
© WAVESTONE 1

DEF CON 30 – DemoLabs

EDR detection mechanisms and bypass
techniques with EDRSandBlast

Maxime MEIGNAN (th3m4ks) & Thomas DIOT (_Qazeer)

© WAVESTONE 2

Hi !
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

Who are we ?

/ Thomas Diot (_Qazeer)

/ Maxime Meignan (th3m4ks)

@ Wavestone

Why EDRSandblast ?

/ EDRs are more and more
prevalent in corporate
environments

/ EDRs may need to be bypassed in
red-team engagements, as well
as during pentests

© WAVESTONE 3

Hi !
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

github.com/wavestone-cdt/EDRSandblast

What is EDRSandblast ?

/ Tool written in C

/ Detects common monitoring techniques used by EDR software on
Windows endpoints

/ Implements techniques to bypass them (both user-land and kernel-land)

/ Exists as a CLI tool and as a static library to include in another project

© WAVESTONE 4

So you want to dump LSASS ? / 01

© WAVESTONE 5

With the tool of your choice
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

…

© WAVESTONE 6

Tool starts

> PE is loaded
> Process is created
> Main thread is started

Tool opens the
LSASS process

Call to OpenProcess()

Tool reads each
memory range

Calls to
ReadProcessMemory()

Tool writes the
results in a

minidump file

Calls to
CreateFile()and
WriteFile()

What happens classically during a process dumping
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

Simple question : which action will the EDR spot ?

© WAVESTONE 7

Easy answer: the EDR saw you at every step
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

© WAVESTONE 8

How come the EDR knows everything ?

Tool starts

> PE is loaded
> Process is created
> Main thread is started

• EDR registered callback functions with
PsSet{CreateProcess,CreateThread,LoadImage}NotifyRoutine()

• EDR’s driver is notified by the kernel at each process creation, thread creation, or PE
loading (executable, library, driver)

© WAVESTONE 9

Kernel notify routine callbacks allow EDRs to be notified of process or thread
creation and image loading

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

⁄ The Kernel notify routine callbacks are added through documented APIs to define driver-
supplied callback routines.
The callbacks routines are then stored in undocumented arrays in kernel memory:
PspCreateProcessNotifyRoutine, PspCreateThreadNotifyRoutine, and PspLoadImageNotifyRoutine

⁄ The callback routines are then called upon the occurrence of their associated system
events.

Prototypes the Kernel notify routine callbacks must follow

© WAVESTONE 10

Demo

© WAVESTONE 11

How come the EDR knows everything ?
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

• Using these notifications, EDR may also insert its own libraries inside each process
memory space before it starts

Tool starts

> PE is loaded
> Process is created
> Main thread is started

© WAVESTONE 12

Demo

© WAVESTONE 13

How come the EDR knows everything ?
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

• EDR registered callback functions with ObRegisterCallbacks()

• EDR’s driver is notified by the kernel at each handle creation or duplication on threads
or processes

• EDR can monitor OpenProcess()calls and even block the handle opening

Tool opens the
LSASS process

Call to OpenProcess()

© WAVESTONE 14

ObRegisterCallbacks allows EDRs to be notified of handle operations by
processes and threads

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

⁄ The Kernel Object callbacks are added through a documented API to define driver-supplied
ObjectPreCallback and ObjectPostCallback routines.
The callbacks routines are then stored in an undocumented doubly linked list, with no
symbols.

⁄ The callback routines are then called when or after a process or thread make a handle
operation.

The OB_PRE_OPERATION_INFORMATION and OB_POST_OPERATION_INFORMATION contain
information about the operation and notably:

▪ The target of the handle operation

▪ The desired / granted access (as an ACCESS_MASK)

Prototypes the Kernel ObjectPreCallback and ObjectPostCallback routines must follow

© WAVESTONE 15

Demo

© WAVESTONE 16

How come the EDR knows everything ?

• EDR subscribed to a special event provider called ETW Threat Intelligence, reserved to
security products (signed as « Early-Launch-Antimalware »)

• This provider resides in kernel memory and cannot be altered from userland

• Calling certain kernel functions (ex. MiReadWriteVirtualMemory) will generate events

available for the EDR to analyze

Tool reads each
memory range

Calls to
ReadProcessMemory()

© WAVESTONE 17

EDRs can subscribe to the ETW Microsoft-Windows-Threat-Intelligence provider
to receive telemetry on Windows API usage from the kernel

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

Example of a call to the ETWTI logging function in
nt!MiReadWriteVirtualMemory

Example an event fields generated by EtwTiLogReadWriteVm for virtual memory
read operations

List of ETW TI functions in a recent Windows build

© WAVESTONE 18

How come the EDR knows everything ?

• EDR registered a minifilter driver with FltRegisterFilter()

• This driver will be called each time an I/O is performed on the file-system

• This allow the EDR to intercept file creations and scan their content

Tool writes the
results in a

minidump file

Calls to
CreateFile()and
WriteFile()

© WAVESTONE 19

Tool opens the
LSASS process

Tool reads each
memory range

Tool writes the
results in a

minidump file

Call to
OpenProcess()

Call to
ReadProcessMemory()

Calls to
CreateFile()/WriteFile()

How come the EDR knows everything ?

• EDR loaded its own library at process start, remember ?

• The library installed hooks on all interesting userland functions for monitoring purposes

• At each (naive) call to a monitored function, the EDR will inspect arguments or return
values to detect « malicious actions »

© WAVESTONE 20

Example of a hook installed by the EDR
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

Example of a hook in the ntdll.NtReadVirtualMemory function introduced by an EDR

© WAVESTONE 21

How to bypass these monitoring techniques/ 02

© WAVESTONE 22

Hooks are detected and removed by leveraging on-disk DLLs

Detecting hooks

For all loaded DLLs of a process, the content on disk is compared to the one in memory. Every
difference found in a code section is a potential hook.

Removing hooks

Instructions overwritten by hooks are restored using the on-disk content. Page containing the
instructions is temporarily set to be writable using NtProtectVirtualMemory.

However, this function is probably hooked itself by the EDR.

© WAVESTONE 23

Multiple techniques are implemented to get an unmonitored call to any hooked
function, like NtProtectVirtualMemory

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

1
Construct an unhooked NtProtectVirtualMemory by allocating an

executable trampoline jumping over the hook

2
Search and use an existing trampoline allocated by the EDR itself to get
an unhooked version of NtProtectVirtualMemory

3
Load an additional version of ntdll library into memory and use the
NtProtectVirtualMemory from this library

4 Use a direct syscall to call NtProtectVirtualMemory

© WAVESTONE 24

Demo

© WAVESTONE 25

Removing Kernel-land monitoring requires to be able and to know where to
write in the kernel memory

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

Reading / writing kernel memory Knowing where to write

⁄ Global variables’ offsets and fields offsets in
structures are leveraged by EDRSanblast to know
where to write (instead of relying on the search of
memory patterns).

⁄ Known offsets allow more stability and reduce
the risk of BSOD.

⁄ The offsets can be:

▪ Passed in a CSV file, with 450+ versions of
the Windows kernel supported to date

▪ Automatically recovered, if the endpoint
has Internet connectivity, by downloading
the .pdb (from MS symbol server) associated
with the targeted ntoskrnl version

⁄ A driver can be leveraged to access the kernel
memory as they share the same memory
address space.

⁄ Since the introduction of Driver Signature
Enforcement (DSE), new drivers (post 07/2015)
must be certified by Microsoft Windows Hardware
Quality Labs (WHQL).

⁄ A legitimate and WHQL-certified but vulnerable
driver can be exploited to obtain arbitrary read /
write of kernel memory primitives.

© WAVESTONE 26

EDRSanblast enumerates the routines registered with PsSet*NotifyRoutine or
ObRegisterCallbacks and remove any callback routine linked to a predefined list
of EDR drivers

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

Bypassing notify routine callbacks

Use offsets to the PspCreateProcessNotifyRoutine, PspCreateThreadNotifyRoutine, and
PspLoadImageNotifyRoutine arrays to iterate on the callbacks arrays and remove all
callback functions pointing to an EDR driver memory space.

Bypassing object callbacks

Uses offsets to the PsProcessType and PsThreadType global variables (_OBJECT_TYPE*
structures) and the CallbackList field offset in theses structures to retrieve the head of the
ObRegisterCallbacks linked lists.

Both lists are then walked and the PreOperation and PostOperation fields of the
undocumented structure of each item are analyzed to identify if the callbacks belong to an
EDR driver and to disable the callback, using the Enabled field.

The undocumented structure has been reversed and was constant from Windows 10 versions
10240 (July 2015) to 22000.

© WAVESTONE 27

Demo

© WAVESTONE 28

The ETW Microsoft-Windows-Threat-Intelligence provider
can be disabled system-wide through a kernel arbitrary RW primitive

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

⁄ Patching a process memory to disable user-land ETW loggers (for instance by patching
ntdll!EtwEventWrite) will not impact the ETW TI provider.

As can sometimes be incorrectly stated, process memory patching does not "Disable Event
Tracing for Windows".

⁄ Disabling the ETW TI provider with a kernel memory read/write primitive is simply a
matter of patching a value in the _ETW_GUID_ENTRY entry representing the ETW
TI provider in memory.

© WAVESTONE 29

Demo

© WAVESTONE 30

github.com/wavestone-cdt/EDRSandblast
DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

Quick usage

EDRSandblast.exe <audit | dump | cmd | credguard | firewall> [--usermode] [--kernelmode]

The vulnerable RTCore64.sys driver can be retrieved at:

https://tinyurl.com/Demo-RTCore64

Options

© WAVESTONE 31

New features published this morning!

/ Object callbacks detection and removal

/ Firewalling of EDR components to block telemetry

/ Downloading and parsing of the ntoskrnl PDB at runtime for offsets retrieval

/ Refactoring of the kernel read/write primitives making the support of a new vulnerable driver
simpler to implement

/ Support of the Dell vulnerable driver DBUtil_2_3.sys

/ Creation of a simple API to use EDRSandblast as a static library

/ Implementation of a function that returns a “safe” version of a hooked Nt* function

/ Implementation of an equivalent of MiniDumpWriteDump with only Nt* functions

(“syscalls”)

© WAVESTONE 32

EDRSanblast can now be imported as a static library in your project to easily
add EDR detection and bypasses capabilities

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

Example of a simple LSASS dumper program that uses the EDRSandblast API

© WAVESTONE 33

Any Questions,
Suggestions,

Ideas?

© WAVESTONE 34

Annexes/ 04

© WAVESTONE 35

The introduction of PatchGuard, to protects the Windows x64 kernel,
forced security product vendors to adapt their detection mechanisms

DEF CON 30 – DEMOLABS - EDR DETECTION MECHANISMS AND BYPASS TECHNIQUES WITH EDRSANDBLAST

⁄ PatchGuard, also known as Kernel Patch Protection (KPP), is a protection mechanism for
the Windows (x64) kernel memory to prevent illegitimate modifications of kernel
memory.

If an anormal modification is detected, PatchGuard generates a "Bug Check" (also known
as "Blue Screen of Death").

No more interceptions of syscalls via modifications
of the System Service Descriptor Table (SSDT) as
the SSDT is a PatchGuard protected structure

Security products developers (and rootkits) had to
rethink their monitoring mechanisms on 64-bit
Windows OS.

