{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "4fba706f-796a-408b-a294-d640c4821d99",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from scipy.optimize import curve_fit"
]
},
{
"cell_type": "markdown",
"id": "2b327e19-d1c1-4d83-94b9-873dc2517188",
"metadata": {},
"source": [
"# Linear VS Nonlinear Model "
]
},
{
"cell_type": "markdown",
"id": "3cd25926-6806-48fb-a745-748df2152162",
"metadata": {},
"source": [
"Take a look at these models\n",
"$$\n",
"\\begin{aligned}\n",
"&Y_{i}=\\beta_{1}+\\beta_{2}\\left(\\frac{1}{X_{i}}\\right)+u_{i}\\\\\n",
"&Y_{i}=\\beta_{1}+\\beta_{2} \\ln X_{i}+u_{i}\\\\\n",
"&\\text { In } Y_{i}=\\beta_{1}+\\beta_{2} X_{i}+u_{i}\\\\\n",
"&\\ln Y_{i}=\\ln \\beta_{1}+\\beta_{2} \\ln X_{i}+u_{i}\\\\\n",
"&\\ln Y_{i}=\\beta_{1}-\\beta_{2}\\left(\\frac{1}{X_{i}}\\right)+u_{i}\n",
"\\end{aligned}\n",
"$$\n",
"The variables might have some nonlinear form, but parameters are all linear (the $4$th model can denote $\\alpha_1=\\ln{\\beta_1}$), as long as we can convert them into linear form with some mathematical manipulation, we call them **intrinsically linear models**. \n"
]
},
{
"cell_type": "markdown",
"id": "e4027fde-8158-4037-a41e-c4f2c560d592",
"metadata": {},
"source": [
"How about these two models?\n",
"\\begin{aligned}\n",
"&Y_{i}=e^{\\beta_{1}+\\beta_{2} X_{i}+u_{i}} \\\\\n",
"&Y_{i}=\\frac{1}{1+e^{\\beta_{1}+\\beta_{2} X_{i}+u_{i}}} \\\\\n",
"\\end{aligned}\n",
"The first one can be easily converted into linear one by taking natural log\n",
"$$\n",
"\\ln{Y_i}=\\beta_{1}+\\beta_{2} X_{i}+u_{i}\n",
"$$\n",
"The second one is bit tricky, we will deal with it in more details in chapter of binary choice model. But you can be assured that with a little manipulation the model becomes\n",
"$$\n",
"\\ln \\left(\\frac{1-Y_{i}}{Y_{i}}\\right)=\\beta_{1}+\\beta_{2} X_{i}+u_{i}\n",
"$$\n",
"which is also intrinsically linear."
]
},
{
"cell_type": "markdown",
"id": "5df6706e-a6da-48aa-8628-32ae4604bf2f",
"metadata": {},
"source": [
"These two models are **intrinsically nonlinear model**, there is no way to turn them into linear form.\n",
"\\begin{aligned}\n",
"&Y_{i}=\\beta_{1}+\\left(0.75-\\beta_{1}\\right) e^{-\\beta_{2}\\left(X_{i}-2\\right)}+u_{i} \\\\\n",
"&Y_{i}=\\beta_{1}+\\beta_{2}^{3} X_{i}+u_{i}\\\\\n",
"\\end{aligned}"
]
},
{
"cell_type": "markdown",
"id": "63fe3d16-e606-416c-b514-c3e0a987a8bc",
"metadata": {},
"source": [
"Can we transform Cobb-Douglas model into linear form? The first one can, by taking natural log. But the second one has an additive disturbance term, which make it intrinsically nonlinear.\n",
"\\begin{aligned}\n",
"&Y_{i}=\\beta_{1} X_{2 i}^{\\beta_{2}} X_{3 i}^{\\beta_{3}} u_{i}\\\\\n",
"&Y_{i}=\\beta_{1} X_{2 i}^{\\beta_{2}} X_{3 i}^{\\beta_{3}}+ u_{i}\\\\\n",
"\\end{aligned}"
]
},
{
"cell_type": "markdown",
"id": "2e0ee933-0309-49d7-8816-f8209fc02701",
"metadata": {},
"source": [
"Here is another famous economic model, _constant elasticity of substitution_ (CES) production function.\n",
"$$\n",
"Y_{i}=A\\left[\\delta K_{i}^{-\\beta}+(1-\\delta) L_{i}^{-\\beta}\\right]^{-1 / \\beta}u_i\n",
"$$\n",
"No matter what you do with it, it can't be transformed into linear form, thus it is intrinsically nonlinear"
]
},
{
"cell_type": "markdown",
"id": "10de1167-ae4b-4809-860b-6bdbaa85ea74",
"metadata": {},
"source": [
"# OLS On A Nonlinear Model "
]
},
{
"cell_type": "markdown",
"id": "0a57e6a5-d680-45c8-9b0a-9ad0bb62d888",
"metadata": {},
"source": [
"Consider an intrinsically nonlinear model\n",
"$$\n",
"Y_{i}=\\beta_{1} e^{\\beta_{2}X_{i}}+u_{i}\n",
"$$\n",
"Use the OLS algorithm that minimize $RSS$\n",
"$$\n",
"\\begin{gathered}\n",
"\\sum_{i=0}^n u_{i}^{2}=\\sum_{i=0}^n\\left(Y_{i}-\\beta_{1} e^{\\beta_{2} X_{i}}\\right)^{2}\n",
"\\end{gathered}\n",
"$$\n",
"Take partial derivative with respect to both $\\beta_1$ and $\\beta_2$, the first order conditions are\n",
"$$\n",
"\\begin{gathered}\n",
"\\frac{\\partial \\sum_{i=0}^n u_{i}^{2}}{\\partial \\beta_{1}}=2 \\sum_{i=0}^n\\left(Y_{i}-\\beta_{1} e^{\\beta_{2} X_{i}}\\right)\\left(-1 e^{\\beta_{2} X_{i}}\\right) =0\\\\\n",
"\\frac{\\partial \\sum_{i=0}^n u_{i}^{2}}{\\partial \\beta_{2}}=2 \\sum_{i=0}^n\\left(Y_{i}-\\beta_{1} e^{\\beta_{2} X_{i}}\\right)\\left(-\\beta_{1} e^{\\beta_{2} X_{i}} X_{i}\\right)=0\n",
"\\end{gathered}\n",
"$$"
]
},
{
"cell_type": "markdown",
"id": "59ca3c1e-af9f-43a1-94da-6bb1a8fe7a2e",
"metadata": {},
"source": [
"Collecting terms and denote the estimated coefficients as $b_1$ and $b_2$\n",
"$$\n",
"\\begin{aligned}\n",
"\\sum_{i=0}^n Y_{i} e^{b_{2} X_{i}} &=b_{1} e^{2 {b}_{2} X_{i}} \\\\\n",
"\\sum_{i=0}^n Y_{i} X_{i} e^{b_{2} X_{i}} &={b}_{1} \\sum_{i=0}^n X_{i} e^{2 {b}_{2} X_{i}}\n",
"\\end{aligned}\n",
"$$"
]
},
{
"cell_type": "markdown",
"id": "43c087fa-061e-47f2-b50b-08eac64cf9d4",
"metadata": {},
"source": [
"These are solutions, but not **closed-form solution**, i.e. solve by plugging in data. So even if you have these formula, we can't input in Python, because unknowns are expressed in terms of unknowns."
]
},
{
"cell_type": "markdown",
"id": "adb925ae-0c0e-46c1-9aeb-ec9e6db05ca5",
"metadata": {},
"source": [
"# Gauss-Newton Iterative Method "
]
},
{
"cell_type": "markdown",
"id": "db723ebb-cedc-4ff4-9c49-4a8962547edf",
"metadata": {},
"source": [
"We will not talk about details of this algorithm, it only confuses you more than clarification. But this **Gauss-Newton Iterative Method** is kind of trial and error method that gradually approaching the optimized coefficients. It feeds the $RSS$ formula with parameters, record the result, then try another set of parameters, if $RSS$ gets smaller, the algorithm keeps feed parameters until the $RSS$ have no significant improvement."
]
},
{
"cell_type": "markdown",
"id": "141a694a-b3fb-4b92-bd01-27153d2ffabd",
"metadata": {},
"source": [
"Define the function\n",
"$$\n",
"Y_{i}=\\beta_{1} e^{\\beta_{2}X_{i}}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b229a5bc-9e36-4d23-b7c3-b66f9ff0cac5",
"metadata": {},
"outputs": [],
"source": [
"def exp_func(x, beta1, beta2):\n",
" return beta1 * np.exp(beta2 * x)"
]
},
{
"cell_type": "markdown",
"id": "c58d2d63-aeb7-4eec-b96d-94b81b3df151",
"metadata": {},
"source": [
"Simulate data $Y$ then estimate the parameters with ```curve_fit``` function"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a6f1f5b7-9716-4fe3-8727-a2110ee6cc0f",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAHmCAYAAAB6cOZMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBc0lEQVR4nO3deZxcVZ338c9J0tlI6AQSCFsn7GuzSMsiOy2bEkAWt4CIaHBQFPWZR8YMOqhxnHlGjaiIGWVADNsACs2iQMsisiayNPuahD0hS5Gks3Qn5/njdqe6s1Z3V9Wt5fN+vepVdU7d6vqFCt3f3P7dc0KMEUmSJKka9Eu7AEmSJKlYDL+SJEmqGoZfSZIkVQ3DryRJkqqG4VeSJElVw/ArSZKkqmH4lSRJUtUw/EpSBQsh1IUQmkMID4UQ/m09x1wdQti34/E3Qgg/KmaNklRMA9IuQJJUUN8F/jnG+I8Qwj3rOeYy4PwQwu+AjwHHF606SSoyz/xKUmXbqSP4ngZMX9cBMcaHgd2AXwCfizGuLGaBklRMhl9J2ogQwsgQwqIQwhFrzF8dQrg5hBDy9D7bhxDuDCEsCCG8FUI4p49fbxNgUQjhv4Grgd+v57gALAP+HGN8py/vKUmlzvArSRsRY1wATAW+0TkXQrgY2AM4M8YY8/RWNwJ3A6OALwH/2sevtxfwTIzxS8DHge+s57h/Bp4Ajs1XkJekUmX4laTc/BQ4LoSwYwjhDGAiMD7G2JqPLx5C2BvYPMb40y5tB3NzfO2XQgjPhRAyHWeOt+h4am9gfsfjzYAXQgjHhRD+OYTw3yGEmhDCocBRwL8ADwPHdHzNEEI4JR9/NkkqJYZfScpBjPEt4FrgVyQXiJ0cY3x7fceHEG4LISxcz+22dbzkEODBEEK/EML+JGH71xurK4TwHeDLwEnAaOAt4IcdT9cDnwshPAB8BpgSY/xLjPH/AYuBrYGfAWfHGFd1vN/5Ha89Fli4sfeXpHIT8vfbOkmqbCGEvYAW4FMxxhu6zJ8P3BNjfKkPX/s3wPPAJ4DDSdoQjogxLgoh1JK0Q+wBHBRjfKbjNVsAM4F9O987hHAwcFmMcb8Qwl+Aj8cY29d4r38CXo8x/nkD9XwH+EWMcVFv/0ySVIo88ytJuRsILAdu7joZY7ysL8G3w77A4yQtCDuRtCv8Z8dzrSQ9uzeu8ZrGjpoe6zyrDPwZyHQ8P3gdwffLHa/bLYQwcgP1bGrwlVSJXOdXknK3D8kFZGsGyr/FGA9bY+5OoNtcF3+LMZ7Q5dj+wO7AEx3tB6+GEP4ObAEQY2wD5q7jWrTNgD/GGM9Y15vEGI9Yx9zlwOXr/yOuPu6ijR0jSeXIM7+SlLt9gSe7ToQQRgFz1jwwxnhCjHHYem4nrHH4rsBQ4IQQQv+O3dbOBa7aSD3/AI4KIXyoo5ZNQwgnu2KDJK2f4VeScrcPa4RfkhUVnu7j190PeA74CclFZlcCX4sxPrKhF3VsTvF94KYQwuKOr3F8Hpdek6SKY9uDJOUoxnjkOqbzEX73Ba6NMf57L2q6FLi0j+8vSVXDM7+S1Df15OfM7/MbOiCEcAfJ8mP/HUL4fB/fT5KqlkudSVLKQghzgcNijC+kXYskVTrDryRJkqqGbQ+SJEmqGoZfSZIkVQ3DryRJkqpGUZc6GzVqVBw3blwx31KSJElVaMaMGe/HGEevOV/U8Dtu3DimT59ezLeUJElSFQohzFrXvG0PkiRJqhqGX0mSJFUNw68kSZKqhuFXkiRJVcPwK0mSpKph+JUkSVLVMPxKkiSpahh+JUmSVDUMv5IkSaoahl9JkiRVDcOvJEmSqobhV5IkSVXD8CtJkqSqYfiVJElS1TD8SpIkqWoMSLsASZIklbaWaS00T2omMztDbV0tjZMbqZ9Qn3ZZvWL4lSRJ0nq1TGuhaWITba1tAGRmZWia2ARQlgHYtgdJkiStV/Ok5tXBt1NbaxvNk5pTqqhvDL+SJElar8zsTI/mS53hV5IkSetVW1fbo/lSZ/iVJEmqIi3TWpgybgqX9LuEKeOm0DKtZYPHN05upGZoTbe5mqE1NE5uLGSZBeMFb5IkSVWiNxevdc5XymoPIcZYtDdraGiI06dPL9r7SZIkKWvKuClkZq3dq1s7tpYLZ15Y/IIKKIQwI8bYsOa8bQ+SJElVotIuXusNw68kSVKVqLSL13rD8CtJklQlKu3itd7wgjdJkqQqUWkXr/WG4VeSJKmK1E+or6qwuybbHiRJklQ1DL+SJEmqGoZfSZIkVQ3DryRJkqqG4VeSJElVw/ArSZKkqmH4lSRJUv4tXZJ2Betk+JUkSVJ+tbfBDy6AX/8Q3n0z7Wq6cZMLSZIk5dcDd8Kct5PbSy3wn1dDzcC0qwI88ytJkqR8WtYKTddkx8edXjLBFwy/kiRJyqe/3ASLFiaPNxsNjSenWs6aDL+SJEnKj8wCuOum7Pjks0rqrC8YfiVJkpQvt02D5cuSx9uMg4MbUy1nXQy/kiRJ6rv33koudOt02jnQr3969ayH4VeSJEl998erYOXK5PEu9VB/QLr1rIfhV5IkSX3z+osw/YHs+PRzIYT06tkAw68kSZJ6L0a48XfZ8f6Hwg67pVfPRhh+JUmS1HvPTIcXn04e9+sHn/h8quVsjOFXkiRJvbNqZfezvoedAGO2Ta+eHBh+JUmS1DuP3gtvzUweDxwEJ01ItZxcGH4lSZLUc20r4I+/z46PPQ1qN0uvnhwZfiVJktRz9zbB/DnJ4+G1cNxp6daTI8OvJEmSeqZ1Mdx+XXZ84mdhyCbp1dMDhl9JkiT1zJ03wJJFyePRW8ERH0u3nh4w/EqSJCl3C96He/6UHX/ibBhQk1o5PWX4lSRJUu5uuTq52A1g7M7QcHi69fSQ4VeSJEm5eXsW/P3u7Pj0LyQbW5SRnKsNIfQPITwRQritY7xZCOHuEMLLHfcjC1emJEmSUnfz/0BclTzec3/Yfb906+mFnkT1rwPPdxlfBDTHGHcGmjvGkiRJqkQvPwNPPpI8DgFO+0K69fRSTuE3hLAt8HHgt12mTwau6nh8FXBKXiuTJElSaYgRbrwiOz7wKKjbMb16+iDXM79TgP8LrOoyt2WM8R2Ajvst8luaJEmSSsKTD8OrzyWPB9TAKZ9Lt54+2Gj4DSGcCMyJMc7ozRuEECaGEKaHEKbPnTu3N19CkiRJaWlvgxt/lx0feSKMGpNePX00IIdjDgFOCiF8DBgMbBpC+APwXghhqxjjOyGErYA563pxjHEqMBWgoaEh5qluSZKkktcyrYXmSc1kZmeoraulcXIj9RPq0y6rZ/56K7z3VvJ4yCbw8U+nW08fbfTMb4zxX2KM28YYxwGfBv4aYzwTuBU4u+Ows4FbClalJElSmWmZ1kLTxCYyszIQITMrQ9PEJlqmtaRdWu4+WAhN07Ljk86E4bWplZMPfVmY7cfAMSGEl4FjOsaSJEkCmic109ba1m2urbWN5knNKVXUC3+6Cpa2Jo/HbAtHjU+3njzIpe1htRjjfcB9HY/nAY35L0mSJKn8ZWZnejRfcma/Cn/7c3b8qfNgQI+iY0kqry05JEmSykRt3brbA9Y3X1JihOsuT+4B6j+c3CqA4VeSJKkAGic3UjO0pttczdAaGieXwS/OZ/wNXuroTe7fHz41Md168qj8z11LkiSVoM5VHcputYcVy+F/u+xrdvRJMGa79OrJM8OvJElSgdRPqC/9sLumu26CeR0r2A6rhfET0q0nz2x7kCRJUmL+XLjj+uz4E2fD0GHp1VMAhl9JkiQlbroiaXsA2G4HOOy4dOspAMOvJEmS4NXn4NF7s+NPfxn69U+vngIx/EqSJFW7Vavg2suz4/0PhV33Tq+eAjL8SpIkVbuHm2HmS8njATVwxhfTraeADL+SJEnVbFkr3HxFdnz86TBqTHr1FJjhV5IkqZrdcT1kFiSPR2wOx38y3XoKzPArSZJUrea+A3fdnB2f9gUYPCS9eorA8CtJklStbvhvaG9LHu+wGxx4VLr1FIHhV5IkqRo9/yQ88VB2/Ol/gn6VHw0r/08oSZKk7lauhOu6LG128Edhh13Tq6eIDL+SJEnV5oE74a2ZyeNBg+G0c1Itp5gMv5IkSdVk8SK45ffZ8cc/nazyUCUMv5IkSdXk5itg8QfJ41Fj4JhT062nyAy/kiRJ1eKV55KWh06fPg9qBqZXTwoMv5IkSdWgvR2uvjQ73vfg5FZlDL+SJEnVoPmW7EVuAwfBZ/4p1XLSYviVJEmqdPPmwK1XZ8cnnwWbb5FePSky/EqSJFW66y6H5cuSx9uMg8ZT0qwmVYZfSZKkSvbkI913cjvzAhgwIL16Umb4lSRJqlTLl8G1l2XHhx0PO++ZXj0lwPArSZJUqZquSfp9AYbVwmlfSLeeEmD4lSRJqkRvzYS7b8qOzzgXhm2aWjmlwvArSZJUaVatgj/8AlauTMa71MNHjkm3phJh+JUkSao0D90DLz+bPO7fHyZ8BUJIt6YSYfiVJEmqJIsycONvs+NjT0uWNxNg+JUkSaosN/0OFn+QPB61JZz42XTrKTGGX0mSpErx8jPw4F3Z8WfOh0GD06unBBl+JUmSKkF7O1z9i+x4v4/APgemV0+Jqt7tPSRJkirJ3X+Et2cljwcNhs/8U2qltExroXlSM5nZGWrrammc3Ej9hPrU6unK8CtJklTu5r0HTX/Ijk8+CzYbnUopLdNaaJrYRFtrGwCZWRmaJjYBlEQAtu1BkiSp3F37a1ixPHm87fbQeEpqpTRPal4dfDu1tbbRPKk5pYq6M/xKkiSVsycegicfyY7PuiBZ2zclmdmZHs0Xm+FXkiSpXLUuhj/8Mjs+/ATYcY/06gFq62p7NF9shl9JkqRydf1UyMxPHm86Ek79Qrr1AI2TG6kZWtNtrmZoDY2TG1OqqDsveJMkSSpHz0yHv3dZ0/fMr8Kw4enV06HzojZXe5AkSVJ+LF0Cv/95dtxwOHzokPTqWUP9hPqSCbtrsu1BkiSp3Nx4BcyfmzweVgufPT/desqIZ34lSZLKyQtPwf23rx7OrjuRm/e+siRbDEqR4VeSJKlcLF8GV01ZPcyM2pM/XDybttb2ZFxiG0qUItseJEmSysUfr4S57ySPhw7jhptHrw6+nUppQ4lSZPiVJEkqBy8/C823ZMefmsjbryxf56GlsqFEKTL8SpIklboVy+HKn0KMyXivBvjIMSW/oUQpMvxKkiSVulv/AO+9lTwePBTO+hqEUPIbSpQiL3iTJEkqZa+/CH+5KTs+41zYfAug9DeUKEWGX0mSpFLVtgL+56cQVyXj3faFwz/W7ZBS3lCiFNn2IEmSVKpuvw7enpU8HjgIzv46hJBuTWXO8CtJklSKZr8Kd16fHZ96DozeKr16KoThV5IkqdS0tyerO6xcmYx32gOOPindmiqE4VeSJKnU/Pl/kzO/ADUD4fPfhH7Gtnzwv6IkSVIpeWsm3HZNdnzyWTBm29TKqTSGX0mSpFKxciVc+TNob0vG43aBY05Nt6YKY/iVJEkqFbdfm6zrC9B/AJzzTejfP92aKozhV5IkqRS89sIa7Q5nwjbjUiunUhl+JUmS0rZsKfz2P2FVx2YWO+8Jx5+Rbk0VyvArSZKUthumwpy3k8eDh8IX/hn62e5QCIZfSZKkND35MDxwZ3b82fNh9Jj06qlwhl9JkqS0ZBbAVVOy4/0PhYMbUyunGhh+JUmS0hAjXPUzWJRJxiM2h7O+BiGkW1eFM/xKkiSl4f474OnHsuNzvgXDNk2vniph+JUkSSq2d99ILnLr9NFTYM8PpVZONTH8SpIkFVN7e7Ks2YrlyXjrsXDqOenWVEUMv5IkScV02zUw8+Xkcf8B8KVvw8BB6dZURQy/kiRJxfLKc3D7ddnxJ86G7XZIr54qZPiVJEkqhmWt8Lv/B7FjF7dd94ZjT023pipk+JUkSSqG6y6Hue8kj4dsAl/4P+7ilgLDryRJUqHNeBAevCs7PvOrsPkW6dVTxQy/kiRJhbRwHlx9aXZ8wJFw4FGplVPtDL+SJEmFEiP8z09h8QfJeOQomPCVdGuqcoZfSZKkQrnnT/DsjORxCHDuP8Mmw1MtqdoZfiVJkgrhtRfhxt9lx8ecCrvtk149Agy/kiRJ+de6GKb+CFa2J+NxOydr+ip1hl9JkqR86uzzff+9ZDxkKJz3HagZmG5dAnIIvyGEwSGEx0IIT4UQng0hXNIxv1kI4e4Qwssd9yMLX64kSVKJa74FnngoO/78N2H0VunVo25yOfO7HDg6xrgPsC9wfAjhIOAioDnGuDPQ3DGWJEmqXq+/CP/72+z46JNg/0PTq0dr2Wj4jYnFHcOajlsETgau6pi/CjilEAVKkiSVhdbF8Jsufb5jd4YzvphuTVpLTj2/IYT+IYQngTnA3THGR4EtY4zvAHTcr3ObkhDCxBDC9BDC9Llz5+apbEmSpBISI1z5s+59vl+2z7cUDcjloBjjSmDfEMII4I8hhL1yfYMY41RgKkBDQ0PsTZGSJEn51jKtheZJzWRmZ6itq6VxciP1E+p798X+eiv84+/ZsX2+JSun8NspxrgwhHAfcDzwXghhqxjjOyGErUjOCkuSJJW8lmktNE1soq21DYDMrAxNE5sAeh6AZ74EN/x3dmyfb0nLZbWH0R1nfAkhDAE+CrwA3Ap0Llh3NnBLgWqUJEnKq+ZJzauDb6e21jaaJzX37Au1LobLu/T51u1kn2+Jy+XM71bAVSGE/iRh+YYY420hhIeBG0II5wKzgTMKWKckSVLeZGZnejS/TjHCVVPg/XeTsX2+ZWGj4TfG+DSw3zrm5wGNhShKkiSpkGrrasnMWjvo1tbV5v5F7m2CGQ9mx2d/A7bYOg/VqZDc4U2SJFWdxsmN1Ayt6TZXM7SGxsk5ntdbs8/3qPHQcFgeK1Sh9OiCN0mSpErQeVFbr1Z7aF0Cv/l3aO/oGa7bCT75pQJWq3wy/EqSpKpUP6G+5ys7xAhX/QzmvpOM7fMtO7Y9SJIk5WqtPt8L7fMtM4ZfSZKkXLz8LFw/NTs+ajw0HJ5ePeoVw68kSdLGLHgffv3D7uv52udblgy/kiRJG9K2Igm+HyxIxsNq4SsX2+dbpgy/kiRJ6xMjXHMZvPZCMu7XL7nAbfMt061LvWb4lSRJWp8H7oC//Tk7PuNLsNs+6dWjPjP8SpIkrcvLz8I1v86ODzoaPnpKauUoP1znV5IkaU0L58HlXS9w2xHO+hot1zzTu40xVDIMv5IkSV21rYDLfgCZrhe4fZeWG1+maWITba3Jzm6ZWRmaJjYBGIDLiG0PkiRJXV3763Ve4NY8qXl18O3U1tpG86TmFIpUbxl+JUmSOt1/OzxwZ3Z8+hdXX+CWmZ1Z50vWN6/SZPiVJEkCeOW57he4HXgUHPOJ1cPautp1vmx98ypNhl9JkqSF8+DXP8he4LbdjvC5r0MIqw9pnNxIzdCabi+rGVpD4+TGYlaqPvKCN0mSVN3WusBt02QHt0GDux3WeVGbqz2UN8OvJEmqbl0vcAv94LzvwKgx6zy0fkK9YbfM2fYgSZKq1/13dL/A7YxzYfd9UytHhWf4lSRJ1emlZ+Cay7LjA4+CY05Nrx4VheFXkiRVn/fehl9dssEL3FSZDL+SJKm6LF4El14MSxYl4+Ej4KvfXesCN1Umw68kSaoe7W1w2ffhvbeScc1AuODfYPMtUy1LxWP4lSRJ1SFG+P3P4aWW7Ny5/ww77JZeTSo6w68kSaoOd1wPD92THZ96DjQcll49SoXhV5IkVb7H7oc/XpkdH3osnPDJ1MpRegy/kiSpsr36HFzxX9nxbvvAmRe4skOVMvxKkqTKNfdd+OUlyYVuAGO2hX/6VxhQk25dSo3hV5IkVabWxXDpd2FRJhkPq4WvfR82GZ5uXUqV4VeSJFWe9na4/EfwzuxkPKAGvvJd2GLrdOtS6gy/kiSpssQI1/wKnvtHdu6cb8LOe6ZXk0qG4VeSJFWWu26GB+7Mjk86Ew48Kr16VFIGpF2AJElSPrRMa2HmlGs4ce8nsgs5HHQ0jJ+Qal0qLZ75lSRJZa9lWguPX3QNx+/51Org+8acTXlm0DEuaaZuDL+SJKnszfjhrXzq8BZqBqwCYP4Hg7j2rl245+L7U65Mpca2B0mSVN4WzuPkvR9jkyHtACxd3p9r7tqdpctrWDo7k3JxKjWe+ZUkSeWrdTFM+VdGDl8OQFt7P665a3fmZYYAUFtXm2Z1KkGe+ZUkSeVpxfJk97Y3Xwdg1Sr437/uwptzkk0saobW0Di5Mc0Ke6xlWgvNk5rJzM5QW1dL4+RG6ifUp11WRfHMryRJKj8rV8J//we81LJ66q09P8WcfuMgQO3YWsZPHV9WwbFlWgtNE5vIzMpAhMysDE0Tm2iZ1rLxFytnnvmVJEnlJUb4wy/giYeyc2d8ke2OO50Lv5VeWX3VPKmZtta2bnNtrW00T2ouqxBf6jzzK0mSysufroK//Tk7Pu40OO709OrJk8x6Ls5b37x6x/ArSZLKxz1/gtuvy44P/iicdm5q5eTT+i7O86K9/DL8SpKk8vDovXDd5dnx3gfA2RdCv8qIM42TG6kZWtNtrhwv2it19vxKkqTS9+wMuOIn2fGOe8B534EBlRNlOvt6Xe2hsCrnb4wkSapMr70Il/0AViabWLD1WLjgEhg0ON26CqB+Qr1ht8Aq4/cEkiSpMr37Blx6MSxflow3Gw0X/hCGDU+3LpUtw68kSSpNC96Hn06CxR8k42Gbwjd+lARgqZcMv5IkqfQsysDPJsH8Ocl44CD42vdhq+3SrUtlz/ArSZJKy5JF8NPvwNuzknH//nD+xbDDbunWpYpg+JUkSaWjdUlyxveNV4FkM7c7n9yTlqcGpVyYKoWrPUiSpNKwrBV+fjHMfGn11K1/25EnX96EJyY2AbgSgvrMM7+SJCl9y5fBpd+DV59bPXXbgzvw5MtbANDW2kbzpOa0qlMFMfxKkqR0ta2AX14CL7Wsnrrz4XHMeHHLbodlZmeKXZkqkG0PkiQpPW0rkg0snn9i9dQDL+3KY89tttahtXW1xaxMFcrwK0mS0tHeDr/5d2h5PDt3ytmMzOxFzYwm2lrbVk/XDK2hcXJjCkWq0hh+JUlS8a1cCb/9D3jy4ezciZ+FEz9D5yVtzZOayczOUFtXS+PkRi92U14YfiVJUnGtWglX/BdM/1t27rjT4eSzVg/rJ9QbdlUQXvAmSZKKZ9UquOrn8Oi92bmPngKnnwshpFaWqofhV5IkFUeMMO1X8Pe7snNHfBw+dZ7BV0Vj+JUkSYUXI1z/G7j/9uzcocfChK8YfFVUhl9JklRYMcL1U+GeP2XnDjoaPvd16GcUUXF5wZskSSqcVatg2i/h/juycw2HwTnfgn7906tLVcvwK0mSCmPVSrjyZ/DQPdm5/Q+FL34b+ht8lQ7DryRJyr/2dvjd/4PH78/OHXR0csbX4KsUGX4lSVJ+ta1Idm7ruoHFYcfDWRfY6qDUGX4lSVL+rFgOl/0AnpmenTv6JPj0l724TSXB8CtJkvJj2VL45b/BC09l54473Q0sVFIMv5Ikqe9al8DPL4ZXn8vOjZ8AJ51p8FVJMfxKkqS+WbwIpnwHZr6cnTv1HPjYp9KrSVoPw68kSeq9DxbCT/8F3nw9O/fpL8NHT0mrImmDDL+SJKl3Fs6D/7oI3n0jGYcAZ14AR3ws3bqkDTD8SpKknpv3XhJ8576TjEM/OOeb8JGPpluXtBGGX0mS1DNvz4Ypk2D+3GTcv3+ya9uHD0+3LikHhl9JkpS7V5+DS78HSxYl4wE1cN53YL+D061LypHhV5Ik5eapR+E3P0o2sgAYNBjOvxj23D/duqQeMPxKkqSNe/Au+P0UWLUqGQ+vha//AMbtkmpZUk9tdJ/BEMJ2IYR7QwjPhxCeDSF8vWN+sxDC3SGElzvuRxa+XEmSVFQxwu3XwZU/zQbfUWPgop8afFWWcjnz2w58K8b4jxDCcGBGCOFu4PNAc4zxxyGEi4CLgG8XrlRJkqpPy7QWmic1k5mdobaulsbJjdRPqC/Om69aBdddDn+9NTu33Y5w4Q+gdrPi1CDl2UbDb4zxHeCdjseLQgjPA9sAJwNHdhx2FXAfhl9JkvKmZVoLTRObaGttAyAzK0PTxCaAwgfgthXwu/+C6Q9k53bbF75yMQzZpLDvLRXQRtseugohjAP2Ax4FtuwIxp0BeYu8VydJUhVrntS8Ovh2amtto3lSc2HfeOkS+Pl3uwffhsPh6983+Krs5XzBWwhhGHATcGGM8YMQQq6vmwhMBKirq+tNjZIkVaXM7EyP5vPzpvNhysXwxqvZuaNPSrYs7tejc2ZSScrpb3EIoYYk+E6LMd7cMf1eCGGrjue3Auas67UxxqkxxoYYY8Po0aPzUbMkSVWhtq62R/N99t5b8O/f7B58T/08fOafDL6qGLms9hCA3wHPxxh/2uWpW4GzOx6fDdyS//IkSapejZMbqRla022uZmgNjZMb8/9mM1+CH38T3n83GffrB5//Jnzs05Djb3ulcpBL28MhwFlASwjhyY657wA/Bm4IIZwLzAbOKEiFkiRVqc6L2gq+2sPTj8JvfgzLlybjgYOSXdv2OTC/7yOVgBBjLNqbNTQ0xOnTpxft/SRJ0gbECM23wPVTIXas4bvJcPjaJbDjHnl9q1SXbFNVCiHMiDE2rDnvDm+SJFWj9na49tdw/+3Zuc23gK//ELbO7wXqqS7ZJq3B7nVJkqpN62K49Lvdg++Ou8OkS/MefCHFJdukdfDMryRJ1WTuO3Dp9+Cd2dm5A46Ec74JNQML8papLNkmrYfhV5KkavHyM/CrH8DiLqHzpDNh/ISCruhQW1dLZtbaQbdgS7ZJG2DbgyRJ1eDhZvjJv2SD74Aa+NK3k/Dbw+DbMq2FKeOmcEm/S5gybgot01o2eHxRl2yTNsIzv5IkVbJVq+DWq+G2a7Nzw2vhq9/r1YoOvbl4rWhLtkk5cKkzSZIq1YrlcMVPYPoD2bmtxyZLmY0a06svOWXclHW3MIyt5cKZF/ayUCn/XOpMkqRqkpkPv7wEXn8xO7dXA5z3LzBkk26H9mQNXi9eU7kz/EqSVGneeA1+8W8wf0527uiT4FPnQf/+3Q7taRuDF6+p3HnBmyRJleSx++Dfv5ENvqEffPb85LZG8IWer8HrxWsqd575lSSpEqxcCTf+Du6+OTs3eCh8+TtJu8N69LSNwYvXVO4Mv5KkitSTPtayt2gh/Obf4YWnsnNbbgNf+W5ygdsG9KaNoX5CfeX+t1TFs+1BklRxOvtYM7MyELN9rBtbj7Ysvf4i/OCC7sF334M6tirecPAF2xhUfQy/kqSK09M+1rL14F/gP/4PzJ+bjEOAk8+C878LQzfZ8Gs71E+oZ/zU8dSOrYWQLFk2fup4z+yqYtn2IEmqOBW/HFd7G1x7Odx/e3ZuyCbJjm17H9DjL2cbg6qJ4VeSVHEqejmuhfPg1z+EV5/Pzm0zLjnbu+XWqZUllQvbHiRJFadi+1hffgZ+8NXuwbfhcPiXnxl8pRx55leSVHEqbjmuGOHeJrj+N8mSZpCs33v6F+DY05JeX0k5MfxKkipSxfSxLl8G034JD92TnRu2abJN8e77pVeXVKYMv5Iklaq3ZsJvfgRvz87Ojd0Zzv9X2HzL1MqSypnhV5KkUhNjsozZtb+GFcuz8x/5KJx5AQwclF5tUpkz/EqSVEqWtcLVv4BH783ODRwEnz0fDjnW/l6pjwy/kiSVitmvJm0O772Vndu6Ds77TrKcmaQ+M/xKkpS2GOG+2+D6qckGFp0OPRY+cz4MGpxebVKFMfxKkpSm1sVw1RSY8WB2btDgpLf34DJfl1gqQYZfSZLS8tqLMPVH8P572bntdkjaHMZsm15dUgUz/EqSVGwxwt1/hJuugJXt2fmjToRPToSagenVJlU4w68kSb3UMq2l57vILf4ArvgJPP1odm7IUDj7G9BwWGELlmT4lSSpN1qmtdA0sYm21uQCtcysDE0TmwDWH4CfmQ7/8xPILMjOjdsl2a1t9FaFLlkShl9JknqleVLz6uDbqa21jeZJzWuH3+XL4Mbfwr23dZ8/5lQ47RwYUFPgaiV1MvxKktQLmdmZ3OZfexF+95/d1u5dsnwgt9y/A3PuaaWx/YWNt0pIyhvDrySpz3rV+1rmautqycxaOwDX1tUmD9rb4Y7r4LZrYNWq1c+/+Mbm3PrA9rQuqwFyaJWQlFf90i5AklTeOntfM7MyELO9ry3TWtIuraAaJzdSM7R7u0LN0BoaJzfCu2/Cf3wLbv1DNvgOHspdz+7FdXft3BF8E52tEpKKw/ArSeqTDfW+VrL6CfWMnzqe2rG1EKB2bC3jf3Mi9VvPgu9/BV5/MXvwznvC9y7j4UeHA2Gtr7W+FgpJ+WfbgySpT3Lufa1A9RPqs+0KC+fBlVPgvsezB/QfAKd8Do47Dfr133irhKSCM/xKkvqkkgJdr3uXZzwIV1+arOHbaeux8MX/C3U7rp5qnNzYbXk06NIqIakoDL+SpD6plEDXq3V7Fy+C6y+Hh9do8TjmVDj182vt1Nb5dart4kCplIQYY9HerKGhIU6fPr1o7ydJKo5KWO1hyrgp6z6DPbaWC2deuPYLZjwI034FH3TZsGKz0XDOt2D3fQtWp6TchBBmxBgb1pz3zK8kqc+69b6WqZx7lzPz4ZrLkvDb1YFHwYSvwNBhBapQUj4YfiVJIofe5RjhoXvg+t9A6+IuB2wGZ10A+x5cpEol9YXhV5IkNtK7PG9OckHbM2u07h16HHzyS57tlcqI4VeSJNZzMdoPj6J+65nw3e/C8qXZg0eNgbO/Drvvl06xknrN8CtJUoduvcvvvQVXTYH7uuxUFwI0ngyf+DwMGpxGiZL6yPArSVJXK1fC3TfDLVdD24rs/Jjt4PPfgJ32SK82SX1m+JUkqdPsV+D3P4eZL2fn+vWD4z8J4z+71rq9ksqP4VeSpNYl8Ker4N7bIK7Kzm+3I5zzDajbKb3aJOWV4VeStJZK2LQiJzHCY/fBDVMh02WzigE1MH4CHHc6DPBHpVRJ/D9aktRNr7b5LUfvvpHs0Pb8k93nd98v2axizLaplCWpsAy/kqRumic1d1vrFqCttY3mSc2VEX5XLIc7roM/3wjtXf6ctZvBp86DDx+erOogqSIZfiVJ3eS8zW85evpRuObX8P672bnQL1m+7OQzYcgm6dWWR1XTtiL1guFXKjH+0FLaNrrNbzmaNweuuxyeeKj7/A67wZkXQN2O6dRVAFXTtiL1Ur+0C5CU1flDKzMrAzH7Q6tlWsvGXyzlSePkRmqG1nSbW73Nb7lpb4c7/xcu/lL34Dt0GHzu63DRTysq+MKG21YkeeZXKikV32upsrDObX7L8TcQLY/D9VOTC9u6OvRYOO0LMHxEKmUVWkW3rUh5YPiVSog/tFQqum3zW27enp0sXfbM9O7z24xLWhx23jOVsoqlIttWpDwy/EolxB9aUh8sXgS3Xg333QarumxUMXhosmZv48lVsWZv4+TGbj2/UMZtK1IBVP53AamM+ENL6oX2dnjgDrjlaliyKDsfAhx2PJz8OagdmV59RVYxbStSgRh+pRLiDy2ph56ZnvT1vjO7+/yueydr9lbYxWy5Kuu2FanADL9SifGHlpSDd95I+npbHu8+P2oMnPFF+NAhblQhaZ0Mv5Kk8rFkETRNg3ubYOXK7PygIXDiZ+Cjp0DNwNTKk1T6DL+SpNLXtgL+2pRsS7xmX+8hx8Inzk62J5akjTD8SpJK16qV8HBzcjHb/Lndn9ulHj59HtTtlE5tksqS4VeSVHpihKcegZuvhLdndX9u1Bg4/VzY/1D7eiX1mOFXklRaXn4GbroCXnmu+/zwWjjxs3DEx2BAzbpfK0kbYfiVpJS1TGtxeTuAt2bCzf8DTz3afX7QEDjuNDj21GTDCknqA8OvJKWoZVpLt41NMrMyNE1sAqieADxvDtzy+6S3N8bsfP8ByVneEz8Lm45IrTxJlcXwK0kpap7U3G1HP4C21jaaJzVXfvhdlIE7rk+WLWvv8t8gBDjgSDjlczB6q9TKk1SZDL+SlKLM7EyP5ivCogzcdRP89VZYvqz7c3s1wKnnVO3ObJIKz/ArSSmqraslM2vtoFtbV5tCNQW2+IMk9DbfCsuXdn9u+13htC/AbvukU5ukqmH4laQUNU5u7NbzC1AztIbGyY0pVpVnixd1hN5b1g6924yDk850O2JJRWP4laQUdfb1VuRqD4sXwd0dZ3qXtXZ/buuxcNIE+NCh0K9fOvVJqkqGX0lKWf2E+soIu52WLIK7/wjNf4Kla4beOhh/ZrJBhaFXUgoMv5Kk/GhdnITee/64dujdqg7GT4CGQ6Ff/3TqkyQMv5KkvsrMT0Lvfbev3d4wZrukvaHhMEOvpJJg+JUk9c6ct+EvN8Lf7+6+Ti/AmG2TM70fPtzQK6mkGH4lST3zxmtw5w3w+AMQV3V/bsx2cOJn4IAjDL2SSpLhV5KUm5eegTuvh5bH135u3C7wsU/Bvgd7IZukkmb4laQK1zKtpfdLqcUITz+WhN5Xnlv7+T0+BCd8MtmcwnV6JZWBjYbfEMIVwInAnBjjXh1zmwHXA+OAmcAnY4wLClemSk2ffphKKpqWaS3dNtHIzMrQNLEJYMP/z7a3w/QHkvaGt2Z2fy6EZFOKEz6ZnPHtQ21+H5FUbLmc+b0S+CXw+y5zFwHNMcYfhxAu6hh/O//lqRT1+odpCfKHrypd86TmbrvHAbS1ttE8qXndf9eXLIIH7oS/3goL3u/+XP8BcHAjHH960tvbB5X0fURSedlo+I0xPhBCGLfG9MnAkR2PrwLuw/BbNXr8w7RE+cNX1SAzO5Pb/LtvJptS/P1uWLG8+3ODBsPhH4NjT4WRo/JSV2++j/iPVUn50Nue3y1jjO8AxBjfCSFssb4DQwgTgYkAdXV1vXw7lZKcf5iWuEoJ8dXMMLRxtXW1ZGat/f9mbV1t0s/7wlPJGr1PP7r2i4ePgKPHw1HjYdimea2rp99H/MeqpHwp+AVvMcapwFSAhoaGWOj3U+Ft8IdpGamUEF+tDEO5aZzc2O2/E8DgYf057aubwiXnw5uvr/2ibbeHYz4BBxwJNQMLUldPv4/4j1VJ+dLb9WjeCyFsBdBxPyd/JanUNU5upGZoTbe5mqE1NE5uTKmi3lnfD9lyC/HVakNhSFn1E+oZP3U8tWNrGTqkjWOPnMs3z3qS7V64Ye3gu/eB8K0fw/cug0OOLVjwhZ5/H/Efq5Lypbdnfm8FzgZ+3HF/S94qUsnrPMtS7r9uXtcZsXIM8dXKMJS7+o8MpP57q+DRp5Kd2FZ0eXLgIDjkGGg8JdmVrVg19fD7SKX8xklS+nJZ6uxakovbRoUQ3gS+RxJ6bwghnAvMBs4oZJEqPfUT6ssu7K6pUkJ8tTIMbcTyZckObPc1wcyX135+5Cg4+mQ47HgYNrz49dGz7yP+Y1VSvuSy2sNn1vOU33FU9iohxFcrw9B6vPsm3H97smpD6+K1n99+16Sf90OHwoDy2efIf6xKypfy+c4nSV0YhrpYuRKeegTuux2e+8fazw+ogQOOgCNPTMJvme7E5j9WJeWD4VcqMJfjKpyqD0ML58Hf/pxsSrHmhhQAo7eCIz+eXLyW56XKJKlcGX6lAnI5LuXdqlXw/BNJ6H3ioeSsb1ehH+xzQHKWd48PQb/eLuojSZXJ8CsVkGuTKm/mvQcP3pX08s5fx+qSw0ckF68dcQJsvmXRy5OkcmH4lQrI5bjUJ20r4ImH4cG/JGd74zr2Cdp5LzjqRPjQIUlvryRpgwy/UgG5HJd65Y3XksD7yF9hyaK1nx+2KRzUCIcdB9uMK3p5klTODL9SAbkcl3LWugQeuw8e/PO61+UNIenhPew42Oeggu6+JkmVzPArFZDLcWmDVq5M2hkebk4uXluxfO1jNt8CDj0OPnJM8liS1CeGX6nAqn45LnUXI7zxahJ4H7sPMgvWPmZADez3keQs7277umKDJOWR4VeSimH+XHj03iT0vj1r3cdsu31ylvego12XV5IKxPArSYWydAnM+Ds80gwvPr3u1RpqR8IBR8HBjbDdDmW7+5oklQvDryTlU3tbssXwI3+FJx9Zdx/vwEHJ0mQHHQ277wf9+xe/TkmqUoZfSeqrlSvhhSfh8fvhHw9B6+K1jwn9YPd94eCjYb9DYPCQYlcpScLwK0m9s2olvPRMEnhn/B0Wr2fjku12SM7wHngUjNi8uDVKktZi+JWkXK1aBa8+B48/ADP+tu6VGiBZkqzh8CT0brdDcWuUJG2Q4VeSNiRGeP3F5Azv9L/BgvfXfdzIUbD/YfDhw2GH3bxwTZJKlOFXkta0ciW8/Az84+/J5hPrC7ybjoT9D4UDjoAd93A9XkkqA4ZfSQJoWwHP/iMJu089Aos/WPdxw2ph/0Pgw0fALntBP1dqkKRyYviVVL2WLoGWx5MVGloeh+VL133cJsNhv4OTwLvrPjDAb52SVK78Di6punywEJ58ODnD+/yTybq86zJyVLLF8H4fgV3qXYtXkiqE4VdSZYsR3nwdnnoUnn40uXhtXTutAWy5TbIG74c+AuN2sYdXkiqQ4VdS5WlbAS88lQ288+eu/9i6HZOzux86BLYe6yoNklThDL+SKsPCefD0Y0nYfe6JdW8rDMlOazvtkW1pGD2muHVKklJV0eG3ZVoLzZOayczOUFtXS+PkRuon1KddlqR8WLUSZr6cXKj29GMw6+X1HztkE6hvgH0Ogj0bYNjw4tUpSSopFRt+W6a10DSxibbW5GKWzKwMTRObAAzAUrlaOA+emQHPzoDn/gFLFq3/2DHbwt4Hwt4HwE57ukKDJAmo4PDbPKl5dfDt1NbaRvOkZsOvVC7aVsArzyaB95np8NbM9R/bvz/sXJ+E3X0OTC5ekyRpDRUbfjOzMz2al1Qi3nsbnp2eBN4Xnlx/7y5A7cikjWGvBthrfxg6LO/l2D4lSZWlYsNvbV0tmVlrB93autoUqpG0XpkFSch9/snk/v331n9s/wGw816w5/5J2N12+4KuzmD7lCRVnooNv42TG7v90AKoGVpD4+TGFKuSxNIl8GJLNvBuqJUBYIutO8JuA+y6NwweUoQiE7ZPSVLlqdjw2/mDqdC/rvRXotJGtK2AV5+H559Iwu7Ml2DVqvUfP2gw7LZPEnb33D8JvymxfUqSKk/Fhl9IAnAhg6i/EpXWoW1Fsovai0/DSy3wynPJ3Pr0HwA77g677wu77Qvb71oyKzPYPiVJlac0fsKUKX8lKgHLl8FrzyetDC+1wGsvQHvb+o8PAbbbMQm7u++b9PAOGlysanvE9ilJqjyG3z7wV6KqSkuXJG0MnWd2Z74EK1du+DVbbgO775eE3V33hmGbFqXUvipW+5QkqXgMv33gr0RVFRbOS1oXXnkOXnkGZr0KcQM9u5CE3V33hl3qk9tmo4tTawEUun1KklRcht8+8FeiqjirVsJbszqC7rPJGd73393467Yemw26u+wFIzYvfK2SJPWC4bcP/JWoyt6ypcnFaa88mwTe156Hpa0bfk0Iyfq6XcPu8BFFKVeSpL4y/PaRvxJV2Vi1Ct59E15/AV57Mbl/8/UNLzsGUDMwWYFhx91hpz1hpz1gk+HFqVmSpDwz/EqVatHCbMh97cXkDO/SJRt/3aYjk4C70x5J2K3bEQbUFLxcSZKKwfArVYIVy+GN15KA+9oLyS2XXt0Qkn7drmF31JiCbhksSVKaDL8Vyp3nKljbiqRdYebLMOslmPVKskXwxtoXAIbXwva7wQ67Jvfb7wJDhxW8ZEmSSoXhtwK581wFaW+DN2dmQ+7Ml5Kgu7F1dSFpVajbEXbYLenZ3WE3z+pKkqqe4bcCufNcmVq+DN58DWa/Bm+8mj2ju6Hd0rrachsYt0tyYdr2u8J2O9irK0nSGgy/Fcid58pAZkEScN94DWa/mjx+7y2IMbfXb7kNjN0Jxu6S3NftBEM3KWzNyoktR5JU2gy/Fcid50rIypUw5+2kR7dr0M3Mz/1rjN4Kxu4M43ZO7sfuZJ9uibLlSJJKn+G3AlXKznNldQYtxiTQvjUz6dF96/Uk8L49O/e2hdAPttouaVeo27HjfmcY5pq6+VLov1O2HElS6TP8VqBS3XmuJ8GjpM+gLVuahNrOgNsZeBf3oK1k4KAk3G63YzbsbjMumVdBFOPvlC1HklT6DL8VqtR2nutp8CiJM2jLWuHtN+DtWfDOLHhrdnI/b07Pvs7IUUmw3Xb7JOTW7QhbbA39+hekbK1bMf5O2XIkSaXP8Kui6GnwKOoZtKVL4J2OkPv27Oz9/B6G3EFDYNtx2aC7zTjYZnvbFkpEMf5OVUrLkSRVMsOviqKnwSPvZ9BWrYIFc5OQ++6bHbc3knFPLj4D6N8fttimI+SO6wi628PmW0C/fr2rTwVXjLOyxWo5Kqt+eEkqMYZfFUVPg0evz6AtW5qsrvDuG10C7pvw3pvJFsA90b9/sqTYVnXJFsDbjE0eb7mN6+eWoWKdlS10y1FJ98NLUhkw/Kooeho8NngGrW1FEnDnvJ2sjdt5m/M2LJzX8+L6D4Att04C7tZjYeuOsLvF1obcClKqF4L2VEn0w0tSGTP8qih6HDzaVlB/VC31txzcEXTfgnevgW+/BfPn5r4ZRFfDamGrbWHMdjCm8347GLVlcpZXqSrGr/JL7ULQ3nBFCUnqG8Ovimat4LF4Ebz+Isx9B+a8k9x33ha837s36d8fRo1J1svdctvkvjPsDts0P38Q5Z2/ys+dK0pIUt8YflU4bStg3nvwfuft3eQ2990k4LYu7t3XDf2Si8u23Ca5bbF1Em632Bo2L+xZXC80Kgx/lZ87V5SQpL4x/Kr32tuTM7Tvv9sRcjuC7fvvJePe9N92Cv1g89HJ1r5bbJ2srrDl1snZ3FFbQs3A/P05cuTZycLxV/m5q5TeZUlKi+FX67dsaRJi589NNnZY/fi9ZLxwPsRVvf/6Awcl4bbztkXn462TM7sDSuuvp2cnC8df5fdMJfQuS1JaSitdqHja2yEzD+a/n6x/O7/Lbd6cZIOHJYv69h6hX7K72agtO25jktvoMUnIrd0MQsjPn6cIPDtZOP4qX5JULIbfStTeDh8sSFoSVgfbjscL3k/GmQV9O2vbqXZkNtRu3hFyR3c83mx0RS0V5tnJwvFX+ZKkYjH8lpMYk614F7yf9NMumAcL31/jfh4sWti7pcDWNKAmOXPbGWQ33yJ5vPlo2GxL2GxUKr23afHsZGH5q3xJUjEYfteQytX8McKSxUkbQmZ+clu4IBkvnN9lbl7PdylbnxBg0xEwcnQSbEeO6rjvDLlbwKYj3a63C89OSpJU/gy/XeT9av62FUn7QWYhfDA/aTX4oOOWWdAl1M6H9raNfrmcdQbbEaO6h9rNRmXvR2zerSWhZVoLzec1k5n9bJdQt3n+aqoQnp2UJKm8GX67yOlq/mVLk7aCDxZ2uc9kA23XcLt0Sf6LHDgoCbQjNk9unY+73m86skcrJVTSEl6uwytJkjbE8LtieRJeF2UYtXImdTu2s8ngNjYZ0sYmg9sYOqSdTYa0wUVPJEE3X20Haxo0BEZslqyA0HnfeRuxeXZ+yCZ5XyGhUpbwqqQQL0mSCqOyw+/iD+CJh1aHWxZ/0HG/MDtevmz14Wcet4Gv9X4vdiPr3x+Gj0jOxNaO7H6/6cjuIXfwkJ5//TyplCW8KiXES5Kkwqns8JuZD1dNye/XHFDTEV5rk2A7fETSXzt8RBJsu4bbTYaXxQVjlbKEV6WEeEmSVDiVHX6Hj9j4Mf0HwPDa5DasloXzIq9Pn8+CuZFVQzdl5zMaGHviPh3hdkTSnlBGGzPkolKW8KqUEC9JkgqnssPvsOHwkY92BNsRHfebZsPu8FoYPLRbmB0B7JdWvSmplCW8KiXES5KkwgkxH5sh5KihoSFOnz69aO+n6uNqD5IkCSCEMCPG2LDmfGWf+a0QBrrcuQ6vJEnaEMNviXP5LkmSpPwp/aUIqtyGlu+SJElSzxh+S5zLd0mSJOWP4bfErW+ZLpfvkiRJ6jnDb4lrnNxIzdCabnMu3yVJktQ7XvBW4iplDV5JkqRSYPgtAy7fJUmSlB99Cr8hhOOBnwP9gd/GGH+cl6oklRzXm5YkVYJeh98QQn/gV8AxwJvA4yGEW2OMz+WrOEmlwfWmJUmVoi8XvB0AvBJjfC3GuAK4Djg5P2VJKiWuNy1JqhR9aXvYBnijy/hN4MC+lSOpNwrdkuB605KkStGX8BvWMRfXOiiEicBEgLq6uj68naR1KUZLQm1dLZlZawfdDa03bY+wJKkU9aXt4U1guy7jbYG31zwoxjg1xtgQY2wYPXp0H95O0roUoyWhp+tNdwbyzKwMxGwgb5nWkreaJEnqjb6E38eBnUMI24cQBgKfBm7NT1mSclWMloT6CfWMnzqe2rG1EKB2bC3jp45f75lce4QlSaWq120PMcb2EMJXgb+QLHV2RYzx2bxVJiknvWlJ6I2erDdtj7AkqVT1aXvjGOMdMcZdYow7xhgn56soSbkrxS2w1xe88x3IJUnqqT6FX0np62lLAiQ9uVPGTeGSfpcwZdyUvPfilmIglyQJ3N5Yqgg9aUkoxuoQnV/H1R4kSaUmxLjW6mQF09DQEKdPn16095O0tinjpqy7R3hsLRfOvLD4BUmSVAAhhBkxxoY15217kKqMF6NJkqqZbQ8pcPF/palYq0NIklSKPPNbZC7+r7R5MZokqZoZfovMxf+Vtt6sDiFJUqWw7aHI7LdUKejJ6hCSJFUSz/wWmYv/S5IkpcfwW2T2W0qSJKXHtocic/F/SZKk9Bh+U2C/pSRJUjpse5AkSVLVMPxKkiSpahh+JUmSVDUMv5IkSaoahl9JkiRVDcOvJEmSqobhV5IkSVXD8CtJkqSqYfiVJElS1TD8SpIkqWoYfiVJklQ1DL+SJEmqGoZfSZIkVQ3DryRJkqqG4VeSJElVI8QYi/dmIcwFZhXtDbNGAe+n8L4qLj/n6uDnXB38nCufn3F1SPNzHhtjHL3mZFHDb1pCCNNjjA1p16HC8nOuDn7O1cHPufL5GVeHUvycbXuQJElS1TD8SpIkqWpUS/idmnYBKgo/5+rg51wd/Jwrn59xdSi5z7kqen4lSZIkqJ4zv5IkSVJlhd8QwvEhhBdDCK+EEC5ax/MhhHBpx/NPhxA+lEad6pscPucJHZ/v0yGEh0II+6RRp/pmY59zl+M+HEJYGUI4vZj1qe9y+YxDCEeGEJ4MITwbQri/2DWq73L4nl0bQmgKITzV8Tmfk0ad6r0QwhUhhDkhhGfW83xJ5a+KCb8hhP7Ar4ATgD2Az4QQ9ljjsBOAnTtuE4FfF7VI9VmOn/PrwBExxr2BH1CC/UbasBw/587j/gP4S3ErVF/l8hmHEEYAlwEnxRj3BM4odp3qmxz/X/4K8FyMcR/gSOAnIYSBRS1UfXUlcPwGni+p/FUx4Rc4AHglxvhajHEFcB1w8hrHnAz8PiYeAUaEELYqdqHqk41+zjHGh2KMCzqGjwDbFrlG9V0u/z8DXADcBMwpZnHKi1w+488CN8cYZwPEGP2cy08un3MEhocQAjAMmA+0F7dM9UWM8QGSz219Sip/VVL43QZ4o8v4zY65nh6j0tbTz/Bc4M6CVqRC2OjnHELYBvgEcHkR61L+5PL/8i7AyBDCfSGEGSGEzxWtOuVLLp/zL4HdgbeBFuDrMcZVxSlPRVJS+WtAWm9cAGEdc2suZZHLMSptOX+GIYSjSMLvoQWtSIWQy+c8Bfh2jHFlcsJIZSaXz3gAsD/QCAwBHg4hPBJjfKnQxSlvcvmcjwOeBI4GdgTuDiH8Lcb4QYFrU/GUVP6qpPD7JrBdl/G2JP+K7OkxKm05fYYhhL2B3wInxBjnFak25U8un3MDcF1H8B0FfCyE0B5j/FNRKlRf5fo9+/0Y4xJgSQjhAWAfwPBbPnL5nM8BfhyTtVdfCSG8DuwGPFacElUEJZW/Kqnt4XFg5xDC9h2N8p8Gbl3jmFuBz3VcdXgQkIkxvlPsQtUnG/2cQwh1wM3AWZ4hKlsb/ZxjjNvHGMfFGMcBNwLnG3zLSi7fs28BDgshDAghDAUOBJ4vcp3qm1w+59kkZ/cJIWwJ7Aq8VtQqVWgllb8q5sxvjLE9hPBVkqu++wNXxBifDSF8ueP5y4E7gI8BrwCtJP/aVBnJ8XP+LrA5cFnHWcH2GGNDWjWr53L8nFXGcvmMY4zPhxD+DDwNrAJ+G2Nc51JKKk05/r/8A+DKEEILya/Hvx1jfD+1otVjIYRrSVbqGBVCeBP4HlADpZm/3OFNkiRJVaOS2h4kSZKkDTL8SpIkqWoYfiVJklQ1DL+SJEmqGoZfSZIkVQ3DryRJkqqG4VeSJElVw/ArSZKkqvH/AVIoGyiRjVvHAAAAAElFTkSuQmCC\n",
"text/plain": [
"