals may be written as linear combinations of
the following sums:
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Sn(G) = eiG.rc
∑
m

Umnũ
∗
mΓ(G) (7.3)

where n and m are the Wannier function and band indexes, G is a G-vector, Umn is the unitary matrix
that transforms from the Bloch reopresentation of the system to the maximally-localised Wannier
function basis and ũ∗mΓ(G) are the conjugates of the Fourier transforms of the periodic parts of the
Bloch states at the Γ -point. The complete set of ũmk(G) are often outputted by plane-wave DFT
codes. However, to calculate the 20 signature integrals, only 32 specific ũmk(G) are required. These
are found in an additional file (seedname.unkg) that should be provided by the interface between the
DFT code and wannier90 . A detailed description of this file may be found in Section 8.32.

Additionally, the following keywords are also required in the input file:

• tran_num_ll : The number of Wannier functions in a principal layer.

• tran_num_cell_ll : The number of unit cells in one principal layer of lead

A further parameter related to these calculations is tran_group_threshold.

Examples of how 2c2 calculations are preformed can be found in the wannier90 Tutorial.





Chapter 8

Files

8.1 seedname.win

INPUT. The master input file; contains the specification of the system and any parameters for the run.
For a description of input parameters, see Chapter 2; for examples, see Section 10.1 and the wannier90
Tutorial.

8.1.1 Units

The following are the dimensional quantities that are specified in the master input file:

• Direct lattice vectors

• Positions (of atomic or projection) centres in real space

• Energy windows

• Positions of k-points in reciprocal space

• Convergence thresholds for the minimisation of Ω

• zona (see Section 3.1)

• wannier_plot_cube: cut-off radius for plotting WF in Gaussian cube format

Notes:

• The units (either ang (default) or bohr) in which the lattice vectors, atomic positions or projection
centres are given can be set in the first line of the blocks unit_cell_cart, atoms_cart and
projections, respectively, in seedname.win.

• Energy is always in eV.

• Convergence thresholds are always in Å2

• Positions of k-points are always in crystallographic coordinates relative to the reciprocal lattice
vectors.
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• zona is always in reciprocal Angstrom (Å−1)

• The keyword length_unit may be set to ang (default) or bohr, in order to set the units in which
the quantities in the output file seedname.wout are written.

• wannier_plot_radius is in Angstrom

The reciprocal lattice vectors {B1,B2,B3} are defined in terms of the direct lattice vectors {A1,A2,A3}
by the equation

B1 =
2π

Ω
A2 ×A3 etc., (8.1)

where the cell volume is V = A1 · (A2 ×A3).

8.2 seedname.mmn

INPUT. Written by the underlying electronic structure code. See Chapter 5 for details.

8.3 seedname.amn

INPUT. Written by the underlying electronic structure code. See Chapter 5 for details.

8.4 seedname.dmn

INPUT. Read if site_symmetry = .true. (symmetry-adapted mode). Written by the underlying
electronic structure code. See Chapter 5 for details.

8.5 seedname.eig

INPUT. Written by the underlying electronic structure code. See Chapter 5 for details.

8.6 seedname.nnkp

OUTPUT. Written by wannier90 when postproc_setup=.TRUE. (or, alternatively, when wannier90
is run with the -pp command-line option). See Chapter 5 for details.

8.7 seedname.wout

OUTPUT. The master output file. Here we give a description of the main features of the output. The
verbosity of the output is controlled by the input parameter iprint. The higher the value, the more
detail is given in the output file. The default value is 1, which prints minimal information.
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8.7.1 Header

The header provides some basic information about wannier90, the authors, the code version and
release, and the execution time of the current run. The header looks like the following different (the
string might slightly change across different versions):

+---------------------------------------------------+
| |
| WANNIER90 |
| |
+---------------------------------------------------+
| |
| Welcome to the Maximally-Localized |
| Generalized Wannier Functions code |
| http://www.wannier.org |
| |
| Wannier90 Developer Group: |
| Giovanni Pizzi (EPFL) |
| Valerio Vitale (Cambridge) |
| David Vanderbilt (Rutgers University) |
| Nicola Marzari (EPFL) |
| Ivo Souza (Universidad del Pais Vasco) |
| Arash A. Mostofi (Imperial College London) |
| Jonathan R. Yates (University of Oxford) |
| |
| For the full list of Wannier90 3.x authors, |
| please check the code documentation and the |
| README on the GitHub page of the code |
| |
| |
| Please cite |

.

.
| |
+---------------------------------------------------+
| Execution started on 18Dec2018 at 18:39:42 |
+---------------------------------------------------+

8.7.2 System information

This part of the output file presents information that wannier90 has read or inferred from the master
input file seedname.win. This includes real and reciprocal lattice vectors, atomic positions, k-points,
parameters for job control, disentanglement, localisation and plotting.

------
SYSTEM
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------

Lattice Vectors (Ang)
a_1 3.938486 0.000000 0.000000
a_2 0.000000 3.938486 0.000000
a_3 0.000000 0.000000 3.938486

Unit Cell Volume: 61.09251 (Ang^3)

Reciprocal-Space Vectors (Ang^-1)
b_1 1.595330 0.000000 0.000000
b_2 0.000000 1.595330 0.000000
b_3 0.000000 0.000000 1.595330

*----------------------------------------------------------------------------*
| Site Fractional Coordinate Cartesian Coordinate (Ang) |
+----------------------------------------------------------------------------+
| Ba 1 0.00000 0.00000 0.00000 | 0.00000 0.00000 0.00000 |
| Ti 1 0.50000 0.50000 0.50000 | 1.96924 1.96924 1.96924 |

.

.
*----------------------------------------------------------------------------*

------------
K-POINT GRID
------------

Grid size = 4 x 4 x 4 Total points = 64

*---------------------------------- MAIN ------------------------------------*
| Number of Wannier Functions : 9 |
| Number of input Bloch states : 9 |
| Output verbosity (1=low, 5=high) : 1 |
| Length Unit : Ang |
| Post-processing setup (write *.nnkp) : F |

.

.
*----------------------------------------------------------------------------*

8.7.3 Nearest-neighbour k-points

This part of the output files provides information on the b-vectors and weights chosen to satisfy the
condition of Eq. 2.1.

*---------------------------------- K-MESH ----------------------------------*
+----------------------------------------------------------------------------+
| Distance to Nearest-Neighbour Shells |
| ------------------------------------ |
| Shell Distance (Ang^-1) Multiplicity |
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| ----- ----------------- ------------ |
| 1 0.398833 6 |
| 2 0.564034 12 |

.

.
+----------------------------------------------------------------------------+
| The b-vectors are chosen automatically |
| The following shells are used: 1 |
+----------------------------------------------------------------------------+
| Shell # Nearest-Neighbours |
| ----- -------------------- |
| 1 6 |
+----------------------------------------------------------------------------+
| Completeness relation is fully satisfied [Eq. (B1), PRB 56, 12847 (1997)] |
+----------------------------------------------------------------------------+

8.7.4 Disentanglement

Then (if required) comes the part where ΩI is minimised to disentangle the optimally-connected sub-
space of states for the localisation procedure in the next step.

First, a summary of the energy windows that are being used is given:

*------------------------------- DISENTANGLE --------------------------------*
+----------------------------------------------------------------------------+
| Energy Windows |
| --------------- |
| Outer: 2.81739 to 38.00000 (eV) |
| Inner: 2.81739 to 13.00000 (eV) |
+----------------------------------------------------------------------------+

Then, each step of the iterative minimisation of ΩI is reported.

Extraction of optimally-connected subspace
------------------------------------------

+---------------------------------------------------------------------+<-- DIS
| Iter Omega_I(i-1) Omega_I(i) Delta (frac.) Time |<-- DIS
+---------------------------------------------------------------------+<-- DIS

1 3.82493590 3.66268867 4.430E-02 0.36 <-- DIS
2 3.66268867 3.66268867 6.911E-15 0.37 <-- DIS

.

.

<<< Delta < 1.000E-10 over 3 iterations >>>
<<< Disentanglement convergence criteria satisfied >>>

Final Omega_I 3.66268867 (Ang^2)

+----------------------------------------------------------------------------+
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The first column gives the iteration number. For a description of the minimisation procedure and
expressions for Ω

(i)
I , see the original paper [2]. The procedure is considered to be converged when

the fractional difference between Ω
(i)
I and Ω

(i−1)
I is less than dis_conv_tol over dis_conv_window

iterations. The final column gives a running account of the wall time (in seconds) so far. Note that
at the end of each line of output, there are the characters “<– DIS”. This enables fast searching of the
output using, for example, the Unix command grep:

my_shell> grep DIS wannier.wout | less

8.7.5 Wannierisation

The next part of the output file provides information on the minimisation of Ω̃. At each iteration, the
centre and spread of each WF is reported.

*------------------------------- WANNIERISE ---------------------------------*
+--------------------------------------------------------------------+<-- CONV
| Iter Delta Spread RMS Gradient Spread (Ang^2) Time |<-- CONV
+--------------------------------------------------------------------+<-- CONV

------------------------------------------------------------------------------
Initial State
WF centre and spread 1 ( 0.000000, 1.969243, 1.969243 ) 1.52435832
WF centre and spread 2 ( 0.000000, 1.969243, 1.969243 ) 1.16120620

.

.
0 0.126E+02 0.0000000000 12.6297685260 0.29 <-- CONV

O_D= 0.0000000 O_OD= 0.1491718 O_TOT= 12.6297685 <-- SPRD
------------------------------------------------------------------------------
Cycle: 1
WF centre and spread 1 ( 0.000000, 1.969243, 1.969243 ) 1.52414024
WF centre and spread 2 ( 0.000000, 1.969243, 1.969243 ) 1.16059775

.

.
Sum of centres and spreads ( 11.815458, 11.815458, 11.815458 ) 12.62663472

1 -0.313E-02 0.0697660962 12.6266347170 0.34 <-- CONV
O_D= 0.0000000 O_OD= 0.1460380 O_TOT= 12.6266347 <-- SPRD

Delta: O_D= -0.4530841E-18 O_OD= -0.3133809E-02 O_TOT= -0.3133809E-02 <-- DLTA
------------------------------------------------------------------------------
Cycle: 2
WF centre and spread 1 ( 0.000000, 1.969243, 1.969243 ) 1.52414866
WF centre and spread 2 ( 0.000000, 1.969243, 1.969243 ) 1.16052405

.

.
Sum of centres and spreads ( 11.815458, 11.815458, 11.815458 ) 12.62646411

2 -0.171E-03 0.0188848262 12.6264641055 0.38 <-- CONV
O_D= 0.0000000 O_OD= 0.1458674 O_TOT= 12.6264641 <-- SPRD

Delta: O_D= -0.2847260E-18 O_OD= -0.1706115E-03 O_TOT= -0.1706115E-03 <-- DLTA
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------------------------------------------------------------------------------
.
.

------------------------------------------------------------------------------
Final State
WF centre and spread 1 ( 0.000000, 1.969243, 1.969243 ) 1.52416618
WF centre and spread 2 ( 0.000000, 1.969243, 1.969243 ) 1.16048545

.

.
Sum of centres and spreads ( 11.815458, 11.815458, 11.815458 ) 12.62645344

Spreads (Ang^2) Omega I = 12.480596753
================ Omega D = 0.000000000

Omega OD = 0.145856689
Final Spread (Ang^2) Omega Total = 12.626453441

------------------------------------------------------------------------------

It looks quite complicated, but things look more simple if one uses grep:

my_shell> grep CONV wannier.wout

gives

+--------------------------------------------------------------------+<-- CONV
| Iter Delta Spread RMS Gradient Spread (Ang^2) Time |<-- CONV
+--------------------------------------------------------------------+<-- CONV

0 0.126E+02 0.0000000000 12.6297685260 0.29 <-- CONV
1 -0.313E-02 0.0697660962 12.6266347170 0.34 <-- CONV

.

.
50 0.000E+00 0.0000000694 12.6264534413 2.14 <-- CONV

The first column is the iteration number, the second is the change in Ω from the previous iteration, the
third is the root-mean-squared gradient of Ω with respect to variations in the unitary matrices U(k),
and the last is the time taken (in seconds). Depending on the input parameters used, the procedure
either runs for num_iter iterations, or a convergence criterion is applied on Ω. See Section 2.8 for
details.

Similarly, the command

my_shell> grep SPRD wannier.wout

gives

O_D= 0.0000000 O_OD= 0.1491718 O_TOT= 12.6297685 <-- SPRD
O_D= 0.0000000 O_OD= 0.1460380 O_TOT= 12.6266347 <-- SPRD

.

.
O_D= 0.0000000 O_OD= 0.1458567 O_TOT= 12.6264534 <-- SPRD

which, for each iteration, reports the value of the diagonal and off-diagonal parts of the non-gauge-
invariant spread, as well as the total spread, respectively. Recall from Section 1 that Ω = ΩI+ΩD+ΩOD.
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Wannierisation with selective localization and constrained centres

For full details of the selectively localised Wannier function (SLWF) method, the reader is referred to
Ref. [8]. When using the SLWF method, only a few things change in the output file and in general the
same principles described above will apply. In particular, when minimising the spread with respect to
the degrees of freedom of only a subset of functions, it is not possible to cast the total spread functional
Ω as a sum of a gauge-invariant part and a gauge-dependent part. Instead, one has Ω

′
= ΩIOD + ΩD,

where

Ω
′

=

J ′<J∑
n=1

[
〈r2〉n − r2

n

]
and

ΩIOD =
J ′<J∑
n=1

[
〈r2
n〉 −

∑
R

|〈Rn|r|nR〉|2
]
.

The total number of Wannier functions is J , whereas J ′ is the number functions to be selectively
localized (so-called objective WFs). The information on the number of functions which are going to be
selectively localized (Number of Objective Wannier Functions) is given in the MAIN section of the
output file:

*---------------------------------- MAIN ------------------------------------*
| Number of Wannier Functions : 4 |
| Number of Objective Wannier Functions : 1 |
| Number of input Bloch states : 4 |

Whether or not the selective localization procedure has been switched on is reported in the WANNIERISE
section as

| Perform selective localization : T |

The next part of the output file provides information on the minimisation of the modified spread
functional:

*------------------------------- WANNIERISE ---------------------------------*
+--------------------------------------------------------------------+<-- CONV
| Iter Delta Spread RMS Gradient Spread (Ang^2) Time |<-- CONV
+--------------------------------------------------------------------+<-- CONV

------------------------------------------------------------------------------
Initial State
WF centre and spread 1 ( -0.857524, 0.857524, 0.857524 ) 1.80463310
WF centre and spread 2 ( 0.857524, -0.857524, 0.857524 ) 1.80463311
WF centre and spread 3 ( 0.857524, 0.857524, -0.857524 ) 1.80463311
WF centre and spread 4 ( -0.857524, -0.857524, -0.857524 ) 1.80463311
Sum of centres and spreads ( -0.000000, -0.000000, 0.000000 ) 7.21853243

0 -0.317E+01 0.0000000000 -3.1653368719 0.00 <-- CONV
O_D= 0.0000000 O_IOD= -3.1653369 O_TOT= -3.1653369 <-- SPRD

------------------------------------------------------------------------------
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Cycle: 1
WF centre and spread 1 ( -0.853260, 0.853260, 0.853260 ) 1.70201498
WF centre and spread 2 ( 0.857352, -0.857352, 0.862454 ) 1.84658331
WF centre and spread 3 ( 0.857352, 0.862454, -0.857352 ) 1.84658331
WF centre and spread 4 ( -0.862454, -0.857352, -0.857352 ) 1.84658331
Sum of centres and spreads ( -0.001010, 0.001010, 0.001010 ) 7.24176492

1 -0.884E-01 0.2093698260 -3.2536918930 0.00 <-- CONV
O_IOD= -3.2536919 O_D= 0.0000000 O_TOT= -3.2536919 <-- SPRD

Delta: O_IOD= -0.1245020E+00 O_D= 0.0000000E+00 O_TOT= -0.8835502E-01 <-- DLTA
------------------------------------------------------------------------------

.

.
------------------------------------------------------------------------------
Final State
WF centre and spread 1 ( -0.890189, 0.890189, 0.890189 ) 1.42375495
WF centre and spread 2 ( 0.895973, -0.895973, 0.917426 ) 2.14313664
WF centre and spread 3 ( 0.895973, 0.917426, -0.895973 ) 2.14313664
WF centre and spread 4 ( -0.917426, -0.895973, -0.895973 ) 2.14313664
Sum of centres and spreads ( -0.015669, 0.015669, 0.015669 ) 7.85316486

Spreads (Ang^2) Omega IOD = 1.423371553
================ Omega D = 0.000383395

Omega Rest = 9.276919811
Final Spread (Ang^2) Omega Total = 1.423754947

------------------------------------------------------------------------------

When comparing the output from an SLWF calculation with a standard wannierisation (see Sec. 8.7.5),
the only differences are in the definition of the spread functional. Hence, during the minimization O_OD
is replaced by O_IOD and O_TOT now reflects the fact that the new total spread functional is Ω

′ . The
part on the final state has one more item of information: the value of the difference between the global
spread functional and the new spread functional given by Omega Rest

ΩR =

J−J ′∑
n=1

[
〈r2〉n − r2

n

]

If adding centre-constraints to the SLWFs, you will find the information about the centres of the
original projections and the desired centres in the SYSTEM section

*----------------------------------------------------------------------------*
| Wannier# Original Centres Constrained centres |
+----------------------------------------------------------------------------+
| 1 0.25000 0.25000 0.25000 | 0.00000 0.00000 0.00000 |
*----------------------------------------------------------------------------*

As before one can check that the selective localization with constraints is being used by looking at the
WANNIERISE section:
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| Perform selective localization : T |
| Use constrains in selective localization : T |
| Value of the Lagrange multiplier : 0.100E+01 |
*----------------------------------------------------------------------------*

which also gives the selected value for the Lagrange multiplier. The output file for the minimisation
section is modified as follows: both O_IOD and O_TOT now take into account the factors coming from
the new term in the functional due to the constraints, which are implemented by adding the following
penalty functional to the spread functional,

λc

J ′∑
n=1

(rn − r0n)2 ,

where r0n is the desired centre for the nth Wannier function, see Ref. [8] for details. The layout of the
output file at each iteration is unchanged.

1 -0.884E-01 0.2093698260 -3.2536918930 0.00 <-- CONV

As regarding the final state, the only addition is the information on the value of the penalty functional
associated with the constraints (Penalty func), which should be zero if the final centres of the Wannier
functions are at the target centres:

Final State
WF centre and spread 1 ( -1.412902, 1.412902, 1.412902 ) 1.63408756
WF centre and spread 2 ( 1.239678, -1.239678, 1.074012 ) 2.74801593
WF centre and spread 3 ( 1.239678, 1.074012, -1.239678 ) 2.74801592
WF centre and spread 4 ( -1.074012, -1.239678, -1.239678 ) 2.74801592
Sum of centres and spreads ( -0.007559, 0.007559, 0.007559 ) 9.87813534

Spreads (Ang^2) Omega IOD_C = -4.261222001
================ Omega D = 0.000000000

Omega Rest = 5.616913337
Penalty func = 0.000000000

Final Spread (Ang^2) Omega Total_C = -4.261222001
------------------------------------------------------------------------------

8.7.6 Plotting

After WF have been localised, wannier90 enters its plotting routines (if required). For example, if you
have specified an interpolated bandstucture:

*---------------------------------------------------------------------------*
| PLOTTING |
*---------------------------------------------------------------------------*

Calculating interpolated band-structure
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8.7.7 Summary timings

At the very end of the run, a summary of the time taken for various parts of the calculation is given.
The level of detail is controlled by the timing_level input parameter (set to 1 by default).

*===========================================================================*
| TIMING INFORMATION |
*===========================================================================*
| Tag Ncalls Time (s)|
|---------------------------------------------------------------------------|
|kmesh: get : 1 0.212|
|overlap: read : 1 0.060|
|wann: main : 1 1.860|
|plot: main : 1 0.168|
*---------------------------------------------------------------------------*

All done: wannier90 exiting

8.8 seedname.chk

INPUT/OUTPUT. Information required to restart the calculation or enter the plotting phase. If we
have used disentanglement this file also contains the rectangular matrices Udis(k).

8.9 seedname.r2mn

OUTPUT. Written if write_r2mn = true. The matrix elements 〈m|r2|n〉 (where m and n refer to
MLWF)

8.10 seedname_band.dat

OUTPUT. Written if bands_plot=.TRUE.; The raw data for the interpolated band structure.

8.11 seedname_band.gnu

OUTPUT. Written if bands_plot=.TRUE. and bands_plot_format=gnuplot; A gnuplot script to plot
the interpolated band structure.

8.12 seedname_band.agr

OUTPUT. Written if bands_plot=.TRUE. and bands_plot_format=xmgrace; A grace file to plot the
interpolated band structure.
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8.13 seedname_band.kpt

OUTPUT. Written if bands_plot=.TRUE.; The k-points used for the interpolated band structure, in
units of the reciprocal lattice vectors. This file can be used to generate a comparison band structure
from a first-principles code.

8.14 seedname.bxsf

OUTPUT. Written if fermi_surface_plot=.TRUE.; A Fermi surface plot file suitable for plotting with
XCrySDen.

8.15 seedname_w.xsf

OUTPUT. Written if wannier_plot=.TRUE. and wannier_plot_format=xcrysden. Contains the wth

WF in real space in a format suitable for plotting with XCrySDen or VMD, for example.

8.16 seedname_w.cube

OUTPUT. Written if wannier_plot=.TRUE. and wannier_plot_format=cube. Contains the wth WF
in real space in Gaussian cube format, suitable for plotting in XCrySDen, VMD, gopenmol etc.

8.17 UNKp.s

INPUT. Read if wannier_plot=.TRUE. and used to plot the MLWF. Read if transport_mode=lcr
and tran_read_ht=.FALSE. for use in automated lcr transport calculations.

The periodic part of the Bloch states represented on a regular real space grid, indexed by k-point p
(from 1 to num_kpts) and spin s (‘1’ for ‘up’, ‘2’ for ‘down’).

The name of the wavefunction file is assumed to have the form:

write(wfnname,200) p,spin
200 format (’UNK’,i5.5,’.’,i1)

The first line of each file should contain 5 integers: the number of grid points in each direction (ngx,
ngy and ngz), the k-point number ik and the total number of bands num_band in the file. The full file
will be read by wannier90 as:

read(file_unit) ngx,ngy,ngz,ik,nbnd
do loop_b=1,num_bands

read(file_unit) (r_wvfn(nx,loop_b),nx=1,ngx*ngy*ngz)
end do

If spinors=true then s=‘NC’, and the name of the wavefunction file is assumed to have the form:
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write(wfnname,200) p
200 format (’UNK’,i5.5,’.NC’)

and the file will be read by wannier90 as:

read(file_unit) ngx,ngy,ngz,ik,nbnd
do loop_b=1,num_bands

read(file_unit) (r_wvfn_nc(nx,loop_b,1),nx=1,ngx*ngy*ngz) ! up-spinor
read(file_unit) (r_wvfn_nc(nx,loop_b,2),nx=1,ngx*ngy*ngz) ! down-spinor

end do

All UNK files can be in formatted or unformatted style, this is controlled by the logical keyword
wvfn_formatted.

8.18 seedname_centres.xyz

OUTPUT. Written if write_xyz=.TRUE.; xyz format atomic structure file suitable for viewing with
your favourite visualiser (jmol, gopenmol, vmd, etc.).

8.19 seedname_hr.dat

OUTPUT. Written if write_hr=.TRUE.. The first line gives the date and time at which the file was
created. The second line states the number of Wannier functions num_wann. The third line gives the
number of Wigner-Seitz grid-points nrpts. The next block of nrpts integers gives the degeneracy of
each Wigner-Seitz grid point, with 15 entries per line. Finally, the remaining num_wann2× nrpts lines
each contain, respectively, the components of the vector R in terms of the lattice vectors {Ai}, the
indices m and n, and the real and imaginary parts of the Hamiltonian matrix element H(R)

mn in the WF
basis, e.g.,

Created on 24May2007 at 23:32:09
20
17

4 1 2 1 4 1 1 2 1 4 6 1 1 1 2
1 2
0 0 -2 1 1 -0.001013 0.000000
0 0 -2 2 1 0.000270 0.000000
0 0 -2 3 1 -0.000055 0.000000
0 0 -2 4 1 0.000093 0.000000
0 0 -2 5 1 -0.000055 0.000000
.
.
.
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8.20 seedname_r.dat

OUTPUT. Written if write_rmn = true. The matrix elements 〈m0|r|nR〉 (where nR refers to MLWF
n in unit cell R). The first line gives the date and time at which the file was created. The second
line states the number of Wannier functions num_wann. The third line states the number of R vectors
nrpts. Similar to the case of the Hamiltonian matrix above, the remaining num_wann2× nrpts lines
each contain, respectively, the components of the vector R in terms of the lattice vectors {Ai}, the
indices m and n, and the real and imaginary parts of the position matrix element in the WF basis.

8.21 seedname_tb.dat

OUTPUT. Written if write_tb=.TRUE.. This file is essentially a combination of seedname_hr.dat
and seedname_r.dat, plus lattice vectors. The first line gives the date and time at which the file was
created. The second to fourth lines are the lattice vectors in Angstrom unit.

written on 27Jan2020 at 18:08:42
-1.8050234585004898 0.0000000000000000 1.8050234585004898
0.0000000000000000 1.8050234585004898 1.8050234585004898

-1.8050234585004898 1.8050234585004898 0.0000000000000000

The next part is the same as seedname_hr.dat. The fifth line states the number of Wannier functions
num_wann. The sixth line gives the number of Wigner-Seitz grid-points nrpts. The next block of nrpts
integers gives the degeneracy of each Wigner-Seitz grid point, with 15 entries per line. Then, the next
num_wann2× nrpts lines each contain, respectively, the components of the vector R in terms of the
lattice vectors {Ai}, the indices m and n, and the real and imaginary parts of the Hamiltonian matrix
element H(R)

mn in the WF basis, e.g.,

7
93

4 6 2 2 2 1 2 2 1 1 2 6 2 2 2
6 2 2 4 1 1 1 4 1 1 1 1 2 1 1
1 2 2 1 1 2 4 2 1 2 1 1 1 1 2
1 1 1 2 1 1 1 1 2 1 2 4 2 1 1
2 2 1 1 1 2 1 1 1 1 4 1 1 1 4
2 2 6 2 2 2 6 2 1 1 2 2 1 2 2
2 6 4

-3 1 1
1 1 0.42351556E-02 -0.95722060E-07
2 1 0.69481480E-07 -0.20318638E-06
3 1 0.10966508E-06 -0.13983284E-06
.
.
.

Finally, the last part is the same as seedname_r.dat. The num_wann2× nrpts lines each contain,
respectively, the components of the vector R in terms of the lattice vectors {Ai}, the indices m and n,
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and the real and imaginary parts of the position matrix element in the WF basis (the float numbers in
columns 3 and 4 are the real and imaginary parts for 〈m0|rx|nR〉, columns 5 and 6 for 〈m0|ry|nR〉,
and columns 7 and 8 for 〈m0|rz|nR〉), e.g.

-3 1 1
1 1 0.32277552E-09 0.21174901E-08 -0.85436987E-09 0.26851510E-08 ...
2 1 -0.18881883E-08 0.21786973E-08 0.31123076E-03 0.39228431E-08 ...
3 1 0.31123242E-03 -0.35322230E-09 0.70867281E-09 0.10433480E-09 ...
.
.
.

8.22 seedname.bvec

OUTPUT. Written if write_bvec = true. This file contains the matrix elements of bvector and their
weights. The first line gives the date and time at which the file was created. The second line states
the number of k-points and the total number of neighbours for each k-point nntot. Then all the other
lines contain the b-vector (x,y,z) coordinate and weigths for each k-points and each of its neighbours.

8.23 seedname_wsvec.dat

OUTPUT. Written if write_hr = true or write_rmn = true or write_tb = true. The first line gives
the date and time at which the file was created and the value of use_ws_distance. For each pair of
Wannier functions (identified by the components of the vector R separating their unit cells and their
indices) it gives: (i) the number of lattice vectors of the periodic supercell T that bring the Wannier
function in R back in the Wigner-Seitz cell centred on the other Wannier function and (ii) the set
of superlattice vectors T to make this transformation. These superlattice vectors T should be added
to the R vector to obtain the correct centre of the Wannier function that underlies a given matrix
element (e.g. the Hamiltonian matrix elements in seedname_hr.dat) in order to correctly interpolate
in reciprocal space.

## written on 20Sep2016 at 18:12:37 with use_ws_distance=.true.
0 0 0 1 1
1
0 0 0
0 0 0 1 2
1
0 0 0
0 0 0 1 3
1
0 0 0
0 0 0 1 4
1
0 0 0
0 0 0 1 5
1
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0 0 0
0 0 0 1 6
2
0 -1 -1
1 -1 -1
.
.
.

8.24 seedname_qc.dat

OUTPUT. Written if transport = .TRUE.. The first line gives the date and time at which the file was
created. In the subsequent lines, the energy value in units of eV is written in the left column, and the
quantum conductance in units of 2e2

h ( e
2

h for a spin-polarized system) is written in the right column.

## written on 14Dec2007 at 11:30:17
-3.000000 8.999999
-2.990000 8.999999
-2.980000 8.999999
-2.970000 8.999999
.
.
.

8.25 seedname_dos.dat

OUTPUT. Written if transport = .TRUE.. The first line gives the date and time at which the file
was created. In the subsequent lines, the energy value in units of eV is written in the left column, and
the density of states in an arbitrary unit is written in the right column.

## written on 14Dec2007 at 11:30:17
-3.000000 6.801199
-2.990000 6.717692
-2.980000 6.640828
-2.970000 6.569910
.
.
.

8.26 seedname_htB.dat

INPUT/OUTPUT. Read if transport_mode = bulk and tran_read_ht = .TRUE.. Written if tran_write_ht =
.TRUE.. The first line gives the date and time at which the file was created. The second line gives
tran_num_bb. The subsequent lines contain tran_num_bb×tran_num_bb Hmn matrix, where the in-
dices m and n span all tran_num_bb WFs located at 0th principal layer. Then tran_num_bb is recorded
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again in the new line followed by Hmn, where mth WF is at 0th principal layer and nth at 1st principal
layer. The Hmn matrix is written in such a way that m is the fastest varying index.

written on 14Dec2007 at 11:30:17
150
-1.737841 -2.941054 0.052673 -0.032926 0.010738 -0.009515
0.011737 -0.016325 0.051863 -0.170897 -2.170467 0.202254
.
.
.

-0.057064 -0.571967 -0.691431 0.015155 -0.007859 0.000474
-0.000107 -0.001141 -0.002126 0.019188 -0.686423 -10.379876
150
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
.
.
.
0.000000 0.000000 0.000000 0.000000 0.000000 -0.001576
0.000255 -0.000143 -0.001264 0.002278 0.000000 0.000000

8.27 seedname_htL.dat

INPUT. Read if transport_mode = lcr and tran_read_ht = .TRUE.. The file must be written in
the same way as in seedname_htB.dat. The first line can be any comment you want. The second line
gives tran_num_ll. tran_num_ll in seedname_htL.dat must be equal to that in seedname.win. The
code will stop otherwise.

Created by a WANNIER user
105
0.316879 0.000000 -2.762434 0.048956 0.000000 -0.016639
0.000000 0.000000 0.000000 0.000000 0.000000 -2.809405
.
.
.
0.000000 0.078188 0.000000 0.000000 -2.086453 -0.001535
0.007878 -0.545485 -10.525435

105
0.000000 0.000000 0.000315 -0.000294 0.000000 0.000085
0.000000 0.000000 0.000000 0.000000 0.000000 0.000021
.
.
.
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
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8.28 seedname_htR.dat

INPUT. Read if transport_mode = lcr and tran_read_ht = .TRUE. and tran_use_same_lead =
.FALSE.. The file must be written in the same way as in seedname_htL.dat. tran_num_rr in
seedname_htR.dat must be equal to that in seedname.win.

8.29 seedname_htC.dat

INPUT. Read if transport_mode = lcr and tran_read_ht = .TRUE.. The first line can be any com-
ment you want. The second line gives tran_num_cc. The subsequent lines contain tran_num_cc×tran_num_cc
Hmn matrix, where the indices m and n span all tran_num_cc WFs inside the central conductor region.
tran_num_cc in seedname_htC.dat must be equal to that in seedname.win.

Created by a WANNIER user
99

-10.499455 -0.541232 0.007684 -0.001624 -2.067078 -0.412188
0.003217 0.076965 0.000522 -0.000414 0.000419 -2.122184
.
.
.

-0.003438 0.078545 0.024426 0.757343 -2.004899 -0.001632
0.007807 -0.542983 -10.516896

8.30 seedname_htLC.dat

INPUT. Read if transport_mode = lcr and tran_read_ht = .TRUE.. The first line can be any
comment you want. The second line gives tran_num_ll and tran_num_lc in the given order. The
subsequent lines contain tran_num_ll×tran_num_lc Hmn matrix. The index m spans tran_num_ll
WFs in the surface principal layer of semi-infinite left lead which is in contact with the conductor
region. The index n spans tran_num_lc WFs in the conductor region which have a non-negligible
interaction with the WFs in the semi-infinite left lead. Note that tran_num_lc can be different from
tran_num_cc.

Created by a WANNIER user
105 99
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
.
.
.

-0.000003 0.000009 0.000290 0.000001 -0.000007 -0.000008
0.000053 -0.000077 -0.000069
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8.31 seedname_htCR.dat

INPUT. Read if transport_mode = lcr and tran_read_ht = .TRUE.. The first line can be any
comment you want. The second line gives tran_num_cr and tran_num_rr in the given order. The
subsequent lines contain tran_num_cr×tran_num_rr Hmn matrix. The index m spans tran_num_cr
WFs in the conductor region which have a non-negligible interaction with the WFs in the semi-infinite
right lead. The index n spans tran_num_rr WFs in the surface principal layer of semi-infinite right
lead which is in contact with the conductor region. Note that tran_num_cr can be different from
tran_num_cc.

Created by a WANNIER user
99 105

-0.000180 0.000023 0.000133 -0.000001 0.000194 0.000008
-0.000879 -0.000028 0.000672 -0.000257 -0.000102 -0.000029
.
.
.
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

8.32 seedname.unkg

INPUT. Read if transport_mode = lcr and tran_read_ht = .FALSE.. The first line is the number
of G-vectors at which the ũmk(G) are subsequently printed. This number should always be 32 since
32 specific ũmk are required. The following lines contain the following in this order: The band index
m, a counter on the number of G-vectors, the integer co-efficient of the G-vector components a, b, c
(where G = ab1 + bb2 + cb3), then the real and imaginary parts of the corresponding ũmk(G) at the
Γ-point. We note that the ordering in which the G-vectors and ũmk(G) are printed is not important,
but the specific G-vectors are critical. The following example displays for a single band, the complete
set of ũmk(G) that are required. Note the G-vectors (a, b, c) needed.

32
1 1 0 0 0 0.4023306 0.0000000
1 2 0 0 1 -0.0000325 0.0000000
1 3 0 1 0 -0.3043665 0.0000000
1 4 1 0 0 -0.3043665 0.0000000
1 5 2 0 0 0.1447143 0.0000000
1 6 1 -1 0 0.2345179 0.0000000
1 7 1 1 0 0.2345179 0.0000000
1 8 1 0 -1 0.0000246 0.0000000
1 9 1 0 1 0.0000246 0.0000000
1 10 0 2 0 0.1447143 0.0000000
1 11 0 1 -1 0.0000246 0.0000000
1 12 0 1 1 0.0000246 0.0000000
1 13 0 0 2 0.0000338 0.0000000
1 14 3 0 0 -0.0482918 0.0000000
1 15 2 -1 0 -0.1152414 0.0000000
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1 16 2 1 0 -0.1152414 0.0000000
1 17 2 0 -1 -0.0000117 0.0000000
1 18 2 0 1 -0.0000117 0.0000000
1 19 1 -2 0 -0.1152414 0.0000000
1 20 1 2 0 -0.1152414 0.0000000
1 21 1 -1 -1 -0.0000190 0.0000000
1 22 1 -1 1 -0.0000190 0.0000000
1 23 1 1 -1 -0.0000190 0.0000000
1 24 1 1 1 -0.0000190 0.0000000
1 25 1 0 -2 -0.0000257 0.0000000
1 26 1 0 2 -0.0000257 0.0000000
1 27 0 3 0 -0.0482918 0.0000000
1 28 0 2 -1 -0.0000117 0.0000000
1 29 0 2 1 -0.0000117 0.0000000
1 30 0 1 -2 -0.0000257 0.0000000
1 31 0 1 2 -0.0000257 0.0000000
1 32 0 0 3 0.0000187 0.0000000
2 1 0 0 0 -0.0000461 0.0000000
.
.
.

8.33 seedname_u.mat

OUTPUT. Written if write_u_matrices = .TRUE.. The first line gives the date and time at which the
file was created. The second line states the number of kpoints num_kpts and the number of wannier
functions num_wann twice. The third line is empty. Then there are num_kpts blocks of data, each
of which starts with a line containing the kpoint (in fractional coordinates of the reciprocal lattice
vectors) followed by num_wann * num_wann lines containing the matrix elements (real and imaginary
parts) of U(k). The matrix elements are in column-major order (ie, cycling over rows first and then
columns). There is an empty line between each block of data.

written on 15Sep2016 at 16:33:46
64 8 8

0.0000000000 +0.0000000000 +0.0000000000
0.4468355787 +0.1394579978

-0.0966033667 +0.4003934902
-0.0007748974 +0.0011788678
-0.0041177339 +0.0093821027
.
.
.

0.1250000000 0.0000000000 +0.0000000000
0.4694005589 +0.0364941808

+0.2287801742 -0.1135511138
-0.4776782452 -0.0511719121
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+0.0142081014 +0.0006203139
.
.
.

8.34 seedname_u_dis.mat

OUTPUT. Written if write_u_matrices = .TRUE. and disentanglement is enabled. The first line
gives the date and time at which the file was created. The second line states the number of kpoints
num_kpts, the number of wannier functions num_bands and the number of num_bands. The third line
is empty. Then there are num_kpts blocks of data, each of which starts with a line containing the
kpoint (in fractional coordinates of the reciprocal lattice vectors) followed by num_wann * num_bands
lines containing the matrix elements (real and imaginary parts) of Udis(k). The matrix elements are
in column-major order (ie, cycling over rows first and then columns). There is an empty line between
each block of data.

written on 15Sep2016 at 16:33:46
64 8 16

0.0000000000 +0.0000000000 +0.0000000000
1.0000000000 +0.0000000000

+0.0000000000 +0.0000000000
+0.0000000000 +0.0000000000
+0.0000000000 +0.0000000000
.
.
.

0.1250000000 0.0000000000 +0.0000000000
1.0000000000 +0.0000000000

+0.0000000000 +0.0000000000
+0.0000000000 +0.0000000000
+0.0000000000 +0.0000000000
.
.
.





Chapter 9

Some notes on the interpolation

In wannier90 v.2.1, a new flag use_ws_distance has been introduced (and it is set to .true. by
default since version v3.0). Setting it to .false. reproduces the “standard” behavior of wannier90 in
v.2.0.1 and earlier, while setting it to .true. changes the interpolation method as described below. In
general, this allows a smoother interpolation, helps reducing (a bit) the number of k−points required
for interpolation, and reproduces the band structure of large supercells sampled at Γ only (setting
it to .false. produces instead flat bands, which might instead be the intended behaviour for small
molecules carefully placed at the centre of the cell).

The core idea rests on the fact that the Wannier functions wnR(r) that we build from N ×M × L
k−points are actually periodic over a supercell of size N×M×L, but when you use them to interpolate
you want them to be zero outside this supercell. In 1D it is pretty obvious want we mean here, but in
3D what you really want that they are zero outside the Wigner–Seitz cell of the N×M×L superlattice.

The best way to impose this condition is to check that every real-space distance that enters in the
R→ k Fourier transform is the shortest possible among all the N ×M ×L−periodic equivalent copies.

If the distances were between unit cells, this would be trivial, but the distances are between Wannier
functions which are not centred on R = 0. Hence, when you want to consider the matrix element of a
generic operator O (i.e., the Hamiltonian) 〈wi0(r)|O|wjR(r)〉 you must take in account that the centre
τ i of wi0(r) may be very far away from 0 and the centre τ j of wjR(r) may be very far away from R.

There are many way to find the shortest possible distance between wi0(r) and wjR(r −R), the one
used here is to consider the distance dijR = τ i− (τ j + R) and all its superlattice periodic equivalents
dijR + R̃nml, with R̃nml = (Nna1 +Mma2 +Lla3) and n, l,m = −L,−L+ 1, ...0, ..., L− 1, L, with L
controlled by the parameter ws_search_size.

Then,

1. if dijR + R̃nml is inside the N ×M × L super-WS cell, then it is the shortest, take it and quit

2. if it is outside the WS, then it is not the shortest, throw it away

3. if it is on the border/corner of the WS then it is the shortest, but there are other choices of
(n,m, l) which are equivalent, find all of them

In all distance comparisons, a small but finite tolerance is considered, which can be controlled with
the parameter ws_distance_tol.

101
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Because of how the Fourier transform is defined in the wannier90 code (not the only possible choice)
it is only R + R̃nml that enters the exponential, but you still have to consider the distance among
the actual centres of the Wannier functions. Using the centres of the unit-cell to which the Wannier
functions belong is not enough (but is easier, and saves you one index).

Point 3 is not stricly necessary, but using it helps enforcing the symmetry of the system in the resulting
band structure. You will get some small but evident symmetry breaking in the band plots if you just
pick one of the equivalent R̃ vectors.

Note that in some cases, all this procedure does absolutely nothing, for instance if all the Wannier
function centres are very close to 0 (e.g., a molecule carefully placed in the periodic cell).

In some other cases, the effect may exist but be imperceptible. E.g., if you use a very fine grid of
k−points, even if you don’t centre each functions perfectly, the periodic copies will still be so far away
that the change in centre applied with use_ws_distance does not matter.

When instead you use few k−points, activating the use_ws_distance may help a lot in avoiding
spurious oscillations of the band structure even when the Wannier functions are well converged.



Chapter 10

Sample Input Files

10.1 Master input file: seedname.win

num_wann : 4
mp_grid : 4 4 4
num_iter : 100
postproc_setup : true

begin unit_cell_cart
ang
-1.61 0.00 1.61
0.00 1.61 1.61

-1.61 1.61 0.00
end unit_cell_cart

begin atoms_frac
C -0.125 -0.125 -0.125
C 0.125 0.125 0.125
end atoms_frac

bands_plot : true
bands_num_points : 100
bands_plot_format : gnuplot

begin kpoint_path
L 0.50000 0.50000 0.50000 G 0.00000 0.00000 0.00000
G 0.00000 0.00000 0.00000 X 0.50000 0.00000 0.50000
X 0.50000 0.00000 0.50000 K 0.62500 0.25000 0.62500
end kpoint_path

begin projections
C:l=0,l=1
end projections

begin kpoints
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0.00 0.00 0.00
0.00 0.00 0.25
0.00 0.50 0.50
.
.
.

0.75 0.75 0.50
0.75 0.75 0.75
end kpoints

10.2 seedname.nnkp

Running wannier90 on the above input file would generate the following nnkp file:

File written on 9Feb2006 at 15:13: 9

calc_only_A : F

begin real_lattice
-1.612340 0.000000 1.612340
0.000000 1.612340 1.612340

-1.612340 1.612340 0.000000
end real_lattice

begin recip_lattice
-1.951300 -1.951300 1.951300
1.951300 1.951300 1.951300

-1.951300 1.951300 -1.951300
end recip_lattice

begin kpoints
64

0.00000 0.00000 0.00000
0.00000 0.25000 0.00000
0.00000 0.50000 0.00000
0.00000 0.75000 0.00000
0.25000 0.00000 0.00000
.
.
.
0.50000 0.75000 0.75000
0.75000 0.00000 0.75000
0.75000 0.25000 0.75000
0.75000 0.50000 0.75000
0.75000 0.75000 0.75000

end kpoints
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begin projections
8

-0.12500 -0.12500 -0.12500 0 1 1
0.000 0.000 1.000 1.000 0.000 0.000 2.00

-0.12500 -0.12500 -0.12500 1 1 1
0.000 0.000 1.000 1.000 0.000 0.000 2.00

-0.12500 -0.12500 -0.12500 1 2 1
0.000 0.000 1.000 1.000 0.000 0.000 2.00

-0.12500 -0.12500 -0.12500 1 3 1
0.000 0.000 1.000 1.000 0.000 0.000 2.00

0.12500 0.12500 0.12500 0 1 1
0.000 0.000 1.000 1.000 0.000 0.000 2.00

0.12500 0.12500 0.12500 1 1 1
0.000 0.000 1.000 1.000 0.000 0.000 2.00

0.12500 0.12500 0.12500 1 2 1
0.000 0.000 1.000 1.000 0.000 0.000 2.00

0.12500 0.12500 0.12500 1 3 1
0.000 0.000 1.000 1.000 0.000 0.000 2.00

end projections

begin nnkpts
8

1 2 0 0 0
1 4 0 -1 0
1 5 0 0 0
1 13 -1 0 0
1 17 0 0 0
1 22 0 0 0
1 49 0 0 -1
1 64 -1 -1 -1
2 1 0 0 0
2 3 0 0 0
2 6 0 0 0
2 14 -1 0 0
2 18 0 0 0
2 23 0 0 0
2 50 0 0 -1
2 61 -1 0 -1
.
.
.

64 1 1 1 1
64 16 0 0 1
64 43 0 0 0
64 48 0 0 0
64 52 1 0 0
64 60 0 0 0
64 61 0 1 0
64 63 0 0 0
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end nnkpts

begin exclude_bands
4
1
2
3
4

end exclude_bands



Part III

postw90.x
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Chapter 11

Parameters

11.1 Introduction

The wannier90.x code described in Part II calculates the maximally-localized Wannier functions.

The postw90.x executable contains instead a series of modules that take the Wannier functions cal-
culated by wannier90.x and use them to calculate different properties. This executable is parallel
(by means of MPI libraries), so it can be run on multiple CPUs. The information on the calculated
Wannier functions is read from the checkpoint seedname.chk file. Note that this is written in an un-
formatted machine-dependent format. If you need to use this file on a different machine, or you want
to use a version of postw90.x compiled with a different compiler, refer to Sec. A.2 in the Appendices
for a description of how to export/import this file.

11.2 Usage

postw90.x can be run in parallel using MPI libraries to reduce the computation time.

For serial execution use: postw90.x [seedname]

• seedname: If a seedname string is given the code will read its input from a file seedname.win.
The default value is wannier. One can also equivalently provide the string seedname.win instead
of seedname.

For parallel execution use: mpirun -np NUMPROCS postw90.x [seedname]

• NUMPROCS: substitute with the number of processors that you want to use.

Note that the mpirun command and command-line flags may be different in your MPI implementation:
read your MPI manual or ask your computer administrator.

Note also that this requires that the postw90.x executable has been compiled in its parallel version
(follow the instructions in the file README.install in the main directory of the wannier90 distribution)
and that the MPI libraries and binaries are installed and correctly configured on your machine.

109
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11.3 seedname.win File

The postw90.x uses the same seedname.win input file of wannier90.x. The input keywords of
postw90.x must thus be added to this file, using the same syntax described in Sec. 2.2.

Note that wannier90.x checks if the syntax of the input file is correct, but then ignores the value of
the flags that refer only to modules of postw90.x, so one can safely run wannier90.x on a file that
contains also postw90.x flags.

Similarly, postw90.x ignores flags that refer only to wannier90.x (as number of iterations, restart
flags, . . . ). However, some parts of the input file must be there, as for instance the number of Wannier
functions, etc.

The easiest thing to do is therefore to simply add the postw90 input keywords to the seedname.win
file that was used to obtain the Wannier functions.

11.4 List of available modules

The currently available modules in postw90.x are:

• dos: Calculation of the density of states (DOS), projected density of states (PDOS), net spin
etc.

• kpath: Calculation of k-space quantities such as energy bands, Berry curvature and Berry
curvature-like term of spin Hall conductivity along a piecewise linear path in the BZ (see ex-
amples 17, 18 and 29 of the tutorial).

• kslice: Calculation of k-space quantities on a planar slice of the BZ (see examples 17, 18 and
29 of the tutorial).

• berry: Calculation of properties related to the BZ integral of the Berry curvature, Berry connec-
tion and Berry curvature-like term of spin Hall conductivity, including anomalous Hall conductiv-
ity, orbital magnetisation, optical conductivity, nonlinear shift current and spin Hall conductivity
(see Chap. 12 and examples 18, 19, 25, 29 and 30 of the tutorial).

• gyrotropic: Calculation of gyrotropic properties, including natural and current0induced optical
rotation, and the current-induced magnetization (see Chap. 13 and examples of the tutorial).

• BoltzWann: Calculation of electronic transport properties for bulk materials using the semiclas-
sical Boltzmann transport equation (see Chap. 14 and example 16 of the tutorial).

• geninterp (Generic Band Interpolation): Calculation band energies (and band derivatives) on a
generic list of k points (see Chap. 15).

11.5 Keyword List

On the next pages the list of available postw90 input keywords is reported. In particular, Table 11.1
reports keywords that affect the generic behavior of all modules of postw90. Often, these are “global”
variables that can be overridden by module-specific keywords (as for instance the kmesh flag). The
subsequent tables describe the input parameters for each specific module.
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A description of the behaviour of the global flags is described Sec. 11.6; the description of the flags
specific to the modules can be found in the following sections.
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Keyword Type Description

Global Parameters of postw90
kmesh I Dimensions of the uniform interpo-

lation k-mesh (one or three integers)
kmesh_spacing R Minimum spacing between k points

in Å−1

adpt_smr L Use adaptive smearing
adpt_smr_fac R Adaptive smearing prefactor
adpt_smr_max P Maximum allowed value for the

adaptive energy smearing (eV)
smr_type S Analytical form used for the broad-

ened delta function
smr_fixed_en_width P Energy smearing (if non-adaptive)
num_elec_per_state I Number of electrons per state

scissors_shift P Scissors shift applied to the conduc-
tion bands (eV) (deprecated)

num_valence_bands I Number of valence bands
spin_decomp L Decompose various properties into

up-spin, down-spin, and possibly
spin-flip parts

spin_axis_polar P Polar angle of the spin quantization
axis (deg)

spin_axis_azimuth P Azimuthal angle of the spin quanti-
zation axis (deg)

spin_moment∗ L Determines whether to evaluate the
spin magnetic moment per cell

uHu_formatted L Read a formatted seedname.uHu file
spn_formatted L Read a formatted seedname.spn file

berry_curv_unit S Unit of Berry curvature

Table 11.1: seedname.win file keywords controlling the general behaviour of the modules in postw90.
Argument types are represented by, I for a integer, R for a real number, P for a physical value, L for
a logical value and S for a text string.
The keyword spin_moment does not affect the behavior of the modules in postw90, and does not really
belong to any of them. It is listed here for lack of a better place.

Keyword Type Description

berry Parameters
berry L Calculate Berry-type quantities

berry_task S List of properties to compute
[berry_]kmesh I Dimensions of the uniform interpo-

lation k-mesh (one or three integers)
[berry_]kmesh_spacing R Minimum spacing between k points

in Å−1

berry_curv_adpt_kmesh I Linear dimension of the adaptively
refined k-mesh used to compute the
anomalous/spin Hall conductivity
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berry_curv_adpt_kmesh_thresh P Threshold magnitude of the Berry
curvature for adaptive refinement

kubo_freq_min P Lower limit of the frequency range
for optical spectra, JDOS, shift cur-
rent and spin Hall conductivity (eV)

kubo_freq_max P Upper limit of the frequency range
for optical spectra, JDOS, shift cur-
rent and spin Hall conductivity (eV)

kubo_freq_step R Step for increasing the optical fre-
quency in the specified range

kubo_eigval_max P Maximum energy eigenvalue in-
cluded when evaluating the Kubo-
Greenwood conductivity, JDOS,
shift current and spin Hall conduc-
tivity

[kubo_]adpt_smr L Use adaptive energy smearing for
the optical conductivity, JDOS, shift
current and spin Hall conductivity

[kubo_]adpt_smr_fac R Adaptive smearing prefactor
[kubo_]adpt_smr_max P Maximum allowed value for the

adaptive energy smearing (eV)
[kubo_]smr_type S Analytical form used for the broad-

ened delta function when computing
the optical conductivity, JDOS, shift
current and spin Hall conductivity

[kubo_]smr_fixed_en_width P Energy smearing (if non-adaptive)
for the optical conductivity, JDOS,
shift current and spin Hall conduc-
tivity (eV)

sc_eta R Energy broadening of energy differ-
ences in the sum over virtual states
when computing shift current

sc_phase_conv I Convention for phase factor of Bloch
states when computing shift current

sc_w_thr R Frequency threshold for speeding
up delta function integration when
computing shift current

shc_freq_scan L Calculate Fermi energy scan or fre-
quency scan of spin Hall conductiv-
ity

shc_alpha I The spin current direction of spin
Hall conductivity

shc_beta I The direction of applied electrical
field of spin Hall conductivity

shc_gamma I The spin direction of the spin cur-
rent of spin Hall conductivity

shc_bandshift L Rigid bandshift of the conduction
bands

shc_bandshift_firstband I Index of the first band to shift
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shc_bandshift_energyshift P Energy shift of the conduction bands
(eV)

Table 11.5: seedname.win file keywords controlling the berry
module. Argument types are represented by, I for a integer,
R for a real number, P for a physical value, L for a logical
value and S for a text string.
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Keyword Type Description

dos Parameters
dos L Calculate the density of states and

related properties
dos_task S List of properties to compute

dos_energy_min P Lower limit of the energy range for
computing the DOS (eV)

dos_energy_max P Upper limit of the energy range for
computing the DOS (eV)

dos_energy_step R Step for increasing the energy in the
specified range (eV)

dos_project I List of WFs onto which the DOS is
projected

[dos_]kmesh I Dimensions of the uniform interpo-
lation k-mesh (one or three integers)

[dos_]kmesh_spacing R Minimum spacing between k points
in Å−1

[dos_]adpt_smr L Use adaptive smearing for the DOS
[dos_]adpt_smr_fac R Adaptive smearing prefactor
[dos_]adpt_smr_max P Maximum allowed value for the

adaptive energy smearing (eV)
[dos_]smr_fixed_en_width P Energy smearing (if non-adaptive)

for the DOS (eV)
[dos_]smr_type S Analytical form used for the broad-

ened delta function when computing
the DOS.

Table 11.2: seedname.win file keywords controlling the dos module. Argument types are represented
by, I for a integer, R for a real number, P for a physical value, L for a logical value and S for a text
string.

Keyword Type Description

kpath Parameters
kpath L Calculate properties along a piece-

wise linear path in the BZ
kpath_task L List of properties to evaluate

kpath_num_points I Number of points in the first kpath
segment

kpath_bands_colour S Property used to colour the energy
bands along the path

Table 11.3: seedname.win file keywords controlling the kpath module. Argument types are represented
by, I for a integer, R for a real number, P for a physical value, L for a logical value and S for a text
string.
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Keyword Type Description

kslice Parameters
kslice L Calculate properties on a slice in the

BZ
kslice_task S List of properties to evaluate

kslice_corner R Position of the corner of the slice
kslice_b1 R First vector defining the slice
kslice_b2 R Second vector defining the slice

kslice_2dkmesh I Dimensions of the uniform interpo-
lation k-mesh on the slice (one or
two integers)

kslice_fermi_level P This parameter is not used anymore.
Use fermi_energy instead.

kslice_fermi_lines_colour S Property used to colour the Fermi
lines

Table 11.4: seedname.win file keywords controlling the kslice module. Argument types are repre-
sented by, I for a integer, R for a real number, P for a physical value, L for a logical value and S for a
text string.
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Keyword Type Description

berry Parameters
gyrotropic L Calculate gyrotropic quantities

gyrotropic_task L List of properties to compute
[gyrotropic_]kmesh I Dimensions of the uniform interpo-

lation k-mesh (one or three integers)
[gyrotropic_]kmesh_spacing R Minimum spacing between k points

in Å−1

gyrotropic_freq_min P Lower limit of the frequency range
for optical rotation (eV)

gyrotropic_freq_max P Upper limit of the frequency range
for optical rotation (eV)

gyrotropic_freq_step P Step for increasing the optical fre-
quency in the specified range

gyrotropic_eigval_max P Maximum energy eigenvalue in-
cluded when evaluating the inter-
band natural optical activity

gyrotropic_degen_thresh P threshold to exclude degenerate
bands from the calculation

[gyrotropic_]smr_type S Analytical form used for the broad-
ened delta function

[gyrotropic_]smr_fixed_en_width P Energy smearing (eV)
[gyrotropic_]band_list I list of bands used in the calculation
gyrotropic_box_center R The center and three basis vectors,

defining the box for integration (in
reduced coordinates, three real
numbers for each vector)

gyrotropic_box_b1 R
gyrotropic_box_b2 R
gyrotropic_box_b3 R

Table 11.6: seedname.win file keywords controlling the gyrotropic module. Argument types are
represented by, I for a integer, R for a real number, P for a physical value, L for a logical value and S
for a text string.
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Keyword Type Description

BoltzWann Parameters
boltzwann L Calculate Boltzmann transport co-

efficients
[boltz_]kmesh I Dimensions of the uniform interpo-

lation k-mesh (one or three integers)
[boltz_]kmesh_spacing R Minimum spacing between k points

in Å−1

boltz_2d_dir S Non-periodic direction (for 2D sys-
tems only)

boltz_relax_time P Relaxation time in fs
boltz_mu_min P Minimum value of the chemical po-

tential µ in eV
boltz_mu_max P Maximum value of the chemical po-

tential µ in eV
boltz_mu_step R Step for µ in eV
boltz_temp_min P Minimum value of the tempera-

ture T in Kelvin
boltz_temp_max P Maximum value of the tempera-

ture T in Kelvin
boltz_temp_step R Step for T in Kelvin

boltz_tdf_energy_step R Energy step for the TDF (eV)
boltz_tdf_smr_fixed_en_width P Energy smearing for the TDF (eV)

boltz_tdf_smr_type S Smearing type for the TDF
boltz_calc_also_dos L Calculate also DOS while calculat-

ing the TDF
boltz_dos_energy_min P Minimum value of the energy for the

DOS in eV
boltz_dos_energy_max P Maximum value of the energy for the

DOS in eV
boltz_dos_energy_step R Step for the DOS in eV
[boltz_dos_]smr_type S Smearing type for the DOS
[boltz_dos_]adpt_smr L Use adaptive smearing for the DOS

[boltz_dos_]adpt_smr_fac R Adaptive smearing prefactor
[boltz_dos_]adpt_smr_max P Maximum allowed value for the

adaptive energy smearing (eV)
[boltz_dos_smr_]fixed_en_width P Energy smearing (if non-adaptive)

for the DOS (eV)
boltz_bandshift L Rigid bandshift of the conduction

bands
boltz_bandshift_firstband I Index of the first band to shift

boltz_bandshift_energyshift P Energy shift of the conduction bands
(eV)

Table 11.7: seedname.win file keywords controlling the BoltzWann module (calculation of the Boltz-
mann transport coefficients in the Wannier basis). Argument types are represented by, I for a integer,
R for a real number, P for a physical value, L for a logical value and S for a text string.
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Keyword Type Description

geninterp Parameters
geninterp L Calculate bands for given set of k

points
geninterp_alsofirstder L Calculate also first derivatives
geninterp_single_file L Write a single file or one for each

process

Table 11.8: seedname.win file keywords controlling the Generic Band Interpolation (geninterp) mod-
ule. Argument types are represented by, I for a integer, R for a real number, P for a physical value, L
for a logical value and S for a text string.
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11.6 Global variables

11.6.1 integer :: kmesh(:)

Dimensions of the interpolation grid used in postw90.x.

Not to be confused with the mp_grid input flag, which instead specifies the Monkhorst–Pack grid used
in the ab-initio calculation!

If three integers l m n are given, the reciprocal-space cell subtended by the three primitive translations
is sampled on a uniform l ×m × n grid (including Γ). If only one integer m is given, an m ×m ×m
grid is used.

If you use a module which needs a k-mesh, either kmesh_spacing or kmesh must be defined.

11.6.2 real(kind=dp) :: kmesh_spacing

An alternative way of specifying the interpolation grid. This flag defines the minimum distance for
neighboring k points along each of the three directions in k space.

The units are Å−1.

If you use a module which needs a k-mesh, either kmesh_spacing or kmesh must be defined.

11.6.3 logical :: adpt_smr

Determines whether to use an adaptive scheme for broadening the DOS and similar quantities defined
on the energy axis. If true, the values for the smearing widths are controlled by the flag adpt_smr_fac.

The default value is true.

11.6.4 real(kind=dp) :: adpt_smr_fac

The width ηnk of the broadened delta function used to determine the contribution to the spectral
property (DOS, ...) from band n at point k is calculated as

ηnk = α|∇kεnk|∆k,

where εnk is the energy eigenvalue and the dimensionless factor α is given by adpt_smr_fac. ∆k is
taken to be the largest of the mesh spacings along the three reciprocal lattice vectors b1, b2, and b3.
If the calculated value of ηnk exceeds adpt_smr_max, the latter value is used.

The default value is
√

2.

11.6.5 real(kind=dp) :: adpt_smr_max

See description given immediately above.

The units are eV. The default value is 1.0.
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11.6.6 character(len=120) :: smr_type

Defines the analytical form used for the broadened delta function in the computation of the DOS and
similar quantities defined on the energy axis.

• gauss: Gaussian smearing

• m-pN: derivative of the N -th order Methfessel-Paxton function (N ≥ 0). Example: m-p2 for the
second-order Methfessel-Paxton function. If only m-p is provided, the first-order function is used,
i.e., it is equivalent to m-p1.

• m-v or cold: derivative of the Marzari–Vanderbilt cold-smearing function

• f-d: derivative of the Fermi-Dirac distribution function

The default value is gauss.

11.6.7 logical :: smr_fixed_en_width

Energy width for the smearing function for the DOS. Used only if adpt_smr is false.

The units are eV. The default value is 0 eV. Note that if the width is smaller than twice the energy
step (e.g. dos_energy_step for the dos module), the DOS will be unsmeared (thus the default is to
have an unsmeared properties when adpt_smr is set to false.).

11.6.8 integer :: num_elec_per_state

Number of electrons per state. It can only take the values one or two.

The default value is 1 if spinors=true, 2 otherwise.

11.6.9 real(kind=dp) :: scissors_shift

Scissors shift applied to the conduction bands.

Note! This variable is deprecated and will be removed in future versions of the code. This applies the
scissors shift only to the Hamiltonian, but also other matrices might need to be updated if a scissors
shift is applied. If you are using BoltzWann, consider using boltz_bandshift instead. If you are
calculating spin Hall conductivity, consider using shc_bandshift instead.

The units are eV. The default value is 0 eV (i.e., no scissors shift applied).

11.6.10 integer :: num_valence_bands

Number of valence bands of the system. Used in different modules and for the scissors shift.

No default value.
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11.6.11 logical :: spin_decomp

If true, extra columns are added to some output files (such as seedname-dos.dat for the dos module,
and analogously for the berry and BoltzWann modules).

For the dos and BoltzWann modules, two further columns are generated, which contain the decomposi-
tion of the required property (e.g., total or orbital-projected DOS) of a spinor calculation into up-spin
and down-spin parts (relative to the quantization axis defined by the input variables spin_axis_polar
and spin_axis_azimuth). For the berry module with berry_task = kubo, three extra columns are
added to seedname-jdos.dat, containing the decomposition of the JDOS into up → up, down →
down, and spin-flip transitions. In the same way, six extra columns are added to the data files
seedname-kubo*.dat where the complex optical conductivity is stored.

The file seedname.spn must be present at input. Furthermore, if this variable is set to true it requires
num_elec_per_state = 1.

The default value is false.

11.6.12 real(kind=dp) :: spin_axis_polar

Polar angle of the spin quantization axis.

The units are degrees. The default value is 0.

11.6.13 real(kind=dp) :: spin_axis_azimuth

Azimuthal angle of the spin quantization axis.

The units are degrees. The default value is 0.

11.6.14 logical :: spin_moment

Determines whether to evaluate the spin moment.

The default value is false.

11.6.15 logical :: uHu_formatted

If uHu_formatted=true, then the uHu matrix elements will be read from disk as formatted (ie ASCII)
files; otherwise they will be read as unformatted files.

The default value of this parameter is false.

11.6.16 logical :: spn_formatted

If spn_formatted=true, then the spin matrix elements will be read from disk as formatted (ie ASCII)
files; otherwise they will be read as unformatted files. Unformatted is generally preferable as the files
will take less disk space and I/O is significantly faster. However such files will not be transferable
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between all machine architectures and formatted files should be used if transferability is required (i.e.,
for test cases).

The default value is false.

11.6.17 character(len=20) :: berry_curv_unit

Unit in which the Berry curvature is specified at input (in berry_curv_adpt_kmesh_thresh) or written
to file (when kpath_task=curv or kpath_task=shc or kslice_task=curv or kslice_task=shc).

• ang2: Angstrom2

• bohr2: Bohr2 (atomic units)

The default value is ang2.

11.6.18 real(kind=dp) :: sc_eta

The width η used to broaden energy differences in denominators of the form

1

εnk − εmk
→ Re

1

εnk − εmk + iη
.

The above is needed in shift-current calculations in order to avoid numerical problems caused by
near-degeneracies in the sum over virtual states.

The units are eV. The default value is 0.4.

11.6.19 integer :: sc_phase_conv

Convention for the expansion of the Bloch states in shift-current calculations. It can only take the
values one or two. We follow the convention of Ref. [11]:

• 1: Include Wannier centre τn = 〈wn0|r|wn0〉 in the phase factor (so-called tight-binding conven-
tion):

|unk〉 =
∑
R

e−ik(r−R−τn)|wnR〉

• 2: Do not include Wannier centre in the phase factor (usual Wannier90 convention):

|unk〉 =
∑
R

e−ik(r−R)|wnR〉

The convention does not affect the full shift-current matrix element, but it does affect the weights of
the internal components that compose it (see Ref. [12]).

The default value is 1.
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11.6.20 real(kind=dp) :: sc_w_thr

Parameter αt for speeding up the frequency integration in shift-current calculations. It settles the
frequency threshold ωt = αtηnk (a factor times the broadening) beyond which the delta functions are
taken as zero.

The default value is 5.0.
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11.7 DOS

Note that the behavior of the dos module is also influenced by the value of some global flags (listed in
Table 11.1), as spin_decomp, spin_axis_polar, spin_axis_azimuth, scissors_shift, etc. Some of
the global flags can be possibly overridden by local flags of the DOS module, listed below, which have
the same name of the global flag but are prefixed by dos_.

11.7.1 logical :: dos

Determines whether to enter the DOS routines.

The default value is false.

11.7.2 character(len=20) :: dos_task

The quantity to compute when dos=true

The valid options for this parameter are:

– dos_plot Density of states. An output data file seedname-dos.dat is created, containing the
energy values in eV in the first column, and the total DOS per unit cell and unit energy range
(in eV−1) in the second. Two additional columns are present if spin_decomp=true

The default value is dos_plot.

11.7.3 real(kind=dp) :: dos_energy_min

Lower limit of the energy range for computing the DOS. Units are eV.

The default value is the minimum value of the energy eigenvalues stored in seedname.eig, minus
0.6667.

11.7.4 real(kind=dp) :: dos_energy_max

Upper limit of the energy range for computing the DOS. Units are eV.

If an inner energy window was specified, the default value is the upper bound of the innter energy win-
dow, plus 0.6667. Otherwise it is the maximum value of the energy eigenvalues stored in seedname.eig,
plus 0.6667.

11.7.5 real(kind=dp) :: dos_energy_step

Energy step for the grid of energies used to plot the dos. Units are eV.

The default value is 0.01 eV.
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11.7.6 integer :: dos_project(:)

If present postw90 computes, instead of the total DOS, the partial DOS projected onto the WFs listed.
The WFs are numbered according to the file seedname.wout.

For example, to project onto WFs 2, 6, 7, 8, and 12:

dos_project : 2, 6-8, 12

The DOS projected onto a set S of orbitals is calculated as

ρS(E) =
1

Nk

∑
k

∑
n

〈ψ(H)
nk |P̂k(S)|ψ(H)

nk 〉δ(εnk − E) (11.1)

P̂k(S) =
∑
m∈S
|ψ(W)
nk 〉〈ψ

(W)
nk |, (11.2)

where Nk is the number of mesh points used to sample the BZ, and the superscript (H) and (W) refer
to Hamiltonian gauge and Wannier gauge [13].

11.7.7 integer :: dos_kmesh(:)

Overrides the kmesh global variable (see Sec. 11.6).

11.7.8 real(kind=dp) :: dos_kmesh_spacing

Overrides the kmesh_spacing global variable (see Sec. 11.6).

11.7.9 logical :: dos_adpt_smr

Overrides the adpt_smr global variable (see Sec. 11.6).

11.7.10 real(kind=dp) :: dos_adpt_smr_fac

Overrides the adpt_smr_fac global variable (see Sec. 11.6).

11.7.11 real(kind=dp) :: dos_adpt_smr_max

Overrides the adpt_smr_max global variable (see Sec. 11.6).

11.7.12 logical :: dos_smr_fixed_en_width

Overrides the smr_fixed_en_width global variable (see Sec. 11.6).

Note that if the width is smaller than twice the energy step dos_energy_step, the DOS will be
unsmeared (thus the default is to have an unsmeared DOS).
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11.7.13 character(len=20) :: dos_smr_type

Overrides the smr_type global variable (see Sec. 11.6).
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11.8 kpath

11.8.1 logical :: kpath

Determines whether to enter the kpath routines.

The default value is false.

11.8.2 character(len=20) :: kpath_task

The quantities to plot when kpath=true

The valid options for this parameter are:

– bands Energy bands, in eV. The following files are created:

· seedname-bands.dat (data file)

· seedname-bands.gnu (gnuplot script)

· seedname-bands.py (python script)

· seedname-path.kpt (list of k-points along the path, written in the pwscf format)

– curv Minus the Berry curvature given by Eq. (12.18) of Ch. 12, in units of berry_curv_unit.
The following files are created:

· seedname-curv.dat (data file)

· seedname-curv_{x,y,z}.gnu (gnuplot scripts)

· seedname-curv_{x,y,z}.py (python scripts)

– morb The integrand of the k-space orbital magnetization formula [Eq. (12.20) of Ch. 12] in eV·Å2.
Four output files are created:

· seedname-morb.dat (data file)

· seedname-morb_{x,y,z}.gnu (gnuplot scripts)

· seedname-morb_{x,y,z}.py (python scripts)

– shc The band-projected Berry curvature-like term of spin Hall conductivity given by Eq. (12.22)
of Ch. 12, in units of berry_curv_unit. The following files are created:

· seedname-shc.dat (data file)

· seedname-shc.gnu (gnuplot scripts)

· seedname-shc.py (python scripts)

– Any combination of the above. The following combinations are of special interest

kpath_task = bands+curv

kpath_task = bands+morb

kpath_task = bands+shc

They generate the following files:
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· seedname-bands.dat (data file)

· seedname-{curv,morb,shc}.dat (data file)

· seedname-bands+{curv,morb}_{x,y,z}.py or seedname-bands+shc.py (python scripts)

Two-panel figures are produced, with the energy bands within ±0.65 eV of the Fermi level in
the top panel, and the Berry curvature (or k-space orbital magnetization, or k-resolved Berry
curvature-like term of spin Hall conductivity) in the bottom panel.

The default value is bands.

11.8.3 integer :: kpath_num_points

If kpath = true, then the number of points along the first section of the bandstructure plot given by
kpoint_path. Other sections will have the same density of k-points.

The default value is 100.

11.8.4 character(len=20) :: kpath_bands_colour

When kpath_task=bands, colour code the energy bands according to the specified quantity.

The valid options for this parameter are:

– spin Spin projection (in units of h̄/2) along the quantization axis defined by the variables
spin_axis_polar and spin_axis_azimuth, for a spinor calculation

– shc Band-projected Berry curvature-like term of spin Hall conductivity (in units of
berry_curv_unit) defined by the variables shc_alpha, shc_beta and shc_gamma, for a spinor
calculation

– none no colour coding

The default value is none.
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11.9 kslice

11.9.1 logical :: kslice

Determines whether to enter the kslice routines.

The default value is false.

11.9.2 character(len=20) :: kslice_task

The quantity to plot when kslice=true

The valid options for this parameter are:

– fermi_lines Lines of intersection between constant-energy surfaces and the slice. The energy
level is specified by the keyword fermi_energy. Output files:

· seedname-kslice-fermi-spn.dat (data file when kslice_fermi_lines_colour = spin)

· seedname-bnd_n.dat (gnuplot data files when kslice_fermi_lines_colour = none)

· seedname-kslice-coord.dat (python data files when kslice_fermi_lines_colour = none)

· seedname-kslice-bands.dat (python data file when kslice_fermi_lines_colour = none)

· seedname-kslice-fermi_lines.gnu (gnuplot script)

· seedname-kslice-fermi_lines.py (python script)

– curv[+fermi_lines] Heatmap of the Berry curvature of the occupied states [together with the
constant-energy contours]. The unit of Berry curvature is berry_curv_unit.

Output files:

· seedname-kslice-coord.dat (data files)

· seedname-kslice-curv.dat (data file)

· [seedname-kslice-bands.dat] (data file)

· seedname-kslice-curv_{x,y,z}[+fermi_lines].py (python scripts)

– morb[+fermi_lines] Heatmap of the k-space orbital magnetization in eV·Å2 [together with the
constant-energy contours]. Output files:

· seedname-kslice-coord.dat (data files)

· seedname-kslice-morb.dat (data file)

· [seedname-kslice-bands.dat] (data file)

· seedname-kslice-morb_{x,y,z}[+fermi_lines].py (python scripts)

– shc[+fermi_lines] Heatmap of the Berry curvature-like term of the occupied states [together
with the constant-energy contours]. The unit of Berry curvature-like term is berry_curv_unit.

Output files:

· seedname-kslice-coord.dat (data files)
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· seedname-kslice-shc.dat (data file)

· [seedname-kslice-bands.dat] (data file)

· seedname-kslice-shc[+fermi_lines].py (python scripts)

The default value is fermi_lines.

Note: When kslice_fermi_lines_colour = none the gnuplot scripts draw the k-slices with a square
shape, even when kslice_b1 and kslice_b2 below are not at right angles, or do not have equal lengths.
(The python scripts draw the slices with the correct parallelogram shape.)

11.9.3 real(kind=dp) :: kslice_corner(3)

Reduced coordinates of the lower-left corner of the slice in k-space.

The default value is (0.0, 0.0, 0.0)

11.9.4 real(kind=dp) :: kslice_b1(3)

Reduced coordinates of the first reciprocal-space vector defining the slice.

The default value is (1.0, 0.0, 0.0).

11.9.5 real(kind=dp) :: kslice_b2(3)

Reduced coordinates of the second reciprocal-space vector defining the slice.

The default value is (0.0, 1.0, 0.0).

11.9.6 integer :: kslice_2dkmesh(2)

Dimensions of the k-point grid covering the slice. If two integers m n are given, the slice is sampled
on a uniform m× n grid. If only one integer m is given, an m×m grid is used.

The default value for kslice_kmesh is 50.

11.9.7 character(len=20) :: kslice_fermi_lines_colour

When kslice_task=fermi_lines (but not when combined with curv or morb), colour code the Fermi
lines according to the specified quantity.

The valid options for this parameter are:

– spin Spin projection (in units of h̄/2) along the quantization axis defined by the variables
spin_axis_polar and spin_axis_azimuth, for a spinor calculation

– none no colour coding

The default value is none.
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11.10 berry

11.10.1 logical :: berry

Determines whether to enter the berry routines.

The default value is false.

11.10.2 character(len=120) :: berry_task

The quantity to compute when berry=true

The valid options for this parameter are:

– kubo Complex optical conductivity and joint density of states. Output files:

· seedname-kubo-S_{xx,yy,zz,xy,xz,yz}.dat (data files). First column: optical frequency
h̄ω in eV. Second and third columns: real and imaginary parts of the symmetric conductivity
σS
αβ(h̄ω) = σS

βα(h̄ω) in S/cm. Six additional columns are present if spin_decomp = true.
· seedname-kubo-A_{yz,zx,xy}.dat (data files). First column: optical frequency h̄ω in eV.
Second and third columns: real and imaginary parts of the antisymmetric conductivity
σA
αβ(h̄ω) = −σA

βα(h̄ω) in S/cm. Six additional columns are present if spin_decomp = true.
· seedname-jdos.dat (data file). First column: energy difference h̄ω in eV between conduc-
tion (c) and valence (v) states with the same crystal momentum k. Second column: joint
density of states ρcv(h̄ω) (number of states per unit cell per unit energy range, in eV−1).
Three additional columns are present if spin_decomp = true.

– ahc Anomalous Hall conductivity, in S/cm. The three independent components σx = σyz, σy =
σzx, and σz = σxy are computed. Output files:

· seedname-ahc-fermiscan.dat (data file). The first column contains the Fermi level εF in
eV, and the following three column the values of σx,y,z(εF ). This file is written if a range of
Fermi energies is specified via fermi_energy_min and fermi_energy_max. If a single Fermi
energy is given, the AHC is printed in seedname.wpout only.

– morb Orbital magnetisation, in bohr magnetons per cell.

Output files:

· seedname-morb-fermiscan.dat (data file). The first column contains the Fermi level εF in
eV, and the following three column the values ofMorb

x,y,z(εF ). This file is written if a range of
Fermi energies is specified via fermi_energy_min and fermi_energy_max. If a single Fermi
energy is given, Morb is printed in seedname.wpout only.

– shc Spin Hall conductivity (SHC), in (h̄/e)S/cm. Output files:

· seedname-shc-fermiscan.dat (data file). The first column is the number of entries in the
list, the second column contains the Fermi level εF in eV, and the last column contains
the values of σspinγ

αβ (εF ). This file is written if a range of Fermi energies is specified via
fermi_energy_min and fermi_energy_max. If a single Fermi energy is given, the file will
contain SHC at this specific energy.
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· seedname-shc-freqscan.dat (data file). The first column is the number of the entry in the
list, the second column contains the frequency h̄ω in eV, and the following two columns con-
tain the values of the real part <[σspinγ

αβ (ω)] and imaginary part =[σspinγ
αβ (ω)] of ac SHC. This

file is written if a range of frequencies is specified via kubo_freq_min and kubo_freq_max.

There is no default value.

11.10.3 integer :: berry_kmesh(:)

Overrides the kmesh global variable (see Sec. 11.6).

11.10.4 real(kind=dp) :: berry_kmesh_spacing

Overrides the kmesh_spacing global variable (see Sec. 11.6).

11.10.5 integer :: berry_curv_adpt_kmesh

If a positive integer n is given and berry_task=ahc[or berry_task=shc], an n× n× n mesh is placed
around points on the uniform mesh (defined by either berry_kmesh or berry_kmesh_spacing) where
the magnitude of the k-space Berry curvature[k-space Berry curvature-like term of SHC] exceeds the
threshold value specified in berry_curv_adpt_kmesh_thresh. This can be used to densify the BZ
integration mesh around spikes in the Berry curvature[Berry curvature-like term of SHC].

The default value is 1.

11.10.6 real(kind=dp) :: berry_curv_adpt_kmesh_thresh

Magnitude of the Berry curvature[Berry curvature-like term of SHC] (in units of berry_curv_unit)
that triggers adaptive mesh refinement when berry_task=ahc[berry_task=shc].

The default value is 100.0.

11.10.7 real(kind=dp) :: kubo_freq_min

Lower limit of the frequency range for computing the optical conductivity, JDOS and ac SHC. Units
are eV.

The default value 0.0.

11.10.8 real(kind=dp) :: kubo_freq_max

Upper limit of the frequency range for computing the optical conductivity, JDOS and ac SHC. Units
are eV.

If an inner energy window was specified, the default value is dis_froz_max-fermi_energy+0.6667.
Otherwise it is the difference between the maximum and the minimum energy eigenvalue stored in
seedname.eig, plus 0.6667.
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11.10.9 real(kind=dp) :: kubo_freq_step

Difference between consecutive values of the optical frequency between kubo_freq_min and kubo_freq_max.
Units are eV.

The default value is 0.01.

11.10.10 real(kind=dp) :: kubo_eigval_max

Maximum energy eigenvalue of the eigenstates to be included in the evaluation of the optical conduc-
tivity, JDOS and ac SHC. Units are eV.

If an inner energy window was specified, the default value is the upper bound of the inner energy
window plus 0.6667. Otherwise it is the maximum energy eigenvalue stored in seedname.eig plus
0.6667.

11.10.11 logical :: kubo_adpt_smr

Overrides the adpt_smr global variable (see Sec. 11.6).

11.10.12 real(kind=dp) :: kubo_adpt_smr_fac

Overrides the adpt_smr_fac global variable (see Sec. 11.6).

11.10.13 real(kind=dp) :: kubo_adpt_smr_max

Overrides the adpt_smr_max global variable (see Sec. 11.6).

11.10.14 logical :: kubo_smr_fixed_en_width

Overrides the smr_fixed_en_width global variable (see Sec. 11.6).

11.10.15 character(len=120) :: kubo_smr_type

Overrides the smr_type global variable (see Sec. 11.6).

11.10.16 logical :: shc_freq_scan

Determines whether to calculate the frequency scan (i.e. the ac SHC) or the Fermi energy scan (i.e.
the dc SHC) of the spin Hall conductivity.

The default value is false, which means dc SHC is calculated.
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11.10.17 integer :: shc_alpha

The α index of spin Hall conductivity σspinγ
αβ , i.e. the direction of spin current. Possible values are 1,

2 and 3, representing the x, y and z directions respectively.

The default value is 1.

11.10.18 integer :: shc_beta

The β index of spin Hall conductivity σspinγ
αβ , i.e. the direction of applied electric field. Possible values

are 1, 2 and 3, representing the x, y and z directions respectively.

The default value is 2.

11.10.19 integer :: shc_gamma

The γ index of spin Hall conductivity σspinγ
αβ , i.e. the spin direction of spin current. Possible values are

1, 2 and 3, representing the x, y and z directions respectively.

The default value is 3.

If all the shc_alpha, shc_beta and shc_gamma are set as default values, the σspinz
xy is computed.

11.10.20 logical :: shc_bandshift

Shift all conduction bands by a given amount (defined by shc_bandshift_energyshift).

Note: this flag slightly differs from the global scissors_shift flag: with shc_bandshift, an exact
rigid shift is applied after interpolation; scissors_shift applies instead the shift before interpolation.
As a consequence, results may slightly differ (and this is why we provide both possibilities). Note
also that with scissors_shift you have to provide the number of valence bands num_valence_bands,
while with shc_bandshift you should provide the first band to shift shc_bandshift_firstband =
num_valence_bands+1.

The default value is false.

11.10.21 integer :: shc_bandshift_firstband

Index of the first conduction band to shift.

That means that all bands with index i ≥ shc_bandshift_firstband will be shifted by
shc_bandshift_energyshift, if shc_bandshift is true.

The units are eV. No default value; if shc_bandshift is true, this flag must be provided.

11.10.22 real(kind=dp) :: shc_bandshift_energyshift

Energy shift of the conduction bands.

The units are eV. No default value; if shc_bandshift is true, this flag must be provided.



136 wannier90: User Guide

11.11 Gyrotropic

11.11.1 logical :: gyrotropic

Determines whether to enter the gyrotropic routines.

The default value is false.

11.11.2 character(len=120) :: gyrotropic_task

The quantity to compute when gyrotropic=true

May contain one or more of the following valid options (note that each option starts with a ’-’):

• -D0 The Berry-curvature dipole tensor Eq. (13.1) (dimensionless)
Output file: seedname-gyrotropic-D.dat ( see Sec. 11.11.3 for file format description)

• -Dw The finite-frequency Berry-curvature dipole tensor Eq. (13.2) (dimensionless)
Output file: seedname-gyrotropic-tildeD.dat ( see Sec. 11.11.3 for file format description)

• -C The ohmic conductivity tensor Eq. (13.4) (Ampere/cm)
Output file: seedname-gyrotropic-C.dat ( see Sec. 11.11.3 for file format description)

• -K The orbital contribution to the kME tensor Eq. (13.5) (Ampere)
Output file: seedname-gyrotropic-K_orb.dat ( see Sec. 11.11.3 for file format description)

◦ -spin : if this task is present, compute also the spin contribution.
Output file: seedname-gyrotropic-K_spin.dat

• -NOA The orbital contribution to the NOA Eq. (13.5) (Å)
Output file: seedname-gyrotropic-NOA_orb.dat ( see Sec. 11.11.3 for file format description)

◦ -spin : if this task is present, compute also the spin contribution.
Output file: seedname-gyrotropic-NOA_spin.dat

• -dos the density of states Output file: seedname-gyrotropic-DOS.dat. First column - energy
(eV), second column - DOS (1/(eV × 3))

There is no default value.

11.11.3 output data format

The calculated tensors are written as functions of Fermi level EF (first column) and frequency ω (second
column). If the tensor does not denend on ω, the second column is filled by zeros. Data is grouped in
blocks of the same ω separated by two blank lines. In case of natural optical activity the columns 3 to
11 contain the independent components of γabc (antisymmetric in ab): yzx, zxy ,xyz, yzy, yzz, zxz,
xyy, yzz and zxx. For tensors Cab, Dab, D̃ab, Kab the symmetric and antisymmetric components are
writted. Thus, the columns 3 to 11 are marked as xx, yy, zz, xy, xz, yz, x, y, z, wich correspond ,e.g.,
for Dab to Dxx, Dyy, Dzz, (Dxy+Dyx)/2, (Dxz+Dzx)/2, (Dyz+Dzy)/2, (Dyz−Dzy)/2, (Dzx−Dxz)/2,
(Dxy −Dyx)/2
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11.11.4 integer :: gyrotropic_kmesh(:)

Overrides the kmesh global variable (see Sec. 11.6).

11.11.5 real(kind=dp) :: gyrotropic_kmesh_spacing

Overrides the kmesh_spacing global variable (see Sec. 11.6).

11.11.6 real(kind=dp) :: gyrotropic_freq_min

Lower limit of the frequency range for computing the optical activity.

Units are eV. The default value 0.0.

11.11.7 real(kind=dp) :: gyrotropic_freq_max

Upper limit of the frequency range for computing the optical activity. Units are eV.

If an inner energy window was specified, the default value is dis_froz_max-fermi_energy+0.6667.
Otherwise it is the difference between the maximum and the minimum energy eigenvalue stored in
seedname.eig, plus 0.6667.

11.11.8 real(kind=dp) :: gyrotropic_freq_step

Difference between consecutive values of the optical frequency between gyrotropic_freq_min and
gyrotropic_freq_max.

Units are eV. The default value is 0.01.

11.11.9 real(kind=dp) :: gyrotropic_eigval_max

Maximum energy eigenvalue of the eigenstates to be included in the evaluation of the Natural optical
activity. Units are eV.

If an inner energy window was specified, the default value is the upper bound of the inner energy
window plus 0.6667. Otherwise it is the maximum energy eigenvalue stored in seedname.eig plus
0.6667.

11.11.10 logical :: gyrotropic_smr_fixed_en_width

Overrides the smr_fixed_en_width global variable (see Sec. 11.6).

11.11.11 character(len=120) :: gyrotropic_smr_type

Overrides the smr_type global variable (see Sec. 11.6).
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11.11.12 character(len=120) :: gyrotropic_degen_thresh

The threshould to eliminate degenerate bands from the calculation in order to avoid divergences.

Units are eV. The dfault value is 0.

11.11.13 character(len=120) :: gyrotropic_box_center

- three real numbers. Optionally the integration may be restricted to a parallelogram, centered at
gyrotropic_box_center and defined by vectors gyrotropic_box_b{1,2,3}

In reduced coordinates. Default value is 0.5 0.5 0.5

11.11.14 character(len=120) :: gyrotropic_box_b1

- three real numbers. In reduced coordinates. Default value is 1.0 0.0 0.0

11.11.15 character(len=120) :: gyrotropic_box_b2

- three real numbers. In reduced coordinates. Default value is 0.0 1.0 0.0

11.11.16 character(len=120) :: gyrotropic_box_b3

- three real numbers. In reduced coordinates. Default value is 0.0 0.0 1.0
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11.12 BoltzWann

11.12.1 logical :: boltzwann

Determines whether to enter the BoltzWann routines.

The default value is false.

11.12.2 integer :: boltz_kmesh(:)

It determines the interpolation k mesh used to calculate the TDF (from which the transport coefficient
are calculated). If boltz_calc_also_dos is true, the same k mesh is used also for the DOS. Overrides
the kmesh global variable (see Sec. 11.6).

11.12.3 real(kind=dp) :: boltz_kmesh_spacing

Overrides the kmesh_spacing global variable (see Sec. 11.6).

11.12.4 character(len=4) :: boltz_2d_dir

For two-dimensional systems, the direction along which the system is non-periodic. It can assume the
following values: x for a 2D system on the yz plane, y for a 2D system on the xz plane, z for a 2D
system on the xy plane, or no for a 3D system with periodicity along all threee directions.

This value is used when calculating the Seebeck coefficient, where the electrical conductivity tensor
needs to be inverted. If the value is different from zero, only the relevant 2×2 sub-block of the electrical
conductivity is inverted.

The default value is no.

11.12.5 real(kind=dp) :: boltz_relax_time

The relaxation time to be used for the calculation of the TDF and the transport coefficients.

The units are fs. The default value is 10 fs.

11.12.6 real(kind=dp) :: boltz_mu_min

Minimum value for the chemical potential µ for which we want to calculate the transport coefficients.

The units are eV. No default value.

11.12.7 real(kind=dp) :: boltz_mu_max

Maximum value for the chemical potential µ for which we want to calculate the transport coefficients.

The units are eV. No default value.
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11.12.8 real(kind=dp) :: boltz_mu_step

Energy step for the grid of chemical potentials µ for which we want to calculate the transport coeffi-
cients.

The units are eV. No default value.

11.12.9 real(kind=dp) :: boltz_temp_min

Minimum value for the temperature T for which we want to calculate the transport coefficients.

The units are K. No default value.

11.12.10 real(kind=dp) :: boltz_temp_max

Maximum value for the temperature T for which we want to calculate the transport coefficients.

The units are K. No default value.

11.12.11 real(kind=dp) :: boltz_temp_step

Energy step for the grid of temperatures T for which we want to calculate the transport coefficients.

The units are K. No default value.

11.12.12 real(kind=dp) :: boltz_tdf_energy_step

Energy step for the grid of energies for the TDF.

The units are eV. The default value is 0.001 eV.

11.12.13 character(len=120) :: boltz_tdf_smr_type

The type of smearing function to be used for the TDF. The available strings are the same of the global
smr_type input flag.

The default value is the one given via the smr_type input flag (if defined).

11.12.14 real(kind=dp) :: boltz_tdf_smr_fixed_en_width

Energy width for the smearing function. Note that for the TDF, a standard (non-adaptive) smearing
scheme is used.

The units are eV. The default value is 0 eV. Note that if the width is smaller than twice the energy
step boltz_tdf_energy_step, the TDF will be unsmeared (thus the default is to have an unsmeared
TDF).
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11.12.15 logical :: boltz_calc_also_dos

Whether to calculate also the DOS while calculating the TDF.

If one needs also the DOS, it is faster to calculate the DOS using this flag instead of using independently
the routines of the dos module, since in this way the interpolation on the k points will be performed
only once.

The default value is false.

11.12.16 real(kind=dp) :: boltz_dos_energy_min

The minimum value for the energy grid for the calculation of the DOS.

The units are eV. The default value is minval(eigval)-0.6667, where minval(eigval) i s the mini-
mum eigenvalue returned by the ab-initio code on the ab-initio q me sh.

11.12.17 real(kind=dp) :: boltz_dos_energy_max

The maximum value for the energy grid for the calculation of the DOS.

The units are eV. The default value is maxval(eigval)+0.6667, where maxval(eigval) i s the maxi-
mum eigenvalue returned by the ab-initio code on the ab-initio q me sh.

11.12.18 real(kind=dp) :: boltz_dos_energy_step

Energy step for the grid of energies for the DOS.

The units are eV. The default value is 0.001 eV.

11.12.19 character(len=120) :: boltz_dos_smr_type

Overrides the smr_type global variable (see Sec. 11.6).

11.12.20 logical :: boltz_dos_adpt_smr

Overrides the adpt_smr global variable (see Sec. 11.6).

11.12.21 real(kind=dp) :: boltz_dos_adpt_smr_fac

Overrides the adpt_smr_fac global variable (see Sec. 11.6).

11.12.22 real(kind=dp) :: boltz_dos_adpt_smr_max

Overrides the adpt_smr_max global variable (see Sec. 11.6).



142 wannier90: User Guide

11.12.23 logical :: boltz_dos_smr_fixed_en_width

Overrides the smr_fixed_en_width global variable (see Sec. 11.6).

11.12.24 logical :: boltz_bandshift

Shift all conduction bands by a given amount (defined by boltz_bandshift_energyshift).

Note: this flag slightly differs from the global scissors_shift flag: with boltz_bandshift, an exact
rigid shift is applied after interpolation; scissors_shift applies instead the shift before interpolation.
As a consequence, results may slightly differ (and this is why we provide both possibilities). Note
also that with scissors_shift you have to provide the number of valence bands num_valence_bands,
while with boltz_bandshift you should provide the first band to shift boltz_bandshift_firstband
= num_valence_bands+1.

The default value is false.

11.12.25 integer :: boltz_bandshift_firstband

Index of the first conduction band to shift.

That means that all bands with index i ≥ boltz_bandshift_firstband will be shifted by boltz_bandshift_energyshift,
if boltz_bandshift is true.

The units are eV. No default value; if boltz_bandshift is true, this flag must be provided.

11.12.26 real(kind=dp) :: boltz_bandshift_energyshift

Energy shift of the conduction bands.

The units are eV. No default value; if boltz_bandshift is true, this flag must be provided.

11.13 Generic Band Interpolation

11.13.1 logical :: geninterp

Determines whether to enter the Generic Band Interpolation routines.

The default value is false.

11.13.2 logical :: geninterp_alsofirstder

Whether to calculate also the first derivatives of the bands at the given k points.

The default value is false.
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11.13.3 logical :: geninterp_single_file

Whether to write a single seedname_geninterp.dat file (all I/O is done by the root node); or instead
multiple files (one for each node) with names seedname_geninterp_NNNNN.dat, where NNNNN is the
node number. See also the discussion in Sec. 15.1.2 on how to use this flag.

The default value is true.





Chapter 12

Overview of the berry module

The berry module of postw90 is called by setting berry = true and choosing one or more of the
available options for berry_task. The routines in the berry module which compute the k-space Berry
curvature, orbital magnetization and spin Hall conductivity are also called when kpath = true and
kpath_task = {curv,morb,shc}, or when kslice = true and kslice_task = {curv,morb,shc}.

12.1 Background: Berry connection and curvature

The Berry connection is defined in terms of the cell-periodic Bloch states |unk〉 = e−ik·r|ψnk〉 as

An(k) = 〈unk|i∇k|unk〉, (12.1)

and the Berry curvature is the curl of the connection,

Ωn(k) = ∇k ×An(k) = −Im〈∇kunk| × |∇kunk〉. (12.2)

These two quantities play a central role in the description of several electronic properties of crystals [14].
In the following we will work with a matrix generalization of the Berry connection,

Anm(k) = 〈unk|i∇k|umk〉 = A∗mn(k), (12.3)

and write the curvature as an antisymmetric tensor,

Ωn,αβ(k) = εαβγΩn,γ(k) = −2Im〈∇kαunk|∇kβunk〉. (12.4)

12.2 berry_task=kubo: optical conductivity and joint density of states

The Kubo-Greenwood formula for the optical conductivity of a crystal in the independent-particle
approximation reads

σαβ(h̄ω) =
ie2h̄

NkΩc

∑
k

∑
n,m

fmk − fnk
εmk − εnk

〈ψnk|vα|ψmk〉〈ψmk|vβ|ψnk〉
εmk − εnk − (h̄ω + iη)

. (12.5)

Indices α, β denote Cartesian directions, Ωc is the cell volume, Nk is the number of k-points used for
sampling the Brillouin zone, and fnk = f(εnk) is the Fermi-Dirac distribution function. h̄ω is the
optical frequency, and η > 0 is an adjustable smearing parameter with units of energy.
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The off-diagonal velocity matrix elements can be expressed in terms of the connection matrix [15],

〈ψnk|v|ψmk〉 = − i
h̄

(εmk − εnk)Anm(k) (m 6= n). (12.6)

The conductivity becomes

σαβ(h̄ω) =
1

Nk

∑
k

σk,αβ(h̄ω) (12.7)

σk,αβ(h̄ω) =
ie2

h̄Ωc

∑
n,m

(fmk − fnk)
εmk − εnk

εmk − εnk − (h̄ω + iη)
Anm,α(k)Amn,β(k). (12.8)

Let us decompose it into Hermitian (dissipative) and anti-Hermitean (reactive) parts. Note that

δ(ε) =
1

π
Im

[
1

ε− iη

]
, (12.9)

where δ denotes a “broadended” delta-function. Using this identity we find for the Hermitean part

σH
k,αβ(h̄ω) = − πe

2

h̄Ωc

∑
n,m

(fmk − fnk)(εmk − εnk)Anm,α(k)Amn,β(k)δ(εmk − εnk − h̄ω). (12.10)

Improved numerical accuracy can be achieved by replacing the Lorentzian (12.9) with a Gaussian, or
other shapes. The analytical form of δ(ε) is controlled by the keyword [kubo_]smr_type.

The anti-Hermitean part of Eq. (12.8) is given by

σAH
k,αβ(h̄ω) =

ie2

h̄Ωc

∑
n,m

(fmk − fnk)Re

[
εmk − εnk

εmk − εnk − (h̄ω + iη)

]
Anm,α(k)Amn,β(k). (12.11)

Finally the joint density of states is

ρcv(h̄ω) =
1

Nk

∑
k

∑
n,m

fnk(1− fmk)δ(εmk − εnk − h̄ω). (12.12)

Equations (12.9–12.12) contain the parameter η, whose value can be chosen using the keyword
[kubo_]smr_fixed_en_width. Better results can often be achieved by adjusting the value of η for each
pair of states, i.e., η → ηnmk. This is done as follows (see description of the keyword adpt_smr_fac)

ηnmk = α|∇k(εmk − εnk)|∆k. (12.13)

The energy eigenvalues εnk, band velocities ∇kεnk, and off-diagonal Berry connection Anm(k) entering
the previous four equations are evaluated over a k-point grid by Wannier interpolation, as described
in Refs. [13, 16]. After averaging over the Brillouin zone, the Hermitean and anti-Hermitean parts of
the conductivity are assembled into the symmetric and antisymmetric tensors

σS
αβ = ReσH

αβ + iImσAH
αβ (12.14)

σA
αβ = ReσAH

αβ + iImσH
αβ, (12.15)

whose independent components are written as a function of frequency onto nine separate files.
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12.3 berry_task=ahc: anomalous Hall conductivity

The antisymmetric tensor σA
αβ is odd under time reversal, and therefore vanishes in non-magnetic

systems, while in ferromagnets with spin-orbit coupling it is generally nonzero. The imaginary part
ImσH

αβ describes magnetic circular dichroism, and vanishes as ω → 0. The real part ReσAH
αβ describes

the anomalous Hall conductivity (AHC), and remains finite in the static limit.

The intrinsic dc AHC is obtained by setting η = 0 and ω = 0 in Eq. (12.11). The contribution from
point k in the Brillouin zone is

σAH
k,αβ(0) =

2e2

h̄Ωc

∑
n,m

fnk(1− fmk)Im〈∇kαunk|umk〉〈umk|∇kβunk〉, (12.16)

where we replaced fnk − fmk with fnk(1− fmk)− fmk(1− fnk).

This expression is not the most convenient for ab initio calculations, as the sums run over the complete
set of occupied and empty states. In practice the sum over empty states can be truncated, but
a relatively large number should be retained to obtain accurate results. Using the resolution of the
identity 1 =

∑
m |umk〉〈umk| and noting that the term

∑
n,m fnkfmk(. . .) vanishes identically, we arrive

at the celebrated formula for the intrinsic AHC in terms of the Berry curvature,

σAH
αβ (0) =

e2

h̄

1

NkΩc

∑
k

(−1)Ωαβ(k), (12.17)

Ωαβ(k) =
∑
n

fnkΩn,αβ(k). (12.18)

Note that only occupied states enter this expression. Once we have a set of Wannier functions spanning
the valence bands (together with a few low-lying conduction bands, typically) Eq. (12.17) can be
evaluated by Wannier interpolation as described in Refs. [13, 17], with no truncation involved.

12.4 berry_task=morb: orbital magnetization

The ground-state orbital magnetization of a crystal is given by [14, 18]

Morb =
e

h̄

1

NkΩc

∑
k

Morb(k), (12.19)

Morb(k) =
∑
n

1

2
fnk Im 〈∇kunk| × (Hk + εnk − 2εF ) |∇kunk〉, (12.20)

where εF is the Fermi energy. The Wannier-interpolation calculation is described in Ref. [17]. Note
that the definition of Morb(k) used here differs by a factor of −1/2 from the one in Eq. (97) and Fig. 2
of that work.

12.5 berry_task=shc: spin Hall conductivity

The Kubo-Greenwood formula for the intrinsic spin Hall conductivity (SHC) of a crystal in the
independent-particle approximation reads [19, 20]

σspinγ
αβ (ω) =

h̄

ΩcNk

∑
k

∑
n

fnk
∑
m 6=n

2 Im[〈nk|ĵγα|mk〉〈mk| − ev̂β|nk〉]
(εnk − εmk)2 − (h̄ω + iη)2

. (12.21)
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The spin current operator ĵγα = 1
2{ŝγ , v̂α} where the spin operator ŝγ = h̄

2 σ̂γ . Indices α, β denote
Cartesian directions, γ denotes the direction of spin, commonly α = x, β = y, γ = z. Ωc is the cell
volume, Nk is the number of k-points used for sampling the Brillouin zone, and fnk = f(εnk) is the
Fermi-Dirac distribution function. h̄ω is the optical frequency, and η > 0 is an adjustable smearing
parameter with unit of energy.

The velocity matrix element in the numerator is the same as Eq. (12.6), so the only unknown quantity
is the spin current matrix 〈nk|ĵγα|mk〉. We can use Wannier interpolation technique to efficiently
calculate this matrix, for a full derivation please refer to Ref. [19].

The Eq. (12.21) can be further separated into band-projected Berry curvature-like term

Ωspinγ
n,αβ (k) = h̄2

∑
m6=n

−2 Im[〈nk|12{σ̂γ , v̂α}|mk〉〈mk|v̂β|nk〉]
(εnk − εmk)2 − (h̄ω + iη)2

, (12.22)

k-resolved term which sums over occupied bands

Ωspinγ
αβ (k) =

∑
n

fnkΩspinγ
n,αβ (k), (12.23)

and the SHC is

σspinγ
αβ (ω) = −e

2

h̄

1

ΩcNk

∑
k

Ωspinγ
αβ (k). (12.24)

The unit of the Ωspinγ
n,αβ (k) is length2 (Angstrom2 or Bohr2, depending on your choice of berry_curv_unit

in the input file), and the unit of σspinγ
αβ is (h̄/e)S/cm (the unit is written in the header of the output

file). The case of ω = 0 corresponds to direct current (dc) SHC while that of ω 6= 0 corresponds to
alternating current (ac) SHC or frequency-dependent SHC. Note in some papers Eq. (12.22) is called
as spin Berry curvature. However, it was pointed out by Ref. [21] that this name is misleading, so
we use a somewhat awkward name “Berry curvature-like term” to refer to Eq. (12.22). The k-resolved
term Eq. (12.23) can be used to draw kslice plot, and the band-projected Berry curvature-like term
Eq. (12.22) can be used to color the kpath plot.

Same as the case of optical conductivity, the parameter η contained in the Eq. (12.22) can be chosen
using the keyword [kubo_]smr_fixed_en_width. Also, adaptive smearing can be employed by the
keyword [kubo_]adpt_smr (see Examples 29 and 30 in the Tutorial).

Please cite the following paper [19] when publishing SHC results obtained using this method:

Junfeng Qiao, Jiaqi Zhou, Zhe Yuan, and Weisheng Zhao,
Calculation of intrinsic spin Hall conductivity by Wannier interpolation,
Phys. Rev. B. 98, 214402 (2018), DOI:10.1103/PhysRevB.98.214402.

12.6 Needed matrix elements

All the quantities entering the formulas for the optical conductivity and AHC can be calculated by
Wannier interpolation once the Hamiltonian and position matrix elements 〈0n|H|Rm〉 and 〈0n|r|Rm〉
are known [13, 16]. Those matrix elements are readily available at the end of a standard MLWF
calculation with wannier90. In particular, 〈0n|r|Rm〉 can be calculated by Fourier transforming the
overlap matrices in Eq. (1.7),

〈unk|umk+b〉.
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Further Wannier matrix elements are needed for the orbital magnetization [17]. In order to calculate
them using Fourier transforms, one more piece of information must be taken from the k-space ab-initio
calculation, namely, the matrices

〈unk+b1 |Hk|umk+b2〉

over the ab-initio k-point mesh [17]. These are evaluated by pw2wannier90, the interface routine
between pwscf and wannier90, by adding to the input file seedname.pw2wan the line

write_uHu = .true.

The calculation of spin Hall conductivity needs the spin matrix elements

〈unk|σγ |umk〉, γ = x, y, z

from the ab-initio k-point mesh. These are also evaluated by pw2wannier90 by adding to the input
file seedname.pw2wan the line

write_spn = .true.





Chapter 13

Overview of the gyrotropic module

The gyrotropic module of postw90 is called by setting gyrotropic = true and choosing one or more
of the available options for gyrotropic_task. The module computes the quantities, studied in [22],
where more details may be found.

13.1 berry_task=-d0: the Berry curvature dipole

The traceless dimensionless tensor

Dab =

∫
[dk]

∑
n

∂En
∂ka

Ωb
n

(
−∂f0

∂E

)
E=En

, (13.1)

13.2 berry_task=-dw: the finite-frequency generalization of the Berry
curvature dipole

D̃ab(ω) =

∫
[dk]

∑
n

∂En
∂ka

Ω̃b
n(ω)

(
−∂f0

∂E

)
E=En

, (13.2)

where Ω̃kn(ω) is a finite-frequency generalization of the Berry curvature:

Ω̃kn(ω) = −
∑
m

ω2
kmn

ω2
kmn − ω2

Im (Aknm ×Akmn) (13.3)

Contrary to the Berry curvature, the divergence of Ω̃kn(ω) is generally nonzero. As a result, D̃(ω) can
have a nonzero trace at finite frequencies, D̃‖ 6= −2D̃⊥ in Te.

13.3 berry_task=-C: the ohmic conductivity

In the constant relaxation-time approximation the ohmic conductivity is expressed as σab = (2πeτ/h̄)Cab,
with

Cab =
e

h

∫
[dk]

∑
n

∂En
∂ka

∂En
∂kb

(
−∂f0

∂E

)
E=En

(13.4)

a positive quantity with units of surface current density (A/cm).
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13.4 berry_task=-K: the kinetic magnetoelectric effect (kME)

A microscopic theory of the intrinsic kME effect in bulk crystals was recently developed [23, 24].

The response is described by

Kab =

∫
[dk]

∑
n

∂En
∂ka

mb
n

(
−∂f0

∂E

)
E=En

, (13.5)

which has the same form as Eq. (13.1), but with the Berry curvature replaced by the intrinsic magnetic
moment mkn of the Bloch electrons, which has the spin and orbital components given by [14]

mspin
kn = −1

2
gsµB〈ψkn|σ|ψkn〉 (13.6)

morb
kn =

e

2h̄
Im〈∂kukn| × (Hk − Ekn)|∂kukn〉, (13.7)

where gs ≈ 2 and we chose e > 0.

13.5 berry_task=-dos: the density of states

The density of states is calculated with the same width and type of smearing, as the other properties
of the gyrotropic module

13.6 berry_task=-noa: the interband contributionto the natural opti-
cal activity

Natural optical rotatory power is given by [25]

ρ0(ω) =
ω2

2c2
Re γxyz(ω). (13.8)

for light propagating ling the main symmetry axis of a crystal z. Here γxyz(ω) is an anti-symmetric
(in xy) tensor with units of length, which has both inter- and intraband contributions.

Following Ref. [26] for the interband contribution we writewe write, with ∂c ≡ ∂/∂kc,

Re γinter
abc (ω) =

e2

ε0h̄
2

∫
[dk]

o,e∑
n,l

[ 1

ω2
ln − ω2

Re
(
AblnB

ac
nl −AalnBbc

nl

)
−

3ω2
ln − ω2

(ω2
ln − ω2)2

∂c(El + En)Im
(
AanlA

b
ln

)]
. (13.9)

The summations over n and l span the occupied (o) and empty (e) bands respectively, ωln = (El −
En)/h̄, and Aln(k) is given by (12.3) Finally, the matrix Bac

nl has both orbital and spin contributions
given by

B
ac (orb)
nl = 〈un|(∂aH)|∂cul〉 − 〈∂cun|(∂aH)|ul〉 (13.10)

and

B
ac (spin)
nl = − ih̄

2

me
εabc〈un|σb|ul〉. (13.11)
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The spin matrix elements contribute less than 0.5% of the total ρinter
0 of Te. Expanding H =∑

m |um〉Em〈um| we obtain for the orbital matrix elements

B
ac (orb)
nl = −i∂a(En + El)A

c
nl

∑
m

{
(En − Em)AanmA

c
ml − (El − Em)AcnmA

a
ml

}
. (13.12)

This reduces the calculation of B(orb) to the evaluation of band gradients and off-diagonal elements
of the Berry connection matrix. Both operations can be carried out efficiently in a Wannier-function
basis following Ref. [16].

13.7 berry_task=-spin: compute also the spin component of NOA and
KME

Unless this task is specified, only the orbital contributions are calcuated in NOA and KME, thus
contributions from Eqs. (13.6) and (13.11) are omitted.





Chapter 14

Electronic transport calculations with the
BoltzWann module

By setting boltzwann = TRUE, postw90 will call the BoltzWann routines to calculate some transport
coefficients using the Boltzmann transport equation in the relaxation time approximation.

In particular, the transport coefficients that are calculated are: the electrical conductivity σ, the
Seebeck coefficient S and the coefficient K (defined below; it is the main ingredient of the thermal
conductivity).

The list of parameters of the BoltzWann module are summarized in Table 11.7. An example of a
Boltzmann transport calculation can be found in the wannier90 Tutorial.

Note: By default, the code assumes to be working with a 3D bulk material, with periodicity along
all three spatial directions. If you are interested in studying 2D systems, set the correct value for the
boltz_2d_dir variable (see Sec. 11.12.4 for the documentation). This is important for the evaluation
of the Seebeck coefficient.

Please cite the following paper [27] when publishing results obtained using the BoltzWann module:

G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari,
BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties
with a maximally-localized Wannier functions basis,
Comp. Phys. Comm. 185, 422 (2014), DOI:10.1016/j.cpc.2013.09.015.

14.1 Theory

The theory of the electronic transport using the Boltzmann transport equations can be found for
instance in Refs. [28–30]. Here we briefly summarize only the main results.

The current density J and the heat current (or energy flux density) JQ can be written, respectively, as

J = σ(E− S∇T ) (14.1)
JQ = TσSE−K∇T, (14.2)

where the electrical conductivity σ, the Seebeck coefficient S and K are 3× 3 tensors, in general.
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Note: the thermal conductivity κ (actually, the electronic part of the thermal conductivity), which
is defined as the heat current per unit of temperature gradient in open-circuit experiments (i.e., with
J = 0) is not precisely K, but κ = K− SσST (see for instance Eq. (7.89) of Ref. [28] or Eq. (XI-57b)
of Ref. [29]). The thermal conductivity κ can be then calculated from the σ, S and K tensors output
by the code.

These quantities depend on the value of the chemical potential µ and on the temperature T , and can
be calculated as follows:

[σ]ij(µ, T ) = e2

∫ +∞

−∞
dε

(
−∂f(ε, µ, T )

∂ε

)
Σij(ε), (14.3)

[σS]ij(µ, T ) =
e

T

∫ +∞

−∞
dε

(
−∂f(ε, µ, T )

∂ε

)
(ε− µ)Σij(ε), (14.4)

[K]ij(µ, T ) =
1

T

∫ +∞

−∞
dε

(
−∂f(ε, µ, T )

∂ε

)
(ε− µ)2Σij(ε), (14.5)

where [σS] denotes the product of the two tensors σ and S, f(ε, µ, T ) is the usual Fermi–Dirac
distribution function

f(ε, µ, T ) =
1

e(ε−µ)/KBT + 1

and Σij(ε) is the Transport Distribution Function (TDF) tensor, defined as

Σij(ε) =
1

V

∑
n,k

vi(n,k)vj(n,k)τ(n,k)δ(ε− En,k).

In the above formula, the sum is over all bands n and all states k (including spin, even if the spin
index is not explicitly written here). En,k is the energy of the n−th band at k, vi(n,k) is the i−th
component of the band velocity at (n,k), δ is the Dirac’s delta function, V = NkΩc is the total volume
of the system (Nk and Ωc being the number of k-points used to sample the Brillouin zone and the unit
cell volume, respectively), and finally τ is the relaxation time. In the relaxation-time approximation
adopted here, τ is assumed as a constant, i.e., it is independent of n and k and its value (in fs) is read
from the input variable boltz_relax_time.

14.2 Files

14.2.1 seedname_boltzdos.dat

OUTPUT. Written by postw90 if boltz_calc_also_dos is true. Note that even if there are other
general routines in postw90 which specifically calculate the DOS, it may be convenient to use the
routines in BoltzWann setting boltz_calc_also_dos = true if one must also calculate the transport
coefficients. In this way, the (time-demanding) band interpolation on the k mesh is performed only
once, resulting in a much shorter execution time.

The first lines are comments (starting with # characters) which describe the content of the file. Then,
there is a line for each energy ε on the grid, containing a number of columns. The first column is the
energy ε. The following is the DOS at the given energy ε. The DOS can either be calculated using the
adaptive smearing scheme1 if boltz_dos_adpt_smr is true, or using a “standard” fixed smearing, whose

1Note that in BoltzWann the adaptive (energy) smearing scheme also implements a simple adaptive k−mesh scheme:
if at any given k point one of the band gradients is zero, then that k point is replaced by 8 neighboring k points. Thus,
the final results for the DOS may be slightly different with respect to that given by the dos module.
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type and value are defined by boltz_dos_smr_type and boltz_dos_smr_fixed_en_width, respectively.
If spin decomposition is required (input flag spin_decomp), further columns are printed, with the spin-
up projection of the DOS, followed by spin-down projection.

14.2.2 seedname_tdf.dat

OUTPUT. This file contains the Transport Distribution Function (TDF) tensor Σ on a grid of energies.

The first lines are comments (starting with # characters) which describe the content of the file. Then,
there is a line for each energy ε on the grid, containing a number of columns. The first is the energy
ε, the followings are the components if Σ(ε) in the following order: Σxx, Σxy, Σyy, Σxz, Σyz, Σzz. If
spin decomposition is required (input flag spin_decomp), 12 further columns are provided, with the 6
components of Σ for the spin up, followed by those for the spin down.

The energy ε is in eV, while Σ is in
1

h̄2 ·
eV · fs
Å

.

14.2.3 seedname_elcond.dat

OUTPUT. This file contains the electrical conductivity tensor σ on the grid of T and µ points.

The first lines are comments (starting with # characters) which describe the content of the file. Then,
there is a line for each (µ, T ) pair, containing 8 columns, which are respectively: µ, T , σxx, σxy, σyy,
σxz, σyz, σzz. (The tensor is symmetric).

The chemical potential is in eV, the temperature is in K, and the components of the electrical conduc-
tivity tensor ar in SI units, i.e. in 1/Ω/m.

14.2.4 seedname_sigmas.dat

OUTPUT. This file contains the tensor σS, i.e. the product of the electrical conductivity tensor and
of the Seebeck coefficient as defined by Eq. (14.4), on the grid of T and µ points.

The first lines are comments (starting with # characters) which describe the content of the file. Then,
there is a line for each (µ, T ) pair, containing 8 columns, which are respectively: µ, T , (σS)xx, (σS)xy,
(σS)yy, (σS)xz, (σS)yz, (σS)zz. (The tensor is symmetric).

The chemical potential is in eV, the temperature is in K, and the components of the tensor ar in SI
units, i.e. in A/m/K.

14.2.5 seedname_seebeck.dat

OUTPUT. This file contains the Seebeck tensor S on the grid of T and µ points.

Note that in the code the Seebeck coefficient is defined as zero when the determinant of the electrical
conductivity σ is zero. If there is at least one (µ, T ) pair for which detσ = 0, a warning is issued on
the output file.

The first lines are comments (starting with # characters) which describe the content of the file. Then,
there is a line for each (µ, T ) pair, containing 11 columns, which are respectively: µ, T , Sxx, Sxy, Sxz,
Syx, Syy, Syz, Szx, Szy, Szz.
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NOTE: therefore, the format of the columns of this file is different from the other three files (elcond,
sigmas and kappa)!

The chemical potential is in eV, the temperature is in K, and the components of the Seebeck tensor ar
in SI units, i.e. in V/K.

14.2.6 seedname_kappa.dat

OUTPUT. This file contains the tensor K defined in Sec. 14.1 on the grid of T and µ points.

The first lines are comments (starting with # characters) which describe the content of the file. Then,
there is a line for each (µ, T ) pair, containing 8 columns, which are respectively: µ, T , Kxx, Kxy, Kyy,
Kxz, Kyz, Kzz. (The tensor is symmetric).

The chemical potential is in eV, the temperature is in K, and the components of the K tensor are the
SI units for the thermal conductivity, i.e. in W/m/K.



Chapter 15

Generic Band interpolation

By setting geninterp = TRUE, postw90 will calculate the band energies (and possibly the band deriva-
tives, if also geninterp_alsofirstder is set to TRUE) on a generic list of k points provided by the
user.

The list of parameters of the Generic Band Interpolation module are summarized in Table 11.8.
The list of input k points for which the band have to be calculated is read from the file named
seedname_geninterp.kpt. The format of this file is described below.

15.1 Files

15.1.1 seedname_geninterp.kpt

INPUT. Read by postw90 if geninterp is true.

The first line is a comment (its maximum allowed length is 500 characters).

The second line must contain crystal (or frac) if the k-point coordinates are given in crystallographic
units, i.e., in fractional units with respect to the primitive reciprocal lattice vectors. Otherwise, it must
contain cart (or abs) if instead the k−point coordinates are given in absolute coordinates (in units of
1/Å) along the kx, ky and kz axes.

Note on units: In the case of absolute coordinates, if alat is the lattice constant expressed in angstrom,
and you want to represent for instance the point X = 2π

alat
[0.5, 0, 0], then you have to input for its x

coordinate kx = 0.5 ∗ 2 ∗ π/alat. As a practical example, if alat = 4Å, then kx = 0.78539816339745 in
absolute coordinates in units of 1/Å.

The third line must contain the number n of following k points.

The following n lines must contain the list of k points in the format

kpointidx k1 k2 k3

where kpointidx is an integer identifying the given k point, and k1, k2 and k3 are the three coordinates
of the k points in the chosen units.
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15.1.2 seedname_geninterp.dat or seedname_geninterp_NNNNN.dat

OUTPUT. This file/these files contain the interpolated band energies (and also the band velocities if
the input flag geninterp_alsofirstder is true).

If the flag geninterp_single_file is true, then a single file seedname_geninterp.dat is written by
the code at the end of the calculation. If instead one sets geninterp_single_file to false, each pro-
cess writes its own output file, named seedname_geninterp_00000.dat, seedname_geninterp_00001.dat,
. . .

This flag is useful when one wants to parallelize the calculation on many nodes, and it should be used
especially for systems with a small number of Wannier functions, when one wants to compute the
bands on a large number of k points (if the flag geninterp_single_file is true, instead, all the I/O
is made by the root node, which is a significant bottleneck).

Important! The files are not deleted before the start of a calculation, but only the relevant files are
overwritten. Therefore, if one first performs a calculation and then a second one with a smaller number
of processors, care is needed to avoid to mix the results of the older calculations with those of the new
one. In case of doubt, either check the date stamp in the first line of the seedname_geninterp_*.dat
files, or simply delete the seedname_geninterp_*.dat files before starting the new calculation.

To join the files, on can simply use the following command:

cat seedname_geninterp_*.dat > seedname_geninterp.dat

or, if one wants to remove the comment lines:

rm seedname_geninterp.dat
for i in seedname_geninterp_*.dat ; do grep -v \# "$i" >> \
seedname_geninterp.dat ; done

The first few lines of each files are comments (starting with #), containing a datestamp, the comment
line as it is read from the input file, and a header. The following lines contain the band energies (and
derivatives) for each band and k point (the energy index runs faster than the k-point index). For
each of these lines, the first four columns contain the k-point index as provided in the input, and the
k coordinates (always in absolute coordinates, in units of 1/Å). The fifth column contains the band
energy.

If geninterp_alsofirstder is true, three further columns are printed, containing the three first
derivatives of the bands along the kx, ky and kz directions.

The k point coordinates are in units of 1/Å, the band energy is in eV.
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Appendix A

Utilities

The wannier90 code is shipped with a few utility programs that may be useful in some occasions. In
this chapter, we describe their use.

A.1 kmesh.pl

The wannier90 code requires the definition of a full Monkhorst–Pack grid of k points. In the input
file the size of this mesh is given by means of the mp_grid variable. E.g., setting

mp_grid = 4 4 4

tells wannier90 that we want to use a 4× 4× 4 k grid.

One has then to specify (inside the kpoints block in the the seedname.win file) the list of k points of
the grid. Here, the kmesh.pl Perl script becomes useful, being able to generate the required list.

The script can be be found in the utility directory of the wannier90 distribution. To use it, simply
type:

./kmesh.pl nx ny nz

where nx, ny and nz define the size of the Monkhorst–Pack grid that we want to use (for instance, in
the above example of the 4× 4× 4 k grid, nx=ny=nz=4).

This produces on output the list of k points in Quantum Espresso format, where (apart from a header)
the first three columns of each line are the k coordinates, and the fourth column is the weight of each
k point. This list can be used to create the input file for the ab-initio nscf calculation.

If one wants instead to generate the list of the k coordinates without the weight (in order to copy and
paste the output inside the seedname.win file), one simply has to provide a fourth argument on the
command line. For instance, for a 4× 4× 4 k grid, use

./kmesh.pl 4 4 4 wannier

and then copy the output inside the in the kpoints block in the seedname.win file.
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We suggest to always use this utility to generate the k grids. This allows to provide the k point
coordinates with the accuracy required by wannier90, and moreover it makes sure that the k grid used
in the ab-initio code and in wannier90 are the same.

A.2 w90chk2chk.x

During the calculation of the Wannier functions, wannier90 produces a .chk file that contains some
information to restart the calculation.

This file is also required by the postw90 code. In particular, the postw90 code requires at least the
.chk file, the .win input file, and (almost always) the .eig file. Specific modules may require further
files: see the documentation of each module.

However, the .chk file is written in a machine-dependent format. If one wants to run wannier90 on a
machine, and then continue the calculation with postw90 on a different machine (or with postw90 com-
piled with a different compiler), the file has to be converted first in a machine-independent “formatted”
format on the first machine, and then converted back on the second machine.

To this aim, use the w90chk2chk.x executable. Note that this executable is not compiled by default:
you can obtain it by executing

make w90chk2chk

in the main wannier90 directory.

A typical use is the following:

1. Calculate the Wannier functions with wannier90

2. At the end of the calculation you will find a seedname.chk file. Run (in the folder with this file)
the command

w90chk2chk.x -export seedname

or equivalently

w90chk2chk.x -u2f seedname

(replacing seedname with the seedname of your calculation).

This command reads the seedname.chk file and creates a formatted file seedname.chk.fmt that
is safe to be transferred between different machines.

3. Copy the seedname.chk.fmt file (together with the seedname.win and seedname.eig files) on
the machine on which you want to run postw90.

4. On this second machine (after having compiled w90chk2chk.x) run

w90chk2chk.x -import seedname

or equivalently
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w90chk2chk.x -f2u seedname

This command reads the seedname.chk.fmt file and creates an unformatted file seedname.chk
ready to be used by postw90.

5. Run the postw90 code.

A.3 PL_assessment

The function of this utility is to assess the length of a principal layer (in the context of a Landauer-
Buttiker quantum conductance calculation) of a periodic system using a calculation on a single unit
cell with a dense k-point mesh.

The utility requires the real-space Hamiltonian in the MLWF basis, seedname_hr.dat.

The seedname_hr.dat file should be copied to a directory containing executable for the utility. Within
that directory, run:

\$> ./PL_assess.x nk1 nk2 nk3 num_wann

where:

nk1 is the number of k-points in x-direction nk2 is the number of k-points in y-direction nk3 is the
number of k-points in z-direction num_wann is the number of wannier functions of your system

e.g.,

\$> ./PL_assess.x 1 1 20 16

Note that the current implementation only allows for a single k-point in the direction transverse to the
transport direction.

When prompted, enter the seedname.

The programme will return an output file seedname_pl.dat, containing four columns

1. Unit cell number, R

2. Average ’on-site’ matrix element between MLWFs in the home unit cell, and the unit cell R
lattice vectors away

3. Standard devaition of the quantity in (2)

4. Maximum absolute value in (2)

A.4 w90vdw

This utility provides an implementation of a method for calculating van der Waals energies based on
the idea of density decomposition via MLWFs.
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For theoretical details, please see the following publication and references therein:

Lampros Andrinopoulos, Nicholas D. M. Hine and Arash A. Mostofi, “Calculating dispersion interac-
tions using maximally localized Wannier functions”, J. Chem. Phys. 135, 154105 (2011).

For further details of this program, please see the documentation in utility/w90vdw/doc/ and the
related examples in utility/w90vdw/examples/.

A.5 w90pov

An utility to create Pov files (to render the Wannier functions using the PovRay utility) is provided
inside utility/w90pov.

Please refer to the documentation inside utility/w90pov/doc for more information.

A.6 k_mapper.py

The wannier90 code requires the definition of a full Monkhorst–Pack grid of k-vectors, which can be
obtained by means of the kmesh.pl utility. In order to perform a GW calculation with the Yambo
code, you need to perform a nscf calculation on a grid in the irreducible BZ. Moreover, you may need a
finer grid to converge the GW calculation than what you need to interpolate the band structure. The
k_mapper.py tools helps in finding the k-vectors indexes of a full grid needed for interpolation into the
reduced grid needed for the GW calculation with Yambo.

Usage:

path/k_mapper.py nx ny nz QE_nscf_output

where path is the path of utility folder, QE_nscf_output is the path of the QE nscf output file given
to Yambo.

A.7 gw2wannier90.py

This utility allows to sort in energy the input data of wannier90 (e.g. overlap matrices and energy
eigenvalues). gw2wannier90.py allows to use wannier90 at the G0W0 level, where quasi-particle cor-
rections can change the energy ordering of eigenvalues (Some wannier90 modules require states to be
ordered in energy).

Usage:

path/gw2wannier90.py seedname options

where path is the path of utility folder.

Available options are:
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mmn, amn, spn, unk, uhu, uiu,
spn_formatted, unk_formatted, uhu_formatted, uiu_formatted,
write_formatted

If no options are specified, all the files (mmn, amn, spn, UNK, uHu, uIu) are considered.

Binary (unformatted Fortran) files are supported, though not reccommended, since they are compiler-
dependent. A safer choice is to use (bigger) formatted files, with options:

spn_formatted, uiu_formatted, uhu_formatted, unk_formatted

In default, the output format is the same as the input format. To generate formatted files with
unformatted input, use option: write_formatted

A.8 w90spn2spn.x

The interface between ab-initio code and wannier90 (e.g. pw2wannier90.x) can produce a .spn file
that is used by postw90 to calculate some spin related quantities.

The .spn file can be written in a machine-dependent or a machine-independent format depending on the
input parameter spn_formatted (the default is false which means the .spn file is machine-dependent)
of the pw2wannier90.x. If a .spn file has been generated on a machine with machine-dependent
format, and then one wants to continue the calculation with postw90 on a different machine (or with
postw90 compiled with a different compiler), the file has to be converted first in a machine-independent
“formatted” format on the first machine.

To this aim, use the w90spn2spn.x executable. Note that this executable is not compiled by default:
you can obtain it by executing

make w90spn2spn

in the main wannier90 directory.

A typical use is the following:

1. Calculate the .spn file, e.g. by pw2wannier90.x

2. At the end of the calculation you will find a seedname.spn file. If the file is “unformatted”, run
(in the folder with this file) the command

w90spn2spn.x -export seedname

or equivalently

w90spn2spn.x -u2f seedname

(replacing seedname with the seedname of your calculation).

This command reads the seedname.spn file and creates a formatted file seedname.spn.fmt that
is safe to be transferred between different machines.

3. Copy the seedname.spn.fmt file on the machine on which you want to run postw90.
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4. On this second machine (after having compiled w90spn2spn.x) run

w90spn2spn.x -import seedname

or equivalently

w90spn2spn.x -f2u seedname

This command reads the seedname.spn.fmt file and creates an unformatted file seedname.spn
ready to be used by postw90.

5. Run the postw90 code.

Note if spn_formatted is set to true in both pw2wannier90.x and postw90 input files, then the
.spn file will be written and read as “formatted”, so w90spn2spn.x is not needed. However, if an
“unformatted” seedname.spn has been created and you do not want to rerun pw2wannier90.x, then
w90spn2spn.x can be useful. Also, once a “formatted” seedname.spn has been generated, the step 4
can be skipped if spn_formatted is set to true in postw90 input file seedname.win.



Appendix B

Frequently Asked Questions

B.1 General Questions

B.1.1 What is wannier90?

wannier90 is a computer package, written in Fortran90, for obtaining maximally-localised Wannier
functions, using them to calculate bandstructures, Fermi surfaces, dielectric properties, sparse Hamil-
tonians and many things besides.

B.1.2 Where can I get wannier90?

The most recent release of wannier90 is always available on our website http://www.wannier.org.

B.1.3 Where can I get the most recent information about wannier90?

The latest news about wannier90 can be followed on our website http://www.wannier.org.

B.1.4 Is wannier90 free?

Yes! wannier90 is available for use free-of-charge under the GNU General Public Licence. See the file
LICENSE that comes with the wannier90 distribution or the GNU hopepage at http://www.gnu.org.

B.2 Getting Help

B.2.1 Is there a Tutorial available for wannier90?

Yes! The examples directory of the wannier90 distribution contains input files for a number of tutorial
calculations. The doc directory contains the accompanying tutorial handout.

169

http://www.wannier.org
http://www.wannier.org
http://www.gnu.org


170 wannier90: User Guide

B.2.2 Where do I get support for wannier90?

There are a number of options:

1. The wannier90 User Guide, available in the doc directory of the distribution, and from the
webpage (http://www.wannier.org/user_guide.html)

2. The wannier90 webpage for the most recent announcements (http://www.wannier.org)

3. The wannier90 mailing list (see http://www.wannier.org/forum.html)

B.2.3 Is there a mailing list for wannier90?

Yes! You need to register: go to http://www.wannier.org/forum.html and follow the instructions.

B.3 Providing Help: Finding and Reporting Bugs

B.3.1 I think I found a bug. How do I report it?

• Check and double-check. Make sure it’s a bug.

• Check that it is a bug in wannier90 and not a bug in the software interfaced to wannier90.

• Check that you’re using the latest version of wannier90.

• Send us an email. Make sure to describe the problem and to attach all input and output files
relating to the problem that you have found.

B.3.2 I have got an idea! How do I report a wish?

We’re always happy to listen to suggestions. Email your idea to the wannier90 developers.

B.3.3 I want to help! How can I contribute to wannier90?

Great! There’s always plenty of functionality to add. Email us to let us know about the functionality
you’d like to contribute.

B.3.4 I like wannier90! Should I donate anything to its authors?

Our Swiss bank account number is... just kidding! There is no need to donate anything, please just
cite our paper in any publications that arise from your use of wannier90:

[ref] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D.
Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.M. Lihm, D. Marchand, A.
Marrazzo, Y. Mokrousov, J.I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T.
Ponweiser, J. Qiao, F. Thöle, S.S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I.

http://www.wannier.org/user_guide.html
http://www.wannier.org
http://www.wannier.org/forum.html
http://www.wannier.org/forum.html
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Souza, A.A. Mostofi, J.R. Yates,
Wannier90 as a community code: new features and applications, J. Phys. Cond. Matt. 32,
165902 (2020)
https://doi.org/10.1088/1361-648X/ab51ff

If you are using versions 2.x of the code, cite instead:

[ref] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari,
An updated version of wannier90: A Tool for Obtaining Maximally-Localised Wannier
Functions, Comput. Phys. Commun. 185, 2309 (2014)
http://doi.org/10.1016/j.cpc.2014.05.003

B.4 Installation

B.4.1 How do I install wannier90?

Follow the instructions in the file README.install in the main directory of the wannier90 distribution.

B.4.2 Are there wannier90 binaries available?

Not at present.

B.4.3 Is there anything else I need?

Yes. wannier90 works on top of an electronic structure calculation.

At the time of writing there are public, fully functioning, interfaces between wannier90 and pwscf,
abinit (http://www.abinit.org), siesta (http://www.icmab.es/siesta/), VASP (https://www.
vasp.at), Wien2k (http://www.wien2k.at), fleur (http://www.fleur.de), OpenMX (http://
www.openmx-square.org/), GPAW (https://wiki.fysik.dtu.dk/gpaw/).

To use wannier90 in combination with pwscf code (a plane-wave, pseudopotential, density-functional
theory code, which is part of the quantum-espresso package) you will need to download pwscf from
the webpage http://www.quantum-espresso.org. Then compile pwscf and the wannier90 interface
program pw2wannier90. For instructions, please refer to the documentation that comes with the
quantum-espresso distribution.

For examples of how to use pwscf and wannier90 in conjunction with each other, see the wannier90
Tutorial.

https://doi.org/10.1088/1361-648X/ab51ff
http://doi.org/10.1016/j.cpc.2014.05.003
http://www.abinit.org
http://www.icmab.es/siesta/
https://www.vasp.at
https://www.vasp.at
http://www.wien2k.at
http://www.fleur.de
http://www.openmx-square.org/
http://www.openmx-square.org/
https://wiki.fysik.dtu.dk/gpaw/
http://www.quantum-espresso.org
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