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Abbreviation | Description
AHB Advanced High-performance Bus (by ARM®)
AMBA Advanced Microcontroller Bus Architecture (by ARM)
ASIC Application Specific Integrated Circuit
AXI Advanced eXtensible Interface (by ARM)
CCM Closely Coupled Memory (= TCM)
CPU Central Processing Unit
CSR Control and Status Register
DCCM Data Closely Coupled Memory (= DTCM)
DEC DECoder unit (part of core)
DMA Direct Memory Access
DTCM Data Tightly Coupled Memory (= DCCM)
ECC Error Correcting Code
EXU EXecution Unit (part of core)
ICCM Instruction Closely Coupled Memory (= ITCM)
IFU Instruction Fetch Unit
ITCM Instruction Tightly Coupled Memory (= ICCM)
JTAG Joint Test Action Group
LSU Load/Store Unit (part of core)
NMI Non-Maskable Interrupt
PIC Programmable Interrupt Controller
PLIC Platform-Level Interrupt Controller
POR Power-On Reset
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ROM Read-Only Memory
SECDED Single-bit Error Correction/Double-bit Error Detection
SEDDED Single-bit Error Detection/Double-bit Error Detection
SOC System On Chip
TBD To Be Determined
TCM Tightly Coupled Memory (= CCM)
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1 SweRV EH1 Core Overview

This chapter provides a high-level overview of the SweRV EH1 core and core complex. SweRV EH1 is a 32-bit CPU
core which supports RISC-V’s integer (I), compressed instruction (C), multiplication and division (M), and instruction-
fetch fence and CSR instructions (Z) extensions, (i.e., RV32IMCZifencei_Zicsr). The core is a 9-stage, dual-issue,
superscalar, mostly in-order pipeline with some out-of-order execution capability.

1.1 Features

The SweRV EH1 core complex’s feature set includes:

RV32IMCZifencei_Zicsr-compliant RISC-V core with branch predictor

Optional instruction and data closely-coupled memories with ECC protection

Optional 4-way set-associative instruction cache with parity or ECC protection

Optional programmable interrupt controller supporting up to 255 external interrupts

Four system bus interfaces for instruction fetch, data accesses, debug accesses, and external DMA
accesses to closely-coupled memories (configurable as 64-bit AXI or AHB-Lite)

Core debug unit compliant with the RISC-V Debug specification [3]

e 1GHz target frequency (for 28nm technology node)

1.2 Core Complex

Figure 1-1 depicts the core complex and its functional blocks which are described further in Section 1.3.

SweRV EH1 Core Complex

SweRV EH1 Core — RV32IMC

Debug JTAG

Debug Bus DMA Slave
Master Port

64-bit AXI4  64-bit AX14 64-bit AX14  64-bit AX14
or or or or
AHB-Lite AHB-Lite AHB-Lite AHB-Lite

Figure 1-1 SweRV EH1 Core Complex
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1.3 Functional Blocks

The SweRV EH1 core complex’s functional blocks are described in the following sections in more detail.

1.3.1 Core

Figure 1-2 depicts the 9-stage core pipeline.

Stage
1 Fetch 1
2 Fetch 2
3 Align
4 Decode
Load/Store Pipe

S DC1

6 DC2

7 DC3

Load Result

S Commit

(CBl \\/riteback

Figure 1-2 SweRV EH1 Core Pipeline

Copyright © 2019 Western Digital Corporation; Licensed under Apache-2.0

1/24/2019
Multiply Pipe Divider
M1
34-cycle
M2 Out-of-
Pipe
M3
Mult. Result
20f78



RISC-V SweRV™ EH1 Programmer's Reference Manual —Rev. 1.0- 1/24/2019

2 Memory Map

This chapter describes the memory map as well as the various memories and their properties of the SweRV EH1
core.

2.1 Address Regions

The 32-bit address space is subdivided into sixteen fixed-sized, contiguous 256MB regions. Each region has a set of
access control bits associated with it.

2.2 Access Properties

Each region has two access properties which can be independently controlled. They are:

e Cacheable: Indicates if this region is allowed to be cached or not.

e Side effect: Indicates if read/write accesses to this region may have side effects (i.e., non-idempotent
accesses which may potentially have side effects on any read/write access; typical for I/O, speculative or
redundant accesses must be avoided) or have no side effects (i.e., idempotent accesses which have no side
effects even if the same access is performed multiple times; typical for memory). Note that stores with
potential side effects (i.e., to non-idempotent addresses) cannot be combined with other stores in the core’s
write buffer.

2.3 Memory Types

There are two different classes of memory types mapped into the core’s 32-bit address range, core local and system
bus attached.

2.3.1 Core Local

23.1.1 ICCMand DCCM

Two dedicated memories, one for instruction and the other for data, are tightly coupled to the core. These memories
provide low-latency access and SECDED ECC protection. Their respective sizes (4, 8, 16, 32, 48%, 64, 128, 256, or
512KB) are set as arguments at build time of the core.

2.3.1.2 Local Memory-mapped Control/Status Registers

To provide control for regular operation, the core requires a number of memory-mapped control/status registers. For
example, some external interrupt functions are controlled and serviced with accesses to various registers while the
system is running.

2.3.2 Accessed via System Bus

2321 System ROMs

The SoC may host ROMs which are mapped to the core’s memory address range and accessed via the system bus.
Both instruction and data accesses are supported to system ROMs.

2.3.22 System SRAMs

The SoC hosts a variety of SRAMs which are mapped to the core’s memory address range and accessed via the
system bus.

2.3.2.3 System Memory-mapped I/O

The SoC hosts a variety of I/O device interfaces which are mapped to the core’s memory address range and
accessed via the system bus.

1 DCCM only
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2.3.3 Mapping Restrictions

Core-local memories and system bus-attached memories must be mapped to different regions. Mapping both
classes of memory types to the same region is not allowed.

Furthermore, it is recommended that all core-local memories are mapped to the same region.

2.4 Memory Type Access Properties

Table 2-1 specifies the access properties of each memory type. During system boot, firmware must initialize the
properties of each region based on the memory type present in that region.

Note that some memory-mapped I/O and control/status registers may have no side effects (i.e., are idempotent), but
characterizing all these registers as having potentially side effects (i.e., are non-idempotent) is safe.

Table 2-1 Access Properties for each Memory Type

Memory Type Cacheable Side Effect
Core Local

ICCM No No
DCCM No No
Memory-mapped control/status registers No Yes

Accessed via System Bus

ROMs Yes No
SRAMs Yes No
I/0s No Yes
Memory-mapped control/status registers No Yes

Note: ‘Cacheable = Yes’ and ‘Side Effect = Yes' is an illegal combination.

2.5 Memory Access Ordering

Loads and stores to system bus-attached memory (i.e., accesses with no side effects, idempotent) and devices (i.e.,
accesses with potential side effects, non-idempotent) go through a read buffer and a write buffer, respectively. The
buffers are implemented as FIFOs.

2.5.1 Load-to-Load and Store-to-Store Ordering

Loads are typically sent to the system bus interface in program order. However, for system buses allowing multiple
outstanding transactions, reordering may occur in some cases.

All stores are always sent to the system bus interface in program order.

2.5.2 Load/Store Ordering

2.5.2.1 Accesses with Potential Side Effects (i.e., Non-ldempotent)

When a load with potential side effects (i.e., non-idempotent) enters the read buffer, the entire write buffer is drained,
i.e., both stores with no side effects (i.e., idempotent) and with potential side effects (i.e., non-idempotent) are drained
out. Loads with potential side effects (i.e., non-idempotent) are sent out to the system bus with their exact size.

Stores with potential side effects (i.e., non-idempotent) are neither coalesced nor forwarded to a load.
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2522 Accesses with No Side Effects (i.e., [dempotent)

Loads with no side effects (i.e., idempotent) are always issued as double-words and check the contents of the write
buffer:

1. Full address match (all load bytes present in the write buffer): Data is forwarded from the write buffer. The
load does not freeze the pipe, and won'’t go out to the system bus.

2. Partial address match (some of the load bytes are in the write buffer): The entire write buffer is drained,
then the load request goes to the system bus.

3.  No match (none of the bytes are in the write buffer): The load is presented to the system bus interface
without waiting for the stores to drain.

2.5.2.3 Ordering of Store — Load with No Side Effects (i.e., Idempotent)
A fence instruction is required to order an older store before a younger load with no side effects (i.e., idempotent).

Note: All memory-mapped register writes must be followed by a fence instruction to enforce ordering and
synchronization.

2.5.3 Fencing

2531 Instructions

The fence. i instruction operates on the instruction memory and/or I-cache. This instruction causes a flush, a flash
invalidation of the I-cache, and a refetch of the next program counter (RFNPC). The refetch is guaranteed to miss
the I-cache. Note that since the fence. i instruction is used to synchronize the instruction and data streams, it also
includes the functionality of the fence instruction (see Section 2.5.3.2).

2.5.3.2 Data

The fence instruction is implemented conservatively in SweRV EH1 to keep the implementation simple. It always
performs the most conservative fencing, independent of the instruction’s arguments. The fence instruction is pre-
synced to make sure that there are no instructions in the LSU pipe. It stalls until the LSU indicates that the read
buffer has been cleared as well as the store and write buffers have been fully drained. Itis only committed after all
LSU buffers are idle.

2.5.4 Imprecise Data Bus Errors

All store errors as well as non-blocking load errors on the system bus are imprecise. The address of the first
occurring imprecise data system bus error is logged and a non-maskable interrupt (NMI) is flagged for the first
reported error only. For stores, if there are other stores in the write buffer behind the store which had the error, these
stores are sent out on the system bus and any error responses are ignored. Similarly, for non-blocking loads, any
error responses on subsequent loads sent out on the system bus are ignored. NMlis are fatal, architectural state is
lost, and the core needs to be reset. The reset also unlocks the first error address capture register again.

Note: It is possible to unlock the first error address capture register with a write to an unlock register as well (see
Section 2.7.4 for more details), but this may result in unexpected behavior.

2.6 Exception Handling

Capturing the faulting effective address causing an exception helps assist firmware in handling the exception and/or
provides additional information for firmware debugging. For precise exceptions, the faulting effective address is
captured in the standard RISC-V mtval register (see Section 3.1.21 in [2]). For imprecise exceptions, the address of
the first occurrence of the error is captured in a platform-specific error address capture register (see Section 2.7.3).

2.6.1 Imprecise Bus Error Non-Maskable Interrupt

Store bus errors are fatal and cause a non-maskable interrupt (NMI). The store bus error NMI has an mcause value
of 0xFO00_0000.

Likewise, non-blocking load bus errors are fatal and cause a non-maskable interrupt (NMI). The non-blocking load
bus error NMI has an mcause value of 0xFOOO_0001.
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Note: The address of the first store or non-blocking load error on the D-bus is captured in the mdseac register (see
Section 2.7.3). The register is unlocked either by resetting the core after the NMI has been handled or by a write to
the mdeau register (see Section 2.7.4). While the mdseac register is locked, subsequent D-bus errors are gated (i.e.,
they do not cause another NMI), but NMI requests originating external to the core are still honored.

Note: If store and non-blocking load bus errors are reported in the same clock cycle (i.e., the LSU’s write and read
buffers simultaneous indicate a bus error), the non-blocking load bus error has higher priority.

2.6.2 Correctable Error Local Interrupt

I-cache parity/ECC errors, ICCM correctable ECC errors, and DCCM correctable ECC errors are counted in separate
correctable error counters (see Sections 3.5.1, 3.5.2, and 3.5.3, respectively). Each counter also has its separate
programmable error threshold. If any of these counters has reached its threshold, a correctable error local interrupt is
signaled. Firmware should determine which of the counters has reached the threshold and reset that counter.

A local-to-the-core interrupt for correctable errors has pending (mceip) and enable (mceie) bits in bit position 30 of the
standard RISC-V mip (see Table 9-2) and mie (see Table 9-1) registers, respectively. The priority is lower than
RISC-V External interrupt, but higher than RISC-V Timer interrupt (see Table 11-1). The correctable error local
interrupt has an mcause value of 0x8000_001E (see Table 9-3).

2.6.3 Rules for Core-Local Memory Accesses
The rules for instruction fetch and load/store accesses to core-local memories are:

1. Aninstruction fetch access to a region

a. containing one or more ICCM sub-region(s) causes an exception if
i. the access is not completely within the ICCM sub-region, or
ii. the boundary of an ICCM to a non-ICCM sub-region and vice versa is crossed,
even if the region contains a DCCM/PIC memory-mapped control register sub-region.

b. not containing an ICCM sub-region goes out to the system bus, even if the region contains a
DCCM/PIC memory-mapped control register sub-region.

2. Aload/store access to a region

a. containing one or more DCCM/PIC memory-mapped control register sub-region(s) causes an
exception if
i. the access is not completely within the DCCM/PIC memory-mapped control register sub-
region, or
ii. the boundary of
1. aDCCM to a non-DCCM sub-region and vice versa, or
2. aPIC memory-mapped control register sub-region
is crossed,
even if the region contains an ICCM sub-region.

b. not containing a DCCM/PIC memory-mapped control register sub-region goes out to the system
bus, even if the region contains an ICCM sub-region.

2.6.4 Unmapped Addresses

Table 2-2 Handling of Unmapped Addresses

Access | Core/Bus Side Effect | Action Comments
Core N/A Instruction access fault exception®* | precise exception
Fetch
Bus N/A Instruction access fault exception? | (€.9., address out-of-range)

2 If any byte of an instruction is from an unmapped address, an instruction access fault precise exception is flagged.

3 Exception also flagged for fetches to the DCCM address range if located in the same region, or if located in different regions and
no SoC address is a match.
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Access | Core/Bus Side Effect | Action Comments
Precise exception
Core No Load access fault exception? P
(e.g., address out-of-range)
No . ¢ Imprecise, fatal
(for non- Non-blocking load bus error NMI )
blocking (see Section 2.6.1) e Capture store address in core bus
load) interface
Load
No
Bus (for Precise exception
blocking (e.g., address out-of-range)
load) Load access fault exception
Yes e Precise exception
¢ Hold off all external interrupts
Core No Store/AMO?® access fault exception® | Precise exception
No Imprecise, fatal
Store Store bus error NMI *mp ]
Bus (see Section 2.6.1) e Capture store address in core bus
Yes interface
DMA
Read
Bus N/A DMA slave bus error Send error response to master
DMA
Write

Note: It is recommended to provide address gaps between different memories to ensure unmapped address
exceptions are flagged if memory boundaries are inadvertently crossed.

2.6.5 Misaligned Accesses

General notes:

e The core performs a misalignment check during the address calculation.

e Accesses across region boundaries always cause a misaligned exception.

e Splitting a load/store from/to an address with no side effects (i.e., idempotent) is not of concern for SweRV
EHL1.

Table 2-3 Handling of Misaligned Accesses

Access | Core/Bus Side Region | Action Comments
Effect | Cross
Core N/A
Fetch No N/A Not possible”
Bus N/A

4 Exception also flagged for loads to the ICCM address range if located in the same region, or if located in different regions and no
SoC address is a match.

5 AMO refers to the RISC-V “A” (atomics) extension, which is not implemented in SweRV EHX1.

5 Exception also flagged for stores to the ICCM address range if located in the same region, or if located in different regions and no
SoC address is a match.

" Accesses to the I-cache or ICCM initiated by fetches never cross 16B boundaries. I-cache fills are always aligned to 64B.
Misaligned accesses are therefore not possible.
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Access | Core/Bus Side Region | Action Comments
Effect | Cross
Core No Load split into multiple DCCM Split performed by core
read accesses
Load No Load Sp!'t into multiple bus Split performed by core
transactions
Bus
Load address misaligned . .
Yes - Precise exception
exception
Core No Stpre split into multiple DCCM Split performed by core
write accesses
Store No Store Sp.l't into multiple bus Split performed by core
transactions
Bus —
Yes Store/AMO address misaligned Precise exception
exception
Fetch N/A Not possible”
Load address misaligned . .
Load N/A N/A Yes exception Precise exception
Store Store/AMO address misaligned Precise excention
exception P
DMA
Read
Bus N/A N/A DMA slave bus error Send error response to master
DMA
Write®

2.6.6 Uncorrectable ECC Errors

Table 2-4 Handling of Uncorrectable ECC Errors

Access | Core/Bus Side Effect | Action Comments
Core N/A ) ) ) )
Fetch Instruction access fault exception Precise exception
Bus N/A
No
Core Load access fault exception Precise exception
Yes
No .
. ¢ Imprecise, fatal
(for non- Non-blocking load bus error NMI )
blocking (see Section 2.6.1) e Capture store address in core bus
Load load) interface
Bus No
(for
blocking | Load access fault exception Precise exception
load)
Yes

8 This case is in violation with the write alignment rules specified in Section 2.10.2.
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Access | Core/Bus Side Effect | Action Comments
No
Core Store/AMO access fault exception Precise exception
Yes
Store No e Imprecise, fatal
BUS Store bus error NMI )
Yes (see Section 2.6.1) . Qapture store address in core bus
interface
DMA
Read Bus N/A DMA slave bus error Send error response to master

Note: DMA write accesses to the ICCM or DCCM always overwrite entire 32-hit words and their corresponding ECC
bits. Therefore, ECC hits are never checked and errors not detected on DMA writes.

2.6.7 Correctable ECC/Parity Errors

Table 2-5 Handling of Correctable ECC/Parity Errors

Access | Core/Bus Side Effect | Action Comments
For I-cache accesses:
e Increment correctable I-cache
error counter in core
e If I-cache error threshold reached,
signal correctable error local For I-cache with tag/instruction
interrupt (see Section 3.5.1) ECC protection, single- and double-
e Invalidate all cache lines of set bit errors are recoverable
¢ Perform RFPC flush
e Flush core pipeline
¢ Refetch cache line from SoC
memory
Core N/A For ICCM accesses:
e Increment correctable ICCM error
counter in core
Fetch e If ICCM error threshold reached,
signal correctable error local ICCM errors trigger an RFPC
interrupt (see Section 3.5.2) (ReFetch PC) flush since in-pipeline
e Perform RFPC flush correction would require an
« Flush core pipeline additional cycle
¢ Write corrected data back to
ICCM
¢ Refetch instruction(s) from
ICCM
e Increment correctable error
counter in SoC Errors in SoC memories are
Bus N/A o If error threshold reached, signal corrected at memory boundary and

external interrupt

e Write corrected data back to SoC
memory

autonomously written back to
memory array

Copyright © 2019 Western Digital Corporation; Licensed under Apache-2.0

9 of 78



RISC-V SweRV™ EH1 Programmer's Reference Manual —Rev. 1.0-

1/24/2019

For DCCM accesses:

e Increment correctable DCCM
error counter in core

e |[f DCCM error threshold reached,
signal correctable error local
interrupt (see Section 3.5.3)

¢ Write corrected data back to
DCCM

Access | Core/Bus Side Effect | Action Comments
No e Increment correctable DCCM
error counter in core
e |If DCCM error threshold reached, | DCCM errors are in-pipeline
Core signal correctable error local corrected and written back to
Yes interrupt (see Section 3.5.3) DCCM
e Write corrected data back to
Load DCCM
No e Increment correctable error
counter in SoC Errors in SoC memories are
Bus e If error threshold reached, signal corrected at memory boundary and
Yes external interrupt autonomously written back to
« Write corrected data back to SoCc | Memory array
memory
No e Increment correctable DCCM
error counter in core
e If DCCM error threshold reached, | DCCM errors are in-pipeline
Core signal correctable error local corrected and written back to
Yes interrupt (see Section 3.5.3) DCCM
¢ Write corrected data back to
Store DCCM
No ¢ Increment correctable error
counter in SoC Errors in SoC memories are
BuS e If error threshold reached, signal corrected at memory boundary and
Yes external interrupt autonomously written back to
« Write corrected data back to SoC | Memory array
memory
For ICCM accesses:
¢ Increment correctable ICCM error
counter in core
DMA read access errors to ICCM
o If ICCM error threshold reached, [ 4re in-pipeline corrected and written
signal correctable error local back to ICCM
interrupt (see Section 3.5.2)
¢ Write corrected data back to
ICCM
DMA
Read Bus N/A

DMA read access errors to DCCM
are in-pipeline corrected and written
back to DCCM

Note: Counted errors could be from different, unknown memory locations.

Note: DMA write accesses to the ICCM or DCCM always overwrite entire 32-bit words and their corresponding ECC
bits. Therefore, ECC bits are never checked and errors not detected on DMA writes.

2.7 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:
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Region Access Control Register (mrac) (see Section 2.7.1)

Memory Synchronization Trigger Register (dmst) (see Section 2.7.2)
D-Bus First Error Address Capture Register (mdseac) (see Section 2.7.3)
D-Bus Error Address Unlock Register (mdeau) (see Section 2.7.4)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

2.7.1 Region Access Control Register (mrac)
A single region access control register is sufficient to provide independent control for 16 address regions.

Note: To guarantee that updates to the mrac register are in effect, if a region being updated is in the load/store
space, a fence instruction is required. Likewise, if a region being updated is in the instruction space, a fence. i
instruction (which flushes the I-cache) is required.

Note: The access control bits for any region hosting a core-local memory (i.e., ICCM or DCCM) are ignored by the
core.

Note: The combination ‘11’ (i.e., side effect and cacheable) is illegal. Writing ‘11’ is mapped by hardware to the legal
value ‘10’ (i.e., side effect and non-cacheable).

This register is mapped to the non-standard read/write CSR address space.

Table 2-6 Region Access Control Register (mrac, at CSR 0x7C0)

Field Bits Description Access | Reset

Y = 0..15 (= Region)

sideeffect | Y*2+1 | Side effect indication for region Y: R/W 0
0: No side effects (idempotent)
1: Side effects possible (hon-idempotent)

cacheable | Y*2 Caching control for region Y: R/W 0
0: Caching not allowed
1: Caching allowed

2.7.2 Memory Synchronization Trigger Register (dmst)

The dmst register provides triggers to force the synchronization of memory accesses. Specifically, it allows a
debugger to initiate operations that are equivalent to the fence. i (see Section 2.5.3.1) and fence (see Section
2.5.3.2) instructions.

Note: This register is accessible in debug mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

The fence.i and fence fields of the dmst register have W1R0 (Write 1, Read 0) behavior, as also indicated in the
‘Access’ column.

This register is mapped to the non-standard read/write CSR address space.

Table 2-7 Memory Synchronization Trigger Register (dmst, at CSR 0x7C4)

Field Bits Description Access | Reset
Reserved 31:2 Reserved R 0
fence 1 Trigger operation equivalent to fence instruction RO/W1 | O
fence.i 0 Trigger operation equivalent to fence. i instruction RO/W1 | O
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2.7.3 D-Bus First Error Address Capture Register (mdseac)

The address of the first occurrence of a store or non-blocking load error on the D-bus is captured in the mdseac
register. Latching the address also locks the register. While the mdseac register is locked, subsequent D-bus errors
are gated (i.e., they do not cause another NMI), but NMI requests originating external to the core are still honored.
The mdseac register is unlocked by either a core reset (which is the safer option) or by writing to the mdeau register
(see Section 2.7.4).

Note: The NMI handler may use the value stored in the mcause register to differentiate between a D-bus store error,
a D-bus non-blocking load error, and a core-external event triggering an NMI.

This register is mapped to the non-standard read-only CSR address space.

Table 2-8 D-Bus First Error Address Capture Register (mdseac, at CSR 0xFCO)

Field Bits

31:0

Description Access | Reset

erraddr Address of first occurrence of D-bus store or non-blocking load error R 0

2.7.4 D-Bus Error Address Unlock Register (mdeau)

Writing to the mdeau register unlocks the mdseac register (see Section 2.7.3) after a D-bus error address has been
captured. This write access also reenables the signaling of an NMI for a subsequent D-bus error.

Note: Nested NMIs might destroy core state and, therefore, receiving an NMI should still be considered fatal. Issuing
a core reset is a safer option to deal with a D-bus error.

The mdeau register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

This register is mapped to the non-standard read/write CSR address space.

Table 2-9 D-Bus Error Address Unlock Register (mdeau, at CSR 0xBCO)

Field Bits

31:.0

Description Reset

RO/WA | O

Access

Reserved Reserved

2.8 Memory Address Map

Table 2-10 summarizes an example of the SweRV EH1 memory address map, including regions as well as start and
end addresses for the various memory types.

Table 2-10 SweRV EH1 Memory Address Map (Example)

Region | Start Address End Address Memory Type
0x0000_0000 0x0003_FFFF Reserved
0x0004_0000 0x0005_FFFF ICCM (region: 0, offset: 0x4000, size: 128KB)
0x0 0x0006_0000 0x0007_FFFF Reserved
0x0008_0000 0x0009_FFFF DCCM (region: 0, offset: 0x8000, size: 128KB)
0x000A_0000 OXOFFF_FFFF Reserved
Ox1 0x1000_0000 Ox1FFF_FFFF System memory-mapped CSRs
0x2 0x2000_0000 Ox2FFF_FFFF
0x3 0x3000_0000 Ox3FFF_FFFF
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Region | Start Address | End Address Memory Type

Ox4 | 0x4000_0000 | Ox4FFF_FFFF

0x5 0x5000_0000 OX5FFF_FFFF

0x6 0x6000_0000 OX6FFF_FFFF

0x7 0x7000_0000 OX7FFF_FFFF

0x8 0x8000_0000 Ox8FFF_FFFF

0x9 0x9000_0000 Ox9FFF_FFFF System SRAMs,

system ROMs, and

OxA 0xA000_0000 OXAFFF_FFFF system memory-mapped I/O device interfaces
0xB 0xB000_0000 OXBFFF_FFFF

0xC 0xC000_0000 OXCFFF_FFFF

0xD 0xD000_0000 OXDFFF_FFFF

OxE O0xE000_0000 OXEFFF_FFFF

OxF 0xF000_0000 OxFFFF_FFFF

2.9 Partial Writes

Rules for partial writes handling are:

Core-local addresses: The core performs a read-modify-write operation and updates ECC to core-local

memories (i.e., I- and DCCMs).
e SoC addresses: The core indicates the valid bytes for each bus write transaction. The addressed SoC
memory or device performs a read-modify-write operation and updates its ECC.

2.10 DMA Slave Port

The Direct Memory Access (DMA) slave port is used for read/write accesses to core-local memories initiated by
external masters. For example, external masters could be DMA controllers or other CPU cores located in the SoC.

2.10.1 Access

The DMA slave port allows read/write access to the core’s ICCM and DCCM. However, the PIC memory-mapped
control registers are not accessible via the DMA port.

2.10.2 Write Alighment Rules

For writes to the ICCM and DCCM through the DMA slave port, accesses must be 32- or 64-bit aligned, and 32 bits
(word) or 64 bits (double-word), respectively, wide to avoid read-modify-write operations for ECC generation.

2.10.3 Quality of Service

Accesses to the ICCM and DCCM by the core have higher priority. However, to avoid starvation, the DMA slave
port’s DMA controller may periodically request a stall to get access to the pipe if a DMA request is continuously
blocked.

2.11 Reset Signal and Vector

The core provides a 31-bit wide input bus at its periphery for a reset vector. The SoC must provide the reset vector
onthe rst vec[31:1] bus, which could be hardwired or from a register. The rst_1 input signal is active-low,
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asynchronously asserted, and synchronously de-asserted (see also Section 12.3). When the core is reset, it fetches
the first instruction to be executed from the address provided on the reset vector bus.

Note: The core’s 31 general-purpose registers (x1 - x31) are cleared on reset.

2.12 Non-Maskable Interrupt (NMI) Signal and Vector

The core also provides a separate 31-bit wide input bus at its periphery for a non-maskable interrupt (NMI) vector. If
the SoC makes use of this feature, it must provide the NMI vector on the nmi vec[31:1] bus, which could be
hardwired or from a register.

The nmi_int input signal is low-to-high edge-triggered and asynchronous. It must be asserted for at least two full
core clock cycles to guarantee it is detected by the core since shorter pulses might be dropped by the synchronizer
circuit. Furthermore, the nmi_int signal must be de-asserted for a minimum of two full core clock cycles and then
reasserted to signal the next NMI request to the core.

When the core receives an NMI request, it fetches the next instruction to be executed from the address provided on
the NMI vector bus. If the SoC does not use the NMI feature, it must hardwire the nmi_int and nmi vec[31:1]
input signals to 0.

NMis triggered by asserting the core’s nmi_int input signal have an mcause value of 0x0000_0000.
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3 Memory Error Protection
3.1 General Description

3.1.1 Parity

Parity is a simple and relatively cheap protection scheme generally used when the corrupted data can be restored
from some other location in the system. A single parity check bit typically covers several data bits. Two parity
schemes are used: even and odd parity. The total number of ‘1’ bits are counted in the protected data word,
including the parity bit. For even parity, the data is deemed to be correct if the total count is an even number.
Similarly, for odd parity if the total count is an odd humber. Note that double-bit errors cannot be detected.

3.1.2 Error Correcting Code (ECC)

A robust memory hierarchy design often includes ECC functions to detect and, if possible, correct corrupted data.
The ECC functions described are made possible by Hamming code, a relatively simple yet powerful ECC code. It
involves storing and transmitting data with multiple check bits (parity) and decoding the associated check bits when
retrieving or receiving data to detect and correct errors.

The ECC feature can be implemented with Hamming based SECDED (Single-bit Error Correction and Double-bit
Error Detection) algorithm. The design can use the (39, 32) code — 32 data bits and 7 parity bits depicted in Figure
5-1 below. In other words, the Hamming code word width is 39 bits, comprised of 32 data bits and 7 check bits. The
minimum number of check bits needed for correcting a single-bit error in a 32-bit word is six. The extra check bit
expands the function to detect double-bit errors as well.

ECC codes may also be used for error detection only if other means exist to correct the data. For example, the I-
cache stores exact copies of cache lines which are also residing in SoC memory. Instead of correcting corrupted
data fetched from the I-cache, erroneous cache lines may also be invalidated in the I-cache and refetched from SoC
memory. A SEDDED (Single-bit Error Detection and Double-bit Error Detection) code is sufficient in that case and
provides even better protection than a SECDED code since double-bit errors are corrected as well, but requires fewer
bits to protect each codeword. Note that flushing and refetching is the industry standard mechanism for recovering
from I-cache errors, though commonly still referred to as ‘SECDED'.
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32-Bit Data In

32-Bit Data

ECC Code
Generator

7-Bit ECC 32-Bit Data

Address

ECC Out Data Out

ECC Error Detection and Correction

Double-Bit Single-Bit 32-Bit
Error Error Corrected
Data Out

Figure 3-1 Conceptual Block Diagram — ECC in a Memory System

3.2 Selecting the Proper Error Protection Level

Choosing a protection level that is too weak might lead to loss of data or silent data corrupted, choosing a level that is
too strong incurs additional chip die area (i.e., cost) and power dissipation. Supporting multiple protection schemes
for the same design increases the design and verification effort.

Sources of errors can be divided into two major categories:

e Hard errors (e.g., stuck-at bits), and
e Soft errors (e.g., weak bits, cosmic-induced soft errors)

Selecting an adequate error protection level — e.g., none, parity, or ECC -- depends on the probability of an error to
occur, which depends on several factors:

e Technology node
e  SRAM structure size
e SRAM cell design
e Type of stored information
o E.g., instructions in I-cache can be refetched, but
o data might be lost if not adequately protected
Stored information being used again after corruption
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Typically, a FIT (Failure In Time) rate analysis is done to determine the proper protection level of each memory in a
system. This analysis is based on FIT rate information for a given process and SRAM cell design which are typically

available from chip manufacturer.

Also important is the SRAM array design. The SRAM layout can have an impact on if an error is correctable or not.
For example, a single cosmic-induced soft error event may destroy the content of multiple bit cells in an array. If the
destroyed bits are covered by the same codeword, the data cannot be corrected or possibly even detected.
Therefore, the bits of each codeword should be physically spread in the array as far apart as feasibly possible. In a
properly laid out SRAM array, multiple corrupted bits may result in several single-bit errors of different codewords

which are correctable.

3.3 Memory Hierarchy

Table 3-1 summarizes the components of the SweRV EH1 memory hierarchy and their respective protection scheme.

Table 3-1 Memory Hierarchy Components and Protection

Core-complex-external Memories

SoC memories

Memory Type Abbreviation Protection Reason/Justification
Instruction Cache I-cache Parity or e Instructions can be refetched if
SEDDED error is detected
ECC?® (data
and tag)
Instruction Closely-Coupled Memory ICCM « Large SRAM arrays
Data Closely-Coupled Memory DCCM SECDED ECC

¢ Data could be modified and is only
valid copy

3.4 Error Detection and Handling

Table 3-2 summarizes the detection of errors, the recovery steps taken, and the logging of error events for each of

the SweRV EH1 memories.

Note: Memories with parity or ECC protection must be initialized with correct parity or ECC. Otherwise, a read
access to an uninitialized memory may report an error. The method of initialization depends on the organization and
capabilities of the memory. Initialization might be performed by a memory self-test or depend on firmware to
overwrite the entire memory range (e.g., via DMA accesses).

9 Some highly reliable/available applications (e.g., automotive) might want to use an ECC-protected I-cache, instead of parity
protection. Therefore, SEDDED ECC protection is optionally provided in SweRV EHX1 as well, selectable as a core build argument.
Note that the I-cache area increases significantly if ECC protection is used.
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Table 3-2 Error Detection, Recovery, and Logging
Recovery Logging
Memory Type | Detection Single-bit Error | Double-bit Single-bit Error | Double-bit
Error Error

I-cache e Each 16-bit For parity:
chunk of - - d d )
instructions » For instruction Undetecte e Increment I- No action
protected with and tag parity cache
1 parity bit or 5 errors, correctable "

ECC bits mvarllld?te all f error counter
« Each cache g:f eflineso « If error counter
line tag has reached
protected with . Refetch cache tr_lreshold,
1 parity bit or 5 line from SoC signal
ECC bits memory correctable
) . error local
e Parity/ECC bits interrupt
checked in (see Section
pipeline 3.5.1)
For ECC:
¢ For instruction and tag single- and | e Increment I-cache correctable
double ECC errors, invalidate all error countert®
cache lines of set « If error counter has reached
¢ Refetch cache line from SoC threshold, signal correctable error
memory?!! local interrupt
(see Section 3.5.1)

ICCM e Each 32-hit For fetches: Fatal error e Increment For fetches:
chunk _ o Write corrected | (uncorrectable) ICCM single- Instruction
protected with data/ECC back bit error access fault
7 ECC bits to ICCM counter exception

e ECC checked e Refetch o If error counter
in pipeline instruction has reached
from ICCML threshold,
signal
For DMA reads: correctable For DMA reads:
« Correct error error local Send error
in-line |nterrgpt ; response on
see Section
¢ Write corrected g.S.Z) DMA slave bus
data/ECC back to master
to ICCM

DCCM e Each 32-bit e Correct error Fatal error e Increment For loads:
chunk in-line (uncorrectable) DCCM single- | | pad access
protected with |  \n/yite corrected bit error fault exception
7 ECC bits data/ECC back counter

For stores:
e ECC checked to DCCM o If error counter
in pipeline has reached Store/AMO
threshold, access fault
signal exception

101t is unlikely, but possible that multiple I-cache parity/ECC errors are detected on a cache line in a single cycle, however, the |-
cache single-bit error counter is incremented only by one.

11 A RFPC (ReFetch PC) flush is performed since in-line correction would create timing issues and require an additional clock cycle
as well as a different architecture.
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Memory Type

Detection

Recovery

Logging

Single-bit Error

Double-bit
Error

Single-bit Error

Double-bit
Error

correctable
error local
interrupt
(see Section
3.5.3)

For DMA reads:

Send error
response on
DMA slave bus
to master

SoC memories

ECC checked at
memory
boundary

e Correct error

e Send corrected
data on bus

¢ Write corrected
data/ECC back
to SRAM array

o Fatal error
(uncorrectable)

e Data sent on
bus with error
indication

e Core must
ignore sent
data

e Increment SoC
single-bit error
counter local to
memory

e If error counter
has reached
threshold,
signal external
interrupt

For fetches:

Instruction
access fault
exception

For loads:

Load access
fault exception

For stores:

Store bus error
NMI

(see Section
2.6.1)

General comments:

¢ No address information of each individual correctable error is captured.
e  Stuck-at bits would reach threshold relatively quickly. Use MBIST to determine exact location of the bad bit.

3.5 Core Error Counter/Threshold Registers

A summary of platform-specific core error counter/threshold control/status registers in CSR space:

e |-Cache Error Counter/Threshold Register (micect) (see Section 3.5.1)
e ICCM Correctable Error Counter/Threshold Register (miccmect) (see Section 3.5.2)
e DCCM Correctable Error Counter/Threshold Register (mdccmect) (see Section 3.5.3)

All read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

3.5.1 I-Cache Error Counter/Threshold Register (micect)

The micect register holds the I-cache error counter and its threshold. The count field of the micect register is
incremented, if a parity/ECC error is detected on any of the cache line tags of the set or the instructions fetched from
the I-cache. The thresh field of the micect register holds a pointer to a bit position of the count field. If the selected
bit of the count field transitions from ‘0’ to ‘1’, a correctable error local interrupt (see Section 2.6.2) is signaled.

Hardware increments the count field on a detected error. Firmware can non-destructively read the current count and
thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending for a long period of time
(i.e., 232-2tresh errors). When firmware resets the counter, the correctable error local interrupt condition is cleared.

This register is mapped to the non-standard read/write CSR address space.
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Table 3-3 I-Cache Error Counter/Threshold Register (micect, at CSR 0x7FO0)

Field Bits Description Access | Reset

thresh 31:27 | I-cache parity/ECC error threshold: R/W 0
0..26: Value i selects count][i] bit
27..31: Invalid (when written, mapped by hardware to 26)

count 26:0 Counter incremented if I-cache parity/ECC error(s) detected. R/W 0

If count[thresh] transitions from’0’ to ‘1’, signal correctable error local
interrupt (see Section 2.6.2).

3.5.2 ICCM Correctable Error Counter/Threshold Register (miccmect)

The miccmect register holds the ICCM correctable error counter and its threshold. The count field of the miccmect
register is incremented, if a correctable ECC error is detected on instructions fetched from the ICCM. The thresh field
of the miccmect register holds a pointer to a bit position of the count field. If the selected bit of the count field
transitions from ‘0’ to “1°, a correctable error local interrupt (see Section 2.6.2) is signaled.

Hardware increments the count field on a detected error. Firmware can non-destructively read the current count and
thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending for a long period of time
(i.e., 2%2-2tresh errors). When firmware resets the counter, the correctable error local interrupt condition is cleared.

Note: DMA accesses while in power management Sleep (pmu/fw-halt) or debug halt (db-halt) state may encounter
ICCM single-bit errors. Correctable errors are counted in the miccmect error counter irrespective of the core's
power state.

This register is mapped to the non-standard read/write CSR address space.

Table 3-4 ICCM Correctable Error Counter/Threshold Register (miccmect, at CSR 0x7F1)

Field Bits Description Access | Reset

thresh 31:27 | ICCM correctable ECC error threshold: R/W 0
0..26: Value i selects count][i] bit
27..31: Invalid (when written, mapped by hardware to 26)

count 26:0 Counter incremented for each detected ICCM correctable ECC error. R/W 0

If count[thresh] transitions from’0’ to ‘1’, signal correctable error local
interrupt (see Section 2.6.2).

3.5.3 DCCM Correctable Error Counter/Threshold Register (mdccmect)

The mdccmect register holds the DCCM correctable error counter and its threshold. The count field of the
mdccmect register is incremented, if a correctable ECC error is detected on a read or write operation to the DCCM.
The thresh field of the mdccmect register holds a pointer to a bit position of the count field. If the selected bit of the
count field transitions from ‘0’ to “1°, a correctable error local interrupt (see Section 2.6.2) is signaled.

Hardware increments the count field on a detected error. Firmware can non-destructively read the current count and
thresh values or write to both these fields (e.g., to change the threshold and reset the counter).

Note: The counter may overflow if not serviced and reset by firmware.

Note: The correctable error local interrupt is not latched (i.e., “sticky”), but it stays pending for a long period of time
(i.e., 232-2tresh errors). When firmware resets the counter, the correctable error local interrupt condition is cleared.
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Note: DMA accesses while in power management Sleep (pmu/fw-halt) or debug halt (db-halt) state may encounter
DCCM single-bit errors. Correctable errors are counted in the mdccmect error counter irrespective of the core's

power state.

This register is mapped to the non-standard read/write CSR address space.

Table 3-5 DCCM Correctable Error Counter/Threshold Register (mdccmect, at CSR 0x7F2)

Field Bits Description Access | Reset
thresh 31:27 | DCCM correctable ECC error threshold: R/W 0
0..26: Value i selects count][i] bit
27..31: Invalid (when written, mapped by hardware to 26)
count 26:0 Counter incremented for each detected DCCM correctable ECC error. R/W 0
If count[thresh] transitions from’0’ to ‘1’, signal correctable error local
interrupt (see Section 2.6.2).
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4 Power Management

This chapter specifies the power management functionality provided or supported by the SweRV EH1 core.

4.1 Features

SweRV EH1 power management supports and provides the following features:

Support for three system-level power states: Active (CO0), Sleep (C3), Power Off (C6)
Firmware-initiated halt to enter sleep state

Fine-grain clock gating in active state

Enhanced clock gating in sleep state

Halt/run control interface (to system-level Power Management Unit (PMU))

Signal indicating that core is halted

Signal indicating that core is in debug mode

PAUSE feature to help avoid firmware spinning

4.2 Power States

From a system’s perspective, the core may be placed in one of three power states: Active (CO0), Sleep (C3), and
Power Off (C6). Active and Sleep states require hardware support from the core, but in the Power Off state the core
is power-gated so no special hardware support is needed.

Figure 4-1 depicts and Table 4-1 describes the core activity states as well as the events to transition between them.
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e Without Single Step action, stay in Running
» With Single Step action, execute one
instruction then return to Halted (db-halt)

cpu halt status = low cpu_halt status = low

DMA accesses allowed DMA accesses allowed
debug _mode status = high

Debug Resume Request

Debug Mode

(Debug Halt Request or
Debug Single Step or
Debug Breakpoint w/Halt or
Debug Trigger w/Halt)

&
Core Quiesced

Halted
(db-halt)
Active (CO)

Running
Active (CO)

Debug Halt
Request

(PMU Run Request or
high-priority ext. interrupt or
timer interrupt or

NMI)
&
No Debug Halt Request Halted
Debug Halt
(pmu/fw-halt) Request
(PMU Halt Request or Sleep (C3)
FW-initiated Halt)
&
No Debug Halt Action
& PMU Halt
Core Quiesced Re(gjest
No Debug

Halt Request

No Debug Halt Request
&
No PMU Halt Request

cpu_halt status = high
DMA accesses allowed

Figure 4-1 SweRV EH1 Core Activity States

Note: ‘Core Quiesced’ implies that no new instructions are executed and all outstanding bus transactions are
completed (i.e., the store queue (SQ) and the write buffer (WB) are fully drained, the DMA FIFO is empty, and all
outstanding I-cache misses are finished).
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Table 4-1 Core Activity States

1/24/2019

Active (C0O)

Sleep (C3)

Running

Halted

db-halt

pmu/fw-halt

State
Description

Core operating normally

Core halted in debug mode

Core halted by PMU halt
request or by core firmware-
initiated halt

Power Savings

Fine-grain clock gating
integrated in core minimizes
power consumption during
regular operation

Fine-grain clock gating

Enhanced clock gating in
addition to fine-grain clock
gating

DMA Access

DMA accesses allowed

State Indication

e cpu_halt statusislow

e debug mode_status is
low (except for Debug
Resume Request with
Single Step action)

e cpu_halt statusislow

e debug mode_status is

high

e cpu_halt status is high

e debug _mode_status s
low

Machine Cycle

mcycle incremented every

Depends on stopcount bit in

mcycle not incremented

Performance- core clock cycle dcsr (Debug Control and
Monitoring Status Register) register:
Counter

0: mcycle incremented
every core clock cycle

1: mcycle notincremented

4.3 Power Control

The priority order of simultaneous halt requests is as follows:

1. Any debug halt action
a. Debug halt request
b. Debug single step
c. Debug breakpoint
d. Debug trigger
2. PMU halt request or core firmware-initiated halt

If the PMU sends a halt request while the core is in debug mode, the core disregards the halt request. If the PMU’s
halt request is still pending when the core exits debug mode, the request is honored at that time. Similarly, core
firmware can'’t initiate a halt while in debug mode. However, it is not possible for a core firmware-initiated halt request
to be pending when the core exits debug mode.

4.3.1 Debug Mode
Debug mode must be able to seize control of the core. Therefore, debug has higher priority than power control.
Debug mode is entered under any of the following conditions:

Debug halt request

Debug single step

Debug breakpoint with halt action
Debug trigger with halt action

Debug mode is exited with:
e Debug resume request with no single step action

The state ‘db-halt’ is the only halt state allowed while in debug mode.

Copyright © 2019 Western Digital Corporation; Licensed under Apache-2.0 24 of 78



RISC-V SweRV™ EH1 Programmer's Reference Manual —Rev. 1.0- 1/24/2019

4.3.2 Core Power Control Signals

Figure 4-2 depicts the power control and status signals which connect the SweRV EH1 core to the PMU. Signals
from the PMU to the core are asynchronous and must be synchronized to the core clock domain. Similarly, signals
from the core are asynchronous to the PMU clock domain and must be synchronized to the PMU’s clock.

Note: The synchronizer of the cpu_run_regq signal may not be clock-gated. Otherwise, the core may not be woken
up again via the PMU interface.

Power Control Signals

debug_mode_status
-

cpu_halt_req

cpu_halt_ack

fomto <& SweRV EH1
Power
Core
Management halt stat
Unit chu et sere Co mplex
cpu_run_req
cpu_run_ack
-

Figure 4-2 SweRV EH1 Power Control Signals

There are four types of signals between the Power Management Unit and the SweRV EH1 core, as described in
Table 4-2. All signals are active-high.

Table 4-2 SweRV EH1 Power Control Signals

Signal(s) Description
cpu_halt reqand Full handshake to request the core to halt.
cpu_halt ack The PMU requests the core to halt by asserting the cpu_halt reg signal. The core is

quiesced before halting. The core then asserts the cou_halt ack signal. When the
PMU detects the asserted cpu halt ack signal, it deasserts the cpu halt req
signal. Finally, when the core detects the deasserted cpu halt regq signal, it
deasserts the cpu_halt ack signal.

cpu_run_reqgand Full handshake to request the core to run.

cpu_run_ack The PMU requests the core to run by asserting the cpu_run_req signal. The core
exits the halt state and starts execution again. The core then asserts the
cpu_run_ack signal. When the PMU detects the asserted cpu_run_ack signal, it
deasserts the cpu_run_reg signal. Finally, when the core detects the deasserted
cpu_run_req signal, it deasserts the cpu_run_ack signal.

cpu_halt status Indication from the core to the PMU that the core has been gracefully halted.

debug _mode status Indication from the core to the PMU that the core is currently in debug mode. When the
core is in debug mode, the PMU should refrain from sending a halt or run request.
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Note: Power control protocol violations (e.g., simultaneously sending a run and a halt request) may lead to
unexpected behavior.

Note: If the core is already in the activity state being requested (i.e., the core is already either in the pmu/fw-halt state
and cpu_halt_req s asserted, or in the Running state and cpu_run_req is asserted), no acknowledgement is
signaled (i.e., the cpu_halt ack or cpu_run_ack signal, respectively, is not asserted).

Figure 4-3 depicts conceptual timing diagrams of a halt and a run request. Note that entering debug mode is an
asynchronous event relative to power control commands sent by the PMU. Debug mode has higher priority and can
interrupt and override PMU requests.

PMU Halt Request:

cpu_halt_req / N
cpu_halt_ack // N\

cpu_halt_status 4

cpu_run_req

cpu_run_ack

guiesce core

PMU Run Request:

cpu_halt_req

cpu_halt_ack

cpu_halt_status N

cpu_run_req / AN

cpu_run_ack > \

start execution

Figure 4-3 SweRV EH1 Power Control Interface Timing Diagrams

4.3.2.1 Core Wake-Up Events

When not in debug mode (i.e., the core is in pmu/fw-halt state), the core is woken up on several events:

e  PMU run request
e High-priority external interrupt (mhwakeup signal from PIC) and core interrupts are enabled
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e Timer interrupt
e Non-maskable interrupt (NMI) (nmi_int signal)

The PIC is part of the core logic and the mhwakeup signal is connected directly inside the core. The standard RISC-
V timer interrupt and NMI signals are external to the core and originate in the SoC. If desired, these signals can be
routed through the PMU and further qualified there.

4.3.3 Core Firmware-Initiated Halt

The firmware running on the core may also initiate a halt by writing a ‘1’ to the halt field of the mpmc register (see
Section 4.4.1). The core is quiesced before indicating that it has gracefully halted.

4.3.4 DMA Operations While Halted
When the core is halted in the ‘pmu/fw-halt’ or the ‘db-halt’ state, DMA operations are supported.

4.3.5 External Interrupts While Halted

All non-highest-priority external interrupts are temporarily ignored while halted. Only external interrupts which activate
the mhwakeup signal (see Chapter 5) are honored, if the core is enabled to service external interrupts (i.e., the mie bit
of the mstatus and the meie bit of the mie standard RISC-V registers are both set, otherwise the core remains in
the ‘pmu/fw-halt’ state). External interrupts which are still pending and have a high enough priority to be signaled to
the core are serviced once the core is back in the Running state.

4.4 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:

e Power Management Control Register (mpmc) (see Section 4.4.1)
e Core Pause Control Register (mcpc) (see Section 4.4.2)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.
4.4.1 Power Management Control Register (mpmc)

The mpmc register provides core power management control functionality. It allows the firmware running on the core
to initiate a transition to the Halted (pmu/fw-halt) state.

The halt field of the mpmc register has W1RO0 (Write 1, Read 0) behavior, as also indicated in the ‘Access’ column.

This register is mapped to the non-standard read/write CSR address space.

Table 4-3 Power Management Control Register (mpmc, at CSR 0x7C6)

Field Bits Description Access | Reset

Reserved 311 Reserved R 0

halt 0 Initiate core halt (i.e., transition to Halted (pmu/fw-halt) state) RO/W1 | O
Note: Write ignored if in debug mode

4.4.2 Core Pause Control Register (mcpc)

The mcpc register supports functions to temporarily stop the core from executing instructions. This helps to save
core power since busy-waiting loops can be avoided in the firmware.
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PAUSE stops the core from executing instructions for a specified number? of clock ticks or until an interrupt is
received.

Note: PAUSE is a long-latency, interruptible instruction and does not change the core’s activity state (i.e., the core
remains in the Running state). Therefore, even though this function may reduce core power, it is not part of core
power management.

Note: PAUSE has a skid of several cycles. Therefore, instruction execution might not be stopped for precisely the
number of cycles specified in the pause field of the mcpc register. However, this is acceptable for the intended use
case of this function.

Note: If the PMU sends a halt request while PAUSE is still executing, the core enters the Halted (pmu/fw-halt) state
and the pause clock counter stops until the core is back in the Running state.

Note: WFI is another candidate for a function that stops the core temporarily. Currently, the WFI instruction is
implemented as NOP, which is a fully RISC-V-compliant option.

The pause field of the mcpc register has WARO (Write Any value, Read 0) behavior, as also indicated in the ‘Access’
column.

This register is mapped to the non-standard read/write CSR address space.

Table 4-4 Core Pause Control Register (mcpc, at CSR 0x7C2)

Field Bits Description Access | Reset

pause 31:0 Pause execution for number of core clock cycles specified RO/W 0

Note: pause is decremented by 1 for each core clock cycle. Execution
continues either when pause is 0 or any interrupt is received.

2 The field width provided by the mcpc register allows to pause execution for about 4 seconds at a 1 GHz core clock.
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5 External Interrupts

See Chapter 7, Platform-Level Interrupt Controller (PLIC) in [2] for general information.

Note: Even though this specification is modeled to a large extent after the RISC-V PLIC (Platform-Level Interrupt
Controller) specification, this interrupt controller is associated with the core, not the platform. Therefore, the more
general term PIC (Programmable Interrupt Controller) is used.

5.1 Features

The PIC provides these core-level external interrupt features:

e Up to 255 global (core-external) interrupt sources (from 1 (highest) to 255 (lowest)) with separate enable
control for each source

15 priority levels (numbered 1 (lowest) to 15 (highest)), separately programmable for each interrupt source
Programmable reverse priority order (14 (lowest) to O (highest))

Programmable priority threshold to disable lower-priority interrupts

Wake-up priority threshold (hardwired to highest priority level) to wake up core from power-saving (Sleep)
mode if interrupts are enabled

One interrupt target (RISC-V hart M-mode context)

e  Support for vectored external interrupts

e  Support for interrupt chaining and nested interrupts

5.2 Naming Convention

5.2.1 Unit, Signal, and Register Naming
S suffix: Unit, signal, and register names which have an S suffix indicate an entity specific to an interrupt source.

X suffix: Register names which have an X suffix indicate a consolidated register for multiple interrupt sources.

5.2.2 Address Map Naming
Control/status register: A control/status register mapped to either the memory or the CSR address space.
Memory-mapped register: Register which is mapped to RISC-V’s 32-bit memory address space.

Register in CSR address space: Register which is mapped to RISC-V’s 12-bit CSR address space.
5.3 Overview of Major Functional Units

5.3.1 External Interrupt Source

All functional units on the chip which generate interrupts to be handled by the RISC-V core are referred to as external
interrupt sources. External interrupt sources indicate an interrupt request by sending an asynchronous signal to the
PIC.

5.3.2 Gateway

Each external interrupt source connects to a dedicated gateway. The gateway is responsible for synchronizing the
interrupt request to the core’s clock domain, and for converting the request signal to a common interrupt request
format (i.e., active-high and level-triggered) for the PIC. The PIC core can only handle one single interrupt request
per interrupt source at a time.

All current SoC IP interrupts are asynchronous and level-triggered. Therefore, the gateway’s only function for SoC IP
interrupts is to synchronize the request to the core clock domain. There is no state kept in the gateway.

A gateway suitable for ASIC-external interrupts must provide programmability for interrupt type (i.e., edge- vs. level-
triggered) as well as interrupt signal polarity (i.e., low-to-high vs. high-to-low transition for edge-triggered interrupts,
active-high vs. -low for level-triggered interrupts). For edge-triggered interrupts, the gateway must latch the interrupt
request in an interrupt pending (IP) flop to convert the edge- to a level-triggered interrupt signal. Firmware must clear
the IP flop while handling the interrupt.
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Note: For asynchronous interrupt sources, the pulse duration of an interrupt request must be at least two full clock
cycles of the receiving (i.e., PIC core) clock domain to guarantee it will be recognized as an interrupt request. Shorter
pulses might be dropped by the synchronizer circuit.

5.3.3 PIC Core

The PIC core’s responsibility is to evaluate all pending and enabled interrupt requests and to pick the highest-priority
request with the lowest interrupt source ID. It then compares this priority with a programmable priority threshold and,
to support nested interrupts, the priority of the interrupt handler if one is currently running. If the picked request’s
priority is higher than both thresholds, it sends an interrupt notification to the core. In addition, it compares the picked
request’s priority with the wake-up threshold (highest priority level) and sends a wake-up signal to the core, if the
priorities match. The PIC core also provides the interrupt source ID of the picked request in a status register.

Implementation Note: Different levels in the evaluation tree may be staged wherever necessary to meet timing,
provided that all signals of a request (ID, priority, etc.) are equally staged.

5.3.4 Interrupt Target

The interrupt target is a specific RISC-V hart context. For the SweRV EH1 core, the interrupt target is the M privilege
mode of the hart.

5.4 PIC Block Diagram

Figure 5-1 depicts a high-level view of the PIC. A simple gateway for asynchronous, level-triggered interrupt sources
is shown in Figure 5-2, whereas Figure 5-3 depicts conceptually the internal functional blocks of a configurable
gateway. Figure 5-4 shows a single comparator which is the building block to form the evaluation tree logic in the
PIC core.
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External Interrupt Source 1 External Interrupt Source 2 External Interrupt Source 3 External Interrupt Source 254 External Interrupt Source 255
exintsrc_req[1] exintsrc_req[2] exintsrc_req[3] exintsrc_req[254] exintsrc_req[255]
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meip0. meip0. meip0. meip7. meip7.
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[CJrRw csr O R CSR (wicond. inversion)

Figure 5-1 PIC Block Diagram

Implementation Note: For R/W control/status registers with double-borders in Figure 5-1, the outputs of the registers
are conditionally bit-wise inverted, depending on the priority order set in the priord bit of the mpicc£fg register. This
is necessary to support the reverse priority order feature.

Note: The PIC logic always operates in regular priority order. When in reverse priority order mode, firmware reads
and writes the control/status registers with reverse priority order values. The values written to and read from the
control/status registers are inverted. Therefore, from the firmware’s perspective, the PIC operates in reverse priority
order.
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. Multi-stage Interrupt Request
exintsrc_req[S] for Source S

Figure 5-2 Gateway for Asynchronous, Level-triggered Interrupt Sources

. Multi-stage XOR Interrupt Request
exintsrc_req([S] m for Source S

[] Gateway [ JRMW CSR ] write-only CSR

Figure 5-3 Conceptual Block Diagram of a Configurable Gateway

Priorityg

IDg > Priorityour
PriorityA ” IDout

DA

Figure 5-4 Comparator

5.5 Theory of Operation

5.5.1 Initialization
The control registers must be initialized in the following sequence:
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Configure the priority order by writing the priord bit of the mpiccfg register.

For each configurable gateway S, set the polarity (polarity field) and type (type field) in the meigwctrls
register and clear the IP bit by writing to the gateway’s meigwclrS register.

Set the base address of the external vectored interrupt address table by writing the base field of the meivt
register.

Set the priority level for each external interrupt source S by writing the corresponding priority field of the
meiplS registers.

Set the priority threshold by writing prithresh field of the meipt register.

Initialize the nesting priority thresholds by writing ‘0’ (or ‘15’ for reversed priority order) to the clidpri field of
the meicidpl and the currprifield of the meicurpl registers.

Enable interrupts for the appropriate external interrupt sources by setting the inten bit of the meie S registers
for each interrupt source S.

5.5.2 Regular Operation

A step-by-step description of interrupt control and delivery:

1.

2.

oA

10.

11.

12.
13.

14.
15.

The external interrupt source S signals an interrupt request to its gateway by activating the corresponding
exintsrc req[S] signal.
The gateway synchronizes the interrupt request from the asynchronous interrupt source’s clock domain to
the PIC core clock domain (pic_clk).
For edge-triggered interrupts, the gateway also converts the request to a level-triggered interrupt signal by
setting its internal interrupt pending (IP) bit.
The gateway then signals the level-triggered request to the PIC core by asserting its interrupt request signal.
The pending interrupt is visible to firmware by reading the corresponding intpend bit of the meipX register.
With the pending interrupt, the source’s interrupt priority (indicated by the priority field of the meipls
register) is forwarded to the evaluation logic.
If the corresponding interrupt enable (i.e., inten bit of the meie S register is set), the pending interrupt’s
priority is sent to the input of the first-level 2-input comparator.
The priorities of a pair of interrupt sources are compared:
a. If the two priorities are different, the higher priority and its associated hardwired interrupt source ID
are forwarded to the second-level comparator.
b. If the two priorities are the same, the priority and the lower hardwired interrupt source ID are
forwarded to the second-level comparator.
Each subsequent level of comparators compares the priorities from two comparator outputs of the previous
level:
a. If the two priorities are different, the higher priority and its associated interrupt source ID are
forwarded to the next-level comparator.
b. If the two priorities are the same, the priority and the lower interrupt source ID are forwarded to the
next-level comparator.
The output of the last-level comparator indicates the highest priority (maximum priority) and lowest interrupt
source ID (interrupt ID) of all currently pending and enabled interrupts.
Maximum priority is compared to the higher of the two priority thresholds (i.e., prithresh field of the meipt
and currpri field of the meicurpl registers):
a. If maximum priority is higher than the two priority thresholds, the mexintirg signal is asserted.
b. If maximum priority is the same as or lower than the two priority thresholds, the mexintirqg signal
is de-asserted.
The mexintirqg signal’s state is then reflected in the meip bit of the RISC-V hart’'s mip register.
In addition, maximum priority is compared to the wake-up priority level:
a. If maximum priority is 15 (or O for reversed priority order), the wake-up notification (WUN) bit is set.
b. If maximum priority is lower than 15 (or O for reversed priority order), the wake-up natification
(WUN) bit is not set.
The WUN state is indicated to the target hart with the mhwakeup signal®3.
When the target hart takes the external interrupt, it disables all interrupts (i.e., clears the mei bit of the RISC-
V hart’'s mstatus register) and jumps to the external interrupt handler.

13 Note that the core is only woken up from the power management Sleep (pmu/fw-halt) state if the mie bit of the mstatus and the
meie bit of the mie standard RISC-V registers are both set.
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16. The external interrupt handler writes to the meicpct register to trigger the capture of the interrupt source ID
of the currently highest-priority pending external interrupt (in the meihap register) and its corresponding
priority (in the meicidpl register). Note that the captured content of the claimid field of the meihap register
and its corresponding priority in the meicidpl register is neither affected by the priority thresholds
(prithresh field of the meipt and currpri field of the meicurpl registers) nor by the core’s external interrupt
enable bit (meie bit of the RISC-V hart’s mie register).

17. The handler then reads the meihap register to obtain the interrupt source ID provided in the claimid field.
Based on the content of the meihap register, the external interrupt handler jumps to the handler specific to
this external interrupt source.

18. The source-specific interrupt handler services the external interrupt, and then:

a. For level-triggered interrupt sources, the interrupt handler clears the state in the SoC IP which
initiated the interrupt request.

b. For edge-triggered interrupt sources, the interrupt handler clears the IP bit in the source’s gateway
by writing to the meigwclrsS register.

19. The clearing de-asserts the source’s interrupt request to the PIC core and stops this external interrupt
source from participating in the highest priority evaluation.

20. In the background, the PIC core continuously evaluates the next pending interrupt with highest priority and
lowest interrupt source ID:

a. If there are other interrupts pending, enabled, and with a priority level higher than prithresh field of
the meipt and currpri field of the meicurpl registers, mexintirqg stays asserted.

b. If there are no further interrupts pending, enabled, and with a priority level higher than prithresh
field of the meipt and currpri field of the meicurpl registers, mexintirqg is de-asserted.

21. Firmware may update the content of the meihap and meicidpl registers by writing to the meicpct
register to trigger a new capture.

5.6 Support for Vectored External Interrupts

Note: The RISC-V standard defines support for vectored interrupts down to an interrupt class level (i.e., timer,
software, and external interrupts for each privilege level), but not to the granularity of individual external interrupt
sources (as described in this section). The two mechanisms are intendent of each other and should be used together
for lowest interrupt latency. For more information on the standard RISC-V vectored interrupt support, see Section
3.1.12in[2].

The SweRV EH1 PIC implementation provides support for vectored external interrupts. The content of the meihap
register is a full 32-bit pointer to the specific vector to the handler of the external interrupt source which needs
service. This pointer consists of a 22-bit base address (base) of the external interrupt vector table, the 8-bit claim ID
(claimid), and a 2-bit ‘0’ field. The claimid field is adjusted with 2 bits of zeros to construct the offset into the vector
table containing 32-bit vectors. The external interrupt vector table resides either in the DCCM, SoC memaory, or a
dedicated flop array in the core.
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Figure 5-5 Vectored External Interrupts

Figure 5-5 depicts the steps from taking the external interrupt to starting to execute the interrupt source specific
handler. When the core takes an external interrupt, the initiated external interrupt handler executes the following
operations:

1. Save register(s) used in this handler to the mscratch register'* or on the stack

Store to the meicpct control/status register to capture a consistent claim ID / priority level pair
Load the meihap control/status register into regX

Load memory location at address in regX into regY

Jump to address in regY (i.e., start executing the interrupt source-specific handler)

arwn

Note: Two registers (regX and regY) are shown above for clarification only. The same register can actually be used.

It is possible in some corner cases that the captured claim ID read from the meihap register is O (i.e., no interrupt
request is pending). To keep the interrupt latency at a minimum, the external interrupt handler above should not
check for this condition. Instead, the pointer stored at the base address of the external interrupt vector table (i.e.,
pointer 0) must point to a ‘no-interrupt’ handler, as shown in Figure 5-5 above. That handler can be as simple as
executing a return from interrupt (i.e., mret) instruction.

Note that it is possible for multiple interrupt sources to share the same interrupt handler by populating their respective
interrupt vector table entries with the same pointer to that handler.

5.6.1 Full Hardware Implementation of Vectored External Interrupts

If the mechanism described in the previous section still incurs too much latency or has too much impact on
performance, implementing vectored external interrupts fully in hardware would be possible as well.

The claimid can be used to select the interrupt vector associated with the selected highest-priority source ID. When
the core takes an external interrupt, it would start fetching directly from the address indicated by the interrupt vector
selected by claimid.

Implementation Note: The external interrupt vector table can either be implemented in flops or mapped to SRAM
memory. If implemented as flops, the address is MUX-ed out of the array based on the claimid. If mapped to SRAM,
the core issues a dummy load instruction to a claimid-dependent memory addresses to retrieve the interrupt vector.

14 |f saved to mscratch register, the interrupt source-specific handler must save it from there to the stack before re-enabling
interrupts.
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5.7 Interrupt Chaining

Figure 5-6 depicts the concept of chaining interrupts. The goal of chaining is to reduce the overhead of pushing and
popping state to and from the stack while handling a series of Interrupt Service Routines (ISR) of the same priority
level. The first ISR of the chain saves the state common to all interrupt handlers of this priority level to the stack and
then services its interrupt. If this handler needs to save additional state, it does so immediately after saving the
common state and then restores only the additional state when done. At the end of the handler routine, the ISR
writes to the meicpct register to capture the latest interrupt evaluation result, then reads the meihap register to
determine if any other interrupts of the same priority level are pending. If no, it restores the state from the stack and
exits. If yes, it immediately jumps into the next interrupt handler skipping the restoring of state in the finished handler
as well as the saving of the same state in the next handler. The chaining continues until no other ISRs of the same
priority level are pending, at which time the last ISR of the chain restores the original state from the stack again.

pusJ tate push state push state push state
Ext |nal Ext nal Exi nal Ex| [nal
Int¢ |upt Int¢ |upt Int¢ |upt LI} Int¢ |upt
H erA Han erB Han erC Har lern
pop state pop state pop state pop tate

Figure 5-6 Concept of Interrupt Chaining

5.8 Interrupt Nesting

Support for multiple levels of nested interrupts helps to provide a more deterministic interrupt latency at higher priority
levels. To achieve this, a running interrupt handler with lower priority must be preemptable by a higher-priority
interrupt. The state of the preempted handler is saved before the higher priority interrupt is executed, so that it can
continue its execution at the point it was interrupted.

SweRV EH1 and its PIC provide supported for up to 15 nested interrupts, one interrupt handler at each priority level.
The conceptual steps of nesting are:

1. The external interrupt is taken as described in step 15. of Section 5.5.2 Regular Operation. When the core
takes the external interrupt, it automatically disables all interrupts.

2. The external interrupt handler executes the following steps to get into the source-specific interrupt handler,
as described in Section 5.6:

st meicpct // atomically captures winning claim ID and priority level
1d meihap // get pointer to interrupt handler starting address

1d isr_addr // load interrupt handler starting address

jmp isr addr // jump to source-specific interrupt handler

3. The source-specific interrupt handler then saves the state of the code it interrupted (including the priority
level in case it was an interrupt handler) to the stack, sets the priority threshold to its own priority, and then
reenables interrupts:

push mepc, mstatus, mie,

push meicurpl // save interrupted code’s priority level
1d meicidpl // read interrupt handler’s priority level
st meicurpl // change threshold to handler’s priority
mstatus.mei=1 // reenable interrupts

4. Any external interrupt with a higher priority can now safely preempt the currently executing interrupt handler.
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5. Once the interrupt handler finished its task, it disables any interrupts and restores the state of the code it

interrupted:
mstatus.mei=0 // disable all interrupts
pop meicurpl // get interrupted code’s priority level
st meicurpl // set threshold to previous priority
pop mepc, mstatus, mie,
mret // return from interrupt, reenable interrupts

6. The interrupted code continues to execute.

5.9 Performance Targets

The target latency through the PIC, including the clock domain crossing latency incurred by the gateway, is 4 core
clock cycles.

5.10 Configurability

Typical implementations require fewer than 255 external interrupt sources. Code should only be generated for
functionality needed by the implementation.

5.10.1 Rules

e The IDs of external interrupt sources must start at 1, and be contiguous.
e All unused register bits must be hardwired to ‘0’.

5.10.2 Build Arguments
The PIC build arguments are:

e PIC base address for memory-mapped control/status registers (PIC_base_addr)
o See Section 14.1.2

e Number of external interrupt sources
o Total interrupt sources (RV_PIC_TOTAL_INT): 2..255

5.10.3 Impact on Generated Code

5.10.3.1 External Interrupt Sources
The number of required external interrupt sources has an impact on the following:

e General impact:
o Signal pins:
L exintsrc reql[S]
o Registers:

" meiplS$S
" meipX
o Logic:

=  Gateway S
e Target PIC core impact:

o Registers:
" meieS

o Logic:
=  Gating of priority level with interrupt enable
=  Number of first-level comparators
= Unnecessary levels of the comparator tree

5.10.3.2 Further Optimizations

Register fields, bus widths, and comparator MUXs are sized to cover the maximum external interrupt source IDs of
255. For approximately every halving of the number of interrupt sources, it would be possible to reduce the number
of register fields holding source IDs, bus widths carrying source IDs, and source ID MUXs in the comparators by one.
However, the overall reduction in logic is quite small, so it might not be worth the effort.
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5.11 PIC Control/Status Registers

A summary of the PIC control/status registers in CSR address space:

External Interrupt Priority Threshold Register (meipt) (see Section 5.11.5)

External Interrupt Vector Table Register (meivt) (see Section 5.11.6)

External Interrupt Handler Address Pointer Register (meihap) (see Section 5.11.7)

External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct) (see Section 5.11.8)
External Interrupt Claim ID’s Priority Level Register (meicidpl) (see Section 5.11.9)

External Interrupt Current Priority Level Register (meicurpl) (see Section 5.11.10)

A summary of the PIC memory-mapped control/status registers:

PIC Configuration Register (mpiccfg) (see Section 5.11.1)

External Interrupt Priority Level Registers (meiplS) (see Section 5.11.2)

External Interrupt Pending Registers (meipX) (see Section 5.11.3)

External Interrupt Enable Registers (meieS) (see Section 5.11.4)

External Interrupt Gateway Configuration Registers (meigwctrlS) (see Section 5.11.11)
External Interrupt Gateway Clear Registers (meigwclrS) (see Section 5.11.12)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

Note: All memory-mapped register writes must be followed by a fence instruction to enforce ordering and
synchronization.

Note: All memory-mapped control/status register accesses must be word-sized and word-aligned. Non-word
sized/aligned loads cause a load access fault exception, and non-word sized/aligned stores cause a store/AMO
access fault exception.

Note: Accessing unused addresses within the 32KB PIC address range do not trigger an unmapped address
exception. Reads to unmapped addresses return 0, writes to unmapped addresses are silently dropped.
5.11.1 PIC Configuration Register (mpiccfg)

The PIC configuration register is used to select the operational parameters of the PIC.

This 32-bit register is an idempotent memory-mapped control register.

Table 5-1 PIC Configuration Register (mpiccfg, at PIC_base_addr+0x3000)

Field Bits Description Access | Reset
Reserved | 31:1 | Reserved R 0
priord 0 Priority order: R/W 0

0: RISC-V standard compliant priority order (O=lowest to 15=highest)
1: Reverse priority order (15=lowest to O=highest)

5.11.2 External Interrupt Priority Level Registers (meiplS)

There are 255 priority level registers, one for each external interrupt source. Implementing individual priority level
registers allows a debugger to autonomously discover how many priority level bits are supported for this interrupt
source. Firmware must initialize the priority level for each used interrupt source. Firmware may also read the priority
level.

Implementation Note: The read and write paths between the core and the meiplS registers must support direct and
inverted accesses, depending on the priority order set in the priord bit of the mpiccfg register. This is necessary to
support the reverse priority order feature.

These 32-bit registers are idempotent memory-mapped control registers.
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Table 5-2 External Interrupt Priority Level Register S=1..255 (meiplS, at PIC_base_addr+S*4)

Field Bits Description Access | Reset
Reserved | 31:4 Reserved R 0
priority 3.0 External interrupt priority level for interrupt source ID S: R/W 0

RISC-V standard compliant priority order:

0: Never interrupt

1..15: Interrupt priority level (1 is lowest, 15 is highest)
Reverse priority order:

15: Never interrupt

14..0: Interrupt priority level (14 is lowest, 0 is highest)

5.11.3 External Interrupt Pending Registers (meipX)

Eight external interrupt pending registers are needed to report the current status of up to 255 independent external
interrupt sources. Each bit of these registers corresponds to an interrupt pending indication of a single external
interrupt source. These registers only provide the status of pending interrupts and cannot be written.

These 32-bit registers are idempotent memory-mapped status registers.

Table 5-3 External Interrupt Pending Register X=0..7 (meipX, at PIC_base_addr+0x1000+X*4)

Field Bits Description Access | Reset

X=0,Y=1.31 and X=1..7,Y=0..31

intpend Y External interrupt pending for interrupt source ID X*32+Y: R 0
0: Interrupt not pending
1: Interrupt pending

X=0,Y=0

Reserved | 0 Reserved R 0

5.11.4 External Interrupt Enable Registers (meieS)

Each of the up to 255 independently controlled external interrupt sources has a dedicated interrupt enable register.
Separate registers per interrupt source were chosen for ease-of-use and compatibility with existing controllers.

(Note: Not packing together interrupt enable bits as bit vectors results in context switching being a more expensive
operation.)

These 32-bit registers are idempotent memory-mapped control registers.

Table 5-4 External Interrupt Enable Register S=1..255 (meieS, at PIC_base_addr+0x2000+S*4)

Field Bits Description Access | Reset
Reserved | 31:1 Reserved R 0
inten 0 External interrupt enables for interrupt source ID S: R/W 0

0: Interrupt disabled
1: Interrupt enabled
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5.11.5 External Interrupt Priority Threshold Register (meipt)

The meipt register is used to set the interrupt target’s priority threshold. Interrupt notifications are sent to a target
only for external interrupt sources with a priority level strictly higher than this target’s threshold. Hosting the threshold
in a separate register allows a debugger to autonomously discover how many priority threshold level bits are
supported.

Implementation Note: The read and write paths between the core and the meipt register must support direct and
inverted accesses, depending on the priority order set in the priord bit of the mpiccfg register. This is necessary to
support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 5-5 External Interrupt Priority Threshold Register (meipt, at CSR 0xBC9)

Field Bits Description Access | Reset
Reserved | 31:4 | Reserved R 0
prithresh | 3:0 External interrupt priority threshold: R/W 0

RISC-V standard compliant priority order:
0: No interrupts masked

1..14: Mask interrupts with priority strictly lower than or equal to this
threshold

15: Mask all interrupts
Reverse priority order:
15: No interrupts masked

14..1: Mask interrupts with priority strictly lower than or equal to this
threshold

0: Mask all interrupts

5.11.6 External Interrupt Vector Table Register (meivt)

The meivt register is used to set the base address of the external vectored interrupt address table. The value
written to the base field of the meivt register appears in the base field of the meihap register.

This 32-bit register is mapped to the non-standard read-write CSR address space.

Table 5-6 External Interrupt Vector Table Register (meivt, at CSR 0xBC8)

Field Bits Description Access | Reset
base 31:10 | Base address of external interrupt vector table R/W 0
Reserved | 9:0 Reserved R 0

5.11.7 External Interrupt Handler Address Pointer Register (meihap)

The meihap register provides a pointer into the vectored external interrupt table for the highest-priority pending
external interrupt. The winning claim ID is captured in the claimid field of the meihap register when firmware writes
to the meicpct register to claim an external interrupt. The priority level of the external interrupt source
corresponding to the claimid field of this register is simultaneously captured in the clidpri field of the meicidpl
register. Since the PIC core is constantly evaluating the currently highest-priority pending interrupt, this mechanism
provides a consistent snapshot of the highest-priority source requesting an interrupt and its associated priority level.
This is important to support nested interrupts.
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The meihap register contains the full 32-bit address of the pointer to the starting address of the specific interrupt
handler for this external interrupt source. The external interrupt handler then loads the interrupt handler’s starting
address and jumps to that address.

Alternatively, the external interrupt source ID indicated by the claimid field of the meihap register may be used by the
external interrupt handler to calculate the address of the interrupt handler specific to this external interrupt source.

Implementation Note: The base field in the meihap register reflects the current value of the base field in the meivt
register. l.e., base is not stored in the meihap register.

This 32-bit register is mapped to the non-standard read-only CSR address space.

Table 5-7 External Interrupt Handler Address Pointer Register (meihap, at CSR 0xFC8)

Field Bits Description Access | Reset

base 31:10 | Base address of external interrupt vector table (i.e., base field of meivt R 0
register)

claimid 9:2 External interrupt source ID of highest-priority pending interrupt (i.e., R 0
lowest source ID with highest priority)

00 1:0 Must read as ‘00’ R 0

5.11.8 External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct)

The meicpct register is used to trigger the simultaneous capture of the currently highest-priority interrupt source ID
(in the claimid field of the meihap register) and its corresponding priority level (in the clidpri field of the meicidpl
register) by writing to this register. Since the PIC core is constantly evaluating the currently highest-priority pending
interrupt, this mechanism provides a consistent snapshot of the highest-priority source requesting an interrupt and its
associated priority level. This is important to support nested interrupts.

The meicpct register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

Implementation Note: The meicpct register does not have any physical storage elements associated with it. Itis
write-only and solely serves as the trigger to simultaneously capture the winning claim ID and corresponding priority
level.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 5-8 External Interrupt Claim ID / Priority Level Capture Trigger Register (meicpct, at CSR OxBCA)

Field Bits Description Access | Reset

Reserved | 31:0 Reserved RO/WA | O

5.11.9 External Interrupt Claim ID’s Priority Level Register (meicidpl)

The meicidpl register captures the priority level corresponding to the interrupt source indicated in the claimid field
of the meihap register when firmware writes to the meicpct register. Since the PIC core is constantly evaluating the
currently highest-priority pending interrupt, this mechanism provides a consistent snapshot of the highest-priority
source requesting an interrupt and its associated priority level. This is important to support nested interrupts.

Implementation Note: The read and write paths between the core and the meicidpl register must support direct
and inverted accesses, depending on the priority order set in the priord bit of the mpiccfg register. This is
necessary to support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.
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Table 5-9 External Interrupt Claim ID’s Priority Level Register (meicidpl, at CSR 0xBCB)

Field Bits Description Access | Reset

Reserved | 31:4 Reserved R 0

clidpri 3.0 Priority level of preempting external interrupt source (corresponding to R/W 0
source ID read from claimid field of meihap register)

5.11.10 External Interrupt Current Priority Level Register (meicurpl)

The meicurpl register is used to set the interrupt target’s priority threshold for nested interrupts. Interrupt
notifications are signaled to the core only for external interrupt sources with a priority level strictly higher than the
thresholds indicated in this register and the meipt register.

The meicurpl register is written by firmware, and not updated by hardware. The interrupt handler should read its
own priority level from the clidpri field of the meicidpl register and write it to the currpri field of the meicurpl
register. This avoids potentially being interrupted by another interrupt request with lower or equal priority once
interrupts are reenabled.

Note: Providing the meicurpl register in addition to the meipt threshold register enables an interrupt service
routine to temporarily set the priority level threshold to its own priority level. Therefore, only new interrupt requests
with a strictly higher priority level are allowed to preempt the current handler, without modifying the longer-term
threshold set by firmware in the meipt register.

Implementation Note: The read and write paths between the core and the meicurpl register must support direct
and inverted accesses, depending on the priority order set in the priord bit of the mpiccfg register. This is
necessary to support the reverse priority order feature.

This 32-bit register is mapped to the non-standard read/write CSR address space.

Table 5-10 External Interrupt Current Priority Level Register (meicurpl, at CSR 0xBCC)

Field Bits Description Access | Reset

Reserved | 31:4 | Reserved R 0

currpri 3:0 Priority level of current interrupt service routine (managed by firmware) R/W 0
5.11.11 External Interrupt Gateway Configuration Registers (meigwctrlS)

Each configurable gateway has a dedicated configuration register to control the interrupt type (i.e., edge- vs. level-
triggered) as well as the interrupt signal polarity (i.e., low-to-high vs. high-to-low transition for edge-triggered
interrupts, active-high vs. -low for level-triggered interrupts).

Note: A register is only present for interrupt source S if a configurable gateway is instantiated.
These 32-bit registers are idempotent memory-mapped control registers.

Table 5-11 External Interrupt Gateway Configuration Register S=1..255 (meigwctrlS, at
PIC_base_addr+0x4000+S*4)

Field Bits Description Access | Reset
Reserved | 31:2 | Reserved R 0
type 1 External interrupt type for interrupt source ID S: R/W 0

0: Level-triggered interrupt
1: Edge-triggered interrupt
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Field Bits Description Access | Reset

polarity 0 External interrupt polarity for interrupt source ID S: R/W 0
0: Active-high interrupt
1: Active-low interrupt

5.11.12 External Interrupt Gateway Clear Registers (meigwclrS)

Each configurable gateway has a dedicated clear register to reset its interrupt pending (IP) bit. For edge-triggered
interrupts, firmware must clear the gateway’s IP bit while servicing the external interrupt of source ID S by writing to
the meigwclrsS register.

Note: A register is only present for interrupt source S if a configurable gateway is instantiated.

The meigwclrsS register has WARO (Write Any value, Read 0) behavior. Writing ‘0’ is recommended.

Implementation Note: The meigwclrS register does not have any physical storage elements associated with it. It
is write-only and solely serves as the trigger to clear the interrupt pending (IP) bit of the configurable gateway S.

These 32-bit registers are idempotent memory-mapped control registers.

Table 5-12 External Interrupt Gateway Clear Register S=1..255 (meigwclrS, at PIC_base_addr+0x5000+S*4)

Field Bits Description Access | Reset

Reserved | 31:0 Reserved RO/WA | O

5.12 PIC CSR Address Map
Table 5-13 summarizes the PIC non-standard RISC-V CSR address map.

Table 5-13 PIC Non-standard RISC-V CSR Address Map

Number | Privilege | Name Description

0xBC8 MRW meivt External interrupt vector table register

0xBC9 MRW meipt External interrupt priority threshold register

0xBCA MRW meicpct External interrupt claim ID / priority level capture trigger register
0xBCB MRW meicidpl External interrupt claim ID’s priority level register

0xBCC MRW meicurpl External interrupt current priority level register

OxFC8 MRO meihap External interrupt handler address pointer register

5.13 PIC Memory-mapped Register Address Map
Table 5-14 summarizes the PIC memory-mapped register address map.

Table 5-14 PIC Memory-mapped Register Address Map

Address Offset from PIC_base_addr

Name Description
Start End
+ 0x0000 + 0x0003 Reserved Reserved
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Address Offset from PIC_base_addr
Name Description

Start End

+ 0x0004 + 0x0004 + Smax*4-1 meiplS External interrupt priority level register

+ 0x0004 + Smax*4 + OXOFFF Reserved Reserved

+ 0x1000 + 0x1000 + (Xmax+1)*4-1 meipX External interrupt pending register

+ 0x1000 + (Xmax+1)*4 + OX1FFF Reserved Reserved

+ 0x2000 + 0x2003 Reserved Reserved

+ 0x2004 + 0x2004 + Smax*4-1 meieS External interrupt enable register

+ 0x2004 + Smax*4 + OX2FFF Reserved Reserved

+ 0x3000 + 0x3003 mpiccfg Extgrnal interrupt PIC configuration
register

+ 0x3004 + Ox3FFF Reserved Reserved

+ 0x4000 + 0x4003 Reserved Reserved

+ 0x4004 + 0x4004 + Smax*4-1 meigwctrlS | External interrupt gateway configuration
register (for configurable gateways only)

+ 0x4004 + Smax*4 + Ox4FFF Reserved Reserved

+ 0x5000 + 0x5003 Reserved Reserved

+ 0x5004 + 0x5004 + Smax*4-1 meigwclrS External interrupt gateway clear register
(for configurable gateways only)

+ 0x5004 + Smax*4 + OX7FFF Reserved Reserved

Note: Xmax = (Smax + 31) // 32, whereas // is an integer division ignoring the remainder

5.14 Interrupt Enable/Disable Code Samples

5.14.1 Example Interrupt Flows

e Macro flow to enable interrupt source id 5 with priority set to 7, threshold set to 1, and gateway configured
for edge-triggered/active-low interrupt source:

disable ext int // Disable interrupts (MIE[meip]=0)
set_threshold 1 // Program global threshold to 1

init gateway 5, 1, 1 // Configure gateway id=5 to edge-triggered/low
clear gateway 5 // Clear gateway id=5

set priority 5, 7 // Set id=5 threshold at 7

enable interrupt 5 // Enable id=5

enable ext int // Enable interrupts (MIE[meip]=1)

e Macro flow to initialize priority order:
o To RISC-V standard order:

init priorityorder 0 // Set priority to standard RISC-V order
init nstthresholds 0 // Initialize nesting thresholds to 0

o Toreverse priority order:

init priorityorder 1 // Set priority to reverse order
init nstthresholds 15 // Initialize nesting thresholds to 15
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e Code to jump to the interrupt handler from the RISC-V trap vector:
trap vector: // Interrupt trap starts here when MTVEC [mode]=1
csrwi meicpct, 1 // Capture winning claim id and priority
csrr t0, meihap // Load pointer index
1w t1, 0(t0) // Load vector address
Jjr tl // Go there

e Code to handle the interrupt:

eint handler:
: // Do some useful interrupt handling
mret // Return from ISR

5.14.2 Example Interrupt Macros

e Disable external interrupt:

.macro disable ext int
// Clear MIE [miep]
disable ext int \@:
1i a0, (1<<11)
csrrc zero, mie, a0
.endm

e Enable external interrupt:

.macro enable ext int
enable ext int \@:

// Set MIE[miep]

11 a0, (1<<11)

csrrs zero, mie, a0
.endm

e Initialize external interrupt priority order:

.macro init priorityorder priord

init priorityorder \@:
1i tp, (RV_PIC BASE ADDR + RV PIC MPICCFG OFFSET)
1i t0, \priord
sw t0, 0(tp)

.endm

e Initialize external interrupt nesting priority thresholds:

.macro init nstthresholds threshold

init nstthresholds \@:
1i t0, \threshold
1i tp, (RV_PIC_BASE ADDR + RV_PIC MEICIDPL OFFSET)
sw t0, 0 (tp)
1i tp, (RV_PIC BASE ADDR + RV PIC MEICURPL OFFSET)
sw t0, 0(tp)

.endm

e Set external interrupt priority threshold:

.macro set threshold threshold

set_threshold \@:
1i tp, (RV_PIC BASE ADDR + RV_PIC MEIPT OFFSET)
1i t0, \threshold
sw t0, 0(tp)

.endm
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e Enable interrupt for source id:

.macro enable interrupt id
enable interrupt \@:
1i tp, (RV_PIC BASE ADDR + RV_PIC MEIE OFFSET + (\id <<2))

11 to, 1
sw t0, 0(tp)
.endm

e  Set priority of source id:

.macro set priority id, priority

set priority \@:
1i tp, (RV_PIC BASE ADDR + RV_PIC MEIPL OFFSET + (\id <<2))
1i t0, \priority
sw t0, 0 (tp)

.endm

e Initialize gateway of source id:

.macro init gateway id, polarity, type
init gateway \@:
1i tp, (RV_PIC BASE ADDR + RV_PIC MEIGWCTRL OFFSET + (\id <<2))

1i t0, ((\polarity<<l) | \type)
sw t0, 0(tp)
.endm

e Clear gateway of source id:

.macro clear gateway id

clear gateway \@:
1i tp, (RV_PIC BASE ADDR + RV _PIC MEIGWCLR OFFSET + (\id <<2))
sw zero, O0(tp)

.endm
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6 Performance Monitoring

This chapter describes the performance monitoring features of the SweRV EH1 core.

6.1 Features

SweRYV EHL1 provides these performance monitoring features:

Four standard 64-bit wide event counters

Standard separate event selection for each counter
Standard selective count enable/disable controllability
Synchronized counter enable/disable controllability
Standard cycle counter

Standard retired instructions counter

Support for standard SoC-based machine timer registers

6.2 Control/Status Registers

6.2.1 Standard RISC-V Registers
A list of performance monitoring-related standard RISC-V CSRs with references to their definitions:

e Machine Hardware Performance Monitor (ncycle{ |h}, minstret{|h}, mhpmcounter3{|h}-
mhpmcounter31{|h}, and mhpmevent3-mhpmevent31) (see Section 3.1.16 in [2])
e Machine Timer Registers (mt ime and mt imecmp) (see Section 3.1.15 in [2])

6.2.2 Platform-specific Control/Status Registers
A summary of platform-specific control/status registers in CSR space:
e  Group Performance Monitor Control Register (mgpmc) (see Section 6.2.2.1)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

6.2.2.1  Group Performance Monitor Control Register (mgpmc)

The mgpmc register allows to synchronously enable or disable the four machine hardware performance monitor
counters mhpmcounter3..6. This register only controls if incrementing the counters on selected events is enabled or
disabled, but does not affect the counter values of the hardware performance monitor counters (i.e., the counters are
not reset or changed in any way).

This register is mapped to the non-standard read/write CSR address space.

Table 6-1 Group Performance Monitor Control Register (mgpmc, at CSR 0x7D0)

Field Bits Description Access | Reset
Reserved 311 Reserved R 0
enable 0 Group performance monitor counter control (mhpmcounter3..6): R/W 1

0: Disable incrementing of all performance monitor counters
1: Enable incrementing of all performance monitor counters

6.3 Counters
Only event counters 3 to 6 (mhpmcounter3{|h}-mhpmcounter6{|h}) and their corresponding event selectors

(mhpmevent3-mhpmevent6) are functional on SweRV EH1. Event counters 7 to 31 (mhpmcounter7{|h}-
mhpmcounter31{|h}) and their corresponding event selectors (mhpmevent 7-mhpmevent31) are hardwired to ‘0.
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6.4 Count-Impacting Conditions

A few comments to consider on conditions that have an impact on the performance monitor counting:

e While in the pmu/fw-halt power management state, performance counters (including the mcycle counter)
are disabled.

e While in debug halt (db-halt) state, the stopcount bit in the dcsr (Debug Control and Status Register)
register determines if performance counters are enabled.

e  While in the pmu/fw-halt power management state or the debug halt (db-halt) state with the stopcount bit
set, DMA accesses are allowed, but not counted by the performance counters. It would be up to the bus
master to count accesses while the core is in a halt state.

e While executing PAUSE, performance counters are enabled.

Also, it is recommended that the performance counters are disabled (using the mgpmc register) before the counters
and event selectors are modified, and then reenabled again. This minimizes the impact of reading and writing the
counter and event selector CSRs on the event count values, specifically for the CSR read/write events (i.e., events
#16 and #17). In general, performance counters are incremented after a read access to the counter CSRs, but
before a write access to the counter CSRs.

6.5 Events

Table 6-2 provides a list of the countable events.

Note: The event selector registers mhpmevent3-mhpmevent6 have WARL behavior. When writing a value larger
than the highest supported event number, the event selector is set to the highest event number.

Table 6-2 List of Countable Events

Legend: IP = In-Pipe; OOP = Out-Of-Pipe

Event No | Event Name Description

0 Reserved (no event counted)

1 cycles clocks active Number of cycles clock active (OOP)

2 I-cache hits Number of I-cache hits (OOP, speculative, valid fetch & hit)

3 I-cache misses Number of I-cache misses (OOP, valid fetch & miss)

4 instr committed - all Number of all (16b+62b) instructions committed (IP, non-speculative,
0/1/2)

5 instr committed - 16b Number of 16b instructions committed (IP, non-speculative, 0/1/2)

6 instr committed - 32b Number of 32b instructions committed (IP, non-speculative, 0/1/2)

7 instr aligned - all Number of all (16b+32b) instructions aligned (OOP, speculative, 0/1/2)

8 instr decoded - all Number of all (16b+32b) instructions decoded (OOP, speculative, 0/1/2)

9 muls committed Number of multiplications committed (IP, 0/1)

10 divs committed Number of divisions committed (IP, 0/1)

11 loads committed Number of loads committed (IP, 0/1)

12 stores committed Number of stores committed (IP, 0/1)

13 misaligned loads Number of misaligned loads (IP, 0/1)

14 misaligned stores Number of misaligned stores (IP, 0/1)
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Event No | Event Name Description

15 alus committed Number of ALU*S operations committed (IP, 0/1/2)

16 CSR read Number of CSR read instructions committed (IP, 0/1)

17 CSR read/write Number of CSR read/write instructions committed (IP, 0/1)

18 CSR write rd==0 Number of CSR write rd==0 instructions committed (IP, 0/1)

19 ebreak Number of ebreak instructions committed (IP, 0/1)

20 ecall Number of ecall instructions committed (IP, 0/1)

21 fence Number of fence instructions committed (IP, 0/1)

22 fence.i Number of fence.i instructions committed (IP, 0/1)

23 mret Number of mret instructions committed (IP, 0/1)

24 branches committed Number of branches committed (IP)

25 branches mispredicted Number of branches mispredicted (IP)

26 branches taken Number of branches taken (IP)

27 unpredictable branches | Number of unpredictable branches (IP)

28 cycles fetch stalled Number of cycles fetch ready but stalled (OOP)

29 cycles aligner stalled Number of cycles one or more instructions valid in aligner but IB full

(O0oP)
30 cycles decode stalled Number of cycles one or more instructions valid in IB but decode stalled
(O0P)

31 cycles postsync stalled Number of cycles postsync stalled at decode (OOP)

32 cycles presync stalled Number of cycles presync stalled at decode (OOP)

33 cycles frozen Number of cycles pipe is frozen by LSU (OOP)
(Isu_freeze_dc3)

34 cycles SB/WB stalled Number of cycles decode stalled due to SB or WB full (OOP)
(Isu_store_stall_any)

35 cycles DMA DCCM Number of cycles DMA stalled due to decode for load/store (OOP)
transaction stalled
(dma_dccm_stall_any)

36 cycles DMA ICCM Number of cycles DMA stalled due to fetch (OOP)
transaction stalled
(dma_iccm_stall_any)

37 exceptions taken Number of exceptions taken (IP)

38 timer interrupts taken Number of timer interrupts taken (IP)

39 external interrupts taken | Number of external interrupts taken (IP)

40 TLU flushes (flush Number of TLU flushes (flush lower) (IP)
lower)

41 branch error flushes Number of branch error flushes (IP)

42 I-bus transactions - instr | Number of instr transactions on I-bus interface (OOP)

15 NOP is an ALU operation. WFI is implemented as a NOP in SweRV EHX1 and, hence, counted as an ALU operation was well.
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Event No | Event Name Description

43 D-bus transactions - Number of Id/st transactions on D-bus interface (OOP)
Id/st

44 D-bus transactions - Number of misaligned transactions on D-bus interface (OOP)
misaligned

45 I-bus errors Number of transaction errors on I-bus interface (OOP)

46 D-bus errors Number of transaction errors on D-bus interface (OOP)

47 cycles stalled due to I- Number of cycles stalled due to AXI or AHB-Lite I-bus busy (OOP)
bus busy

48 cycles stalled due to D- | Number of cycles stalled due to AXI or AHB-Lite D-bus busy (OOP)
bus busy

49 cycles interrupts Number of cycles interrupts disabled (MSTATUS.MIE==0) (OOP)
disabled

50 cycles interrupts stalled | Number of cycles interrupts stalled while disabled (MSTATUS.MIE==0)
while disabled (O0P)
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7 Cache Control

This chapter describes the features to control the SweRV EH1 core’s instruction cache (I-cache).

7.1 Features

The SweRV EH1’s I-cache control features are:

e  Flushing the I-cache
e Capability to enable/disable I-cache
e Diagnostic access to data, tag, and status information of the I-cache

Note: The I-cache is an optional core feature. Instantiation of the I-cache is controlled by the RV_ICACHE_ENABLE
build argument.

7.2 Feature Descriptions

7.2.1 Cache Flushing

As described in Section 2.7.2, a debugger may initiate an operation that is equivalent to a fence. i instruction by
writing a ‘1’ to the fence.i field of the dmst register. As part of executing this operation, the I-cache is flushed (i.e., all
entries in the I-cache are invalidated).

7.2.2 Enabling/Disabling I-Cache

As described in Section 2.7.1, each of the 16 memory regions has two control bits which are hosted in the mrac
register. One of these control bits, cacheable, controls if accesses to that region may be cached. If the cacheable
bits of all 16 regions are set to ‘0’, the I-cache is effectively turned off.

7.2.3 Diagnostic Access

For firmware as well as hardware debug, direct access to the raw content of the data array, tag array, and status bits
of the I-cache may be important. Instructions stored in the cache, the tag of a cache line as well as status information
including a line’s valid bit and a set’'s LRU bits can be manipulated. It is also possible to inject a parity/ECC error in
the data or tag array to check error recovery. Four control registers are used to provide read/write diagnostic access
to the two arrays and status bits. The dicawics register controls the selection of the array, way, and index of a
cache line. The dicad0/1 and dicago registers are used to perform a read or write access to the selected array
location. See Sections 7.5.1 - 7.5.4 for more detailed information.

Note: The instructions and the tags are stored in parity/ECC-protected SRAM arrays. The status bits are stored in
flops.

7.3 Use Cases

The I-cache control features can be broadly divided into two categories:
1. Debug Support
A few examples how diagnostic accesses (Section 7.2.3) may be useful for debug:

Generating an I-cache dump (e.g., to investigate performance issues).

Injecting parity/ECC errors in the data or tag array of the I-cache.

Diagnosing stuck-at bits in the data or tag array of the I-cache.

Preloading the I-cache if a hardware bug prevents instruction fetching from memory.

2. Performance Evaluation

To evaluate the performance advantage of the I-cache, it is useful to run code with and without the cache
enabled. Enabling and disabling the I-cache (Section 7.2.2) is an essential feature for this.
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7.4 Theory of Operation

7.4.1 Read a Chunk of an I-cache Cache Line

The following steps must be performed to read a 32-bit chunk of instruction data and its associated 2 parity / 10 ECC
bits in an I-cache cache line:

1. Write array/way/address information which location to access in the I-cache to the dicawics register:
e array field: O (i.e., I-cache data array)
o way field: way to be accessed (i.e., 0..3)
e index field: index of cache line to be accessed
2. Read the dicago register which causes a read access from the I-cache data array at the location selected
by the dicawics register
3. Read the dicado register to get the selected 32-bit cache line chunk (instr field), and read the dicadl
register to get the associated parity/ECC bits (parityO and parityl / eccO and eccl fields)

7.4.2 Write a Chunk of an I-cache Cache Line

The following steps must be performed to write a 32-bit chunk of instruction data and its associated 2 parity / 10 ECC
bits in an I-cache cache line:

1. Write array/way/address information which location to access in the I-cache to the dicawics register:
e array field: O (i.e., I-cache data array)
e way field: way to be accessed (i.e., 0..3)
e index field: index of cache line to be accessed
2. Write the new instruction information to the instr field of the dicado0 register, and write the calculated correct
instruction parity/ECC bits (unless error injection should be performed) to the parityO and parityl / eccO and
eccl fields of the dicad1l register
3. Write a ‘1’ to the go field of the dicago register which causes a write access to the I-cache data array
copying the information stored in the dicad0/1 registers to the location selected by the dicawics register

7.4.3 Read or Write a Full I-cache Cache Line

The following steps must be performed to read or write instruction data and associated parity/ECC bits of a full I-
cache cache line:

1. Start with an index naturally aligned to the 64-byte cache line size (i.e., index[5:2] = ‘0000’).
2. Perform steps in Section 7.4.1 to read or Section 7.4.2 to write.

3. Increment the index.

4. Go back to step 2.) for a total of 16 iterations.

7.4.4 Read a Tag and Status Information of an I-cache Cache Line

The following steps must be performed to read the tag, tag’s parity/ECC bit(s), and status information of an I-cache
cache line:

1. Write array/way/address information which location to access in the I-cache to the dicawics register:
e array field: 1 (i.e., I-cache tag array and status)
e way field: way to be accessed (i.e., 0..3)
¢ index field: index of cache line to be accessed
2. Read the dicago register which causes a read access from the I-cache tag array and status bits at the
location selected by the dicawics register
3. Read the dicado register to get the selected cache line’s tag (tag field) and valid bit (valid field) as well as
the set’s LRU bits (Iru field), and read the dicadl register to get the tag’s parity/ECC bit(s) (parityO / eccO
field)

7.4.5 Write a Tag and Status Information of an I-cache Cache Line

The following steps must be performed to write the tag, tag’s parity/ECC bit, and status information of an I-cache
cache line:

1. Write array/way/address information which location to access in the I-cache to the dicawics register:
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e array field: 1 (i.e., I-cache tag array and status)
o way field: way to be accessed (i.e., 0..3)
e index field: index of cache line to be accessed
2. Write the new tag, valid, and LRU information to the tag, valid, and Iru fields of the dicado0 register, and
write the calculated correct tag parity/ECC bit (unless error injection should be performed) to the parityO /
eccO field of the dicad1l register
3.  Write a ‘1’ to the go field of the dicago register which causes a write access to the I-cache tag array and
status bits copying the information stored in the dicad0/1 registers to the location selected by the
dicawics register

7.5 I|-Cache Control/Status Registers

A summary of the I-cache control/status registers in CSR address space:

I-Cache Array/Way/Index Selection Register (dicawics) (see Section 7.5.1)
I-Cache Array Data 0 Register (dicad0) (see Section 7.5.2)

I-Cache Array Data 1 Register (dicadl) (see Section 7.5.3)

I-Cache Array Go Register (dicago) (see Section 7.5.4)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

7.5.1 I-Cache Array/Way/Index Selection Register (dicawics)

The dicawics register is used to select a specific location in either the data array or the tag array / status of the I-
cache. In addition to selecting the array, the location in the array must be specified by providing the way, and index.
Once selected, the dicad0/1 registers (see Sections 7.5.2 and 7.5.3) hold the information read from or written to the
specified location, and the dicago register (see Section 7.5.4) is used to control the read/write access to the
specified I-cache array.

The cache line size of the I-cache is 64 bytes. The dicawics register addresses two chunks consisting each of 16
consecutive bits of instruction data and separately protected by parity/ECC bits. There are 16 such chunk pairs in a
cache line.

Note: This register is accessible in debug mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 7-1 I-Cache Array/Way/Index Selection Register (dicawics, at CSR 0x7C8)

Field Bits Description Access | Reset
Reserved | 31:25 | Reserved R 0
array 24 Array select: R/W 0

0: I-cache data array (incl. parity/ECC bits)
1: I-cache tag array (incl. parity/ECC bits) and status (incl. valid and

LRU bits)
Reserved | 23:22 | Reserved R 0
way 21:20 | Way select R/W 0
Reserved | 19:16 | Reserved R 0
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Field Bits Description Access | Reset
index18 15:2 Index address bits select R/W 0
Notes:

¢ Index bits are right-justified; for I-cache sizes smaller than 256 KB,
unused upper bits are 0

e For tag array and status, bits 5..2 are ignored by hardware

Reserved | 1:0 Reserved R 0

7.5.2 I-Cache Array Data 0 Register (dicadO)

The dicado0 register, in combination with the dicadl register (see Section 7.5.3), is used to store information read
from and written to the I-cache array location specified with the dicawics register (see Section 7.5.1). Triggering a
read or write access of the I-cache array is controlled by the dicago register (see Section 7.5.4). The layout of the
dicad register is different for the data array and the tag array / status, as described in Table 7-2 below.

Note: During normal operation, the parity/ECC bits over the 32-bit instruction data as well as the tag are generated
and checked by hardware. However, to enable error injection, the parity/ECC bits must be computed by software for
I-cache data and tag array diagnostic writes.

Note: This register is accessible in debug mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 7-2 I-Cache Array Data 0 Register (dicad0, at CSR 0x7C9)

Field Bits Description Access | Reset

I-cache data array

instr 31.0 Instruction data R/W 0
31:16: instruction data bytes 3/2 (protected by parityl / eccl)
15:0: instruction data bytes 1/0 (protected by parityO / eccO)

I-cache tag array and status bits

tag 31:12 | Tag R/W 0
Note:

e Tag bits are left-justified; for I-cache sizes larger than 16 KB, unused
lower bits are 0

Unused 11:7 Unused R/W 0

16 SweRV EHX1's |-cache supports four way-set associativity, each way is subdivided into 4 banks, and each bank hosts 16 bytes of
a 64-byte cache line. A bank is selected by index[5:4]. The 16 bytes within a bank are selected by index[3:2] in increasing 32-bit
chunk pairs (i.e., ‘00’: bytes 3..0, ‘01": bytes 7..4, ‘“10’: bytes 11..8, and ‘“11’: bytes 15..12).
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Field

Bits

Description

Access

Reset

Iru

6:4

Pseudo LRU bits (same bits are accessed independent of selected way):

Bit 4: way0/1 / way2/3 selection
0: way0/1
1: way2/3
Bit 5: way0 / way1 selection
0: way0
1: wayl
Bit 6: way?2 / way3 selection
0: way2
1: way3

RW

Unused

Unused

RW

valid

Cache line valid/invalid:
0: cache line invalid
1: cache line valid

RW

7.5.3 I-Cache Array Data 1 Register (dicadl)

The dicadl register, in combination with the dicad0 register (see Section 7.5.37.5.2), is used to store information

read from and written to the I-cache array location specified with the dicawics register (see Section 7.5.1).

Triggering a read or write access of the I-cache array is controlled by the dicago register (see Section 7.5.4). The
layout of the dicad1 register is described in Table 7-3 below.

Note: During normal operation, the parity/ECC bits over the 32-bit instruction data as well as the tag are generated
and checked by hardware. However, to enable error injection, the parity/ECC bits must be computed by software for
I-cache data and tag array diagnostic writes.

Note: This register is accessible in debug mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

This register is mapped to the non-standard read-write CSR address space.

Table 7-3 I-Cache Array Data 1 Register (dicadl, at CSR 0x7CA)

Field Bits Description Access | Reset

Parity

Reserved | 31:2 | Reserved R 0

parityl 1 Even parity for I-cache data bytes 3/2 (instr[31:16]) R/W 0

parityO 0 Even parity for I-cache data bytes 1/0 (instr[15:0]), or R/W 0
Even parity for I-cache tag (tag)

ECC

Reserved | 31:10 | Reserved R 0

eccl 9:5 ECC for I-cache data bytes 3/2 (instr[31:16]) R/W 0

eccO 4:0 ECC for I-cache data bytes 1/0 (instr[15:0]), or R/W 0
ECC for I-cache tag (tag)
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7.5.4 I-Cache Array Go Register (dicago)

The dicago register is used to trigger a read from or write to the I-cache array location specified with the dicawics
register (see Section 7.5.1). Reading the dicago register populates the dicad0/dicadl registers (see Sections
7.5.2 and 7.5.3) with the information read from the I-cache array. Writing a ‘1’ to the go field of the dicago register
copies the information stored in the dicad0/dicadl registers to the I-cache array. The layout of the dicago
register is described in Table 7-4 below.

Note: This register is accessible in debug mode only. Attempting to access this register in machine mode raises an
illegal instruction exception.

The go field of the dicago register has W1RO0 (Write 1, Read 0) behavior, as also indicated in the ‘Access’ column.

This register is mapped to the non-standard read-write CSR address space.

Table 7-4 1-Cache Array Go Register (dicago, at CSR 0x7CB)

Field Bits Description Access | Reset
Reserved | 31:1 | Reserved R 0
go 0 Read triggers an I-cache read, write-1 triggers an I-cache write RO/W1 | O
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8 Low-Level Core Control

This chapter describes some low-level core control registers.

8.1 Control/Status Registers

A summary of platform-specific control/status registers in CSR space:

e Feature Disable Register (mfdc) (see Section 8.1.1)
e Clock Gating Control Register (mcgc) (see Section 8.1.2)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

8.1.1 Feature Disable Register (mfdc)

The mfdc register hosts low-level core control bits to disable specific features. This may be useful in case a feature
intended to increase core performance should prove to have problems.

Note: fence. i instructions are required before and after writes to the mfdc register.
Note: The default state of the controllable features is ‘enabled’. Firmware may turn off a feature if needed.

This register is mapped to the non-standard read/write CSR address space.

Table 8-1 Feature Disable Register (mfdc, at CSR 0x7F9)

Field Bits Description Access | Reset

Reserved 31:11 | Reserved R 0
10 Dual issue disable R/W 0
9 PIC multiple interrupts disable R/W 0
8 Core ECC check disable RW 0
7 Secondary ALU disable R/W 0

Reserved 6 Reserved R 0
5 LSU/DIV non-blocking disable R/W 0
4 Fast divide disable R/W 0
3 Branch prediction disable R/W 0
2 Write Buffer (WB) coalescing disable R/W 0
1 Load miss bypass Write Buffer (WB) disable R/W 0
0 Pipelining disable R/W 0

8.1.2 Clock Gating Control Register (mcgc)

The mcgc register hosts low-level core control bits to override clock gating for specific units. This may be useful in
case a unit intended to be clock gated should prove to have problems when in lower power mode.

Note: The default state of the clock gating overrides is ‘disabled’. Firmware may turn off clock gating (i.e., set the
clock gating override bit) for a specific unit if needed.

This register is mapped to the non-standard read/write CSR address space.
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Field Bits Description Access | Reset
Reserved 31:9 Reserved R 0

8 Miscellaneous RW 0

7 DEC R/W 0

6 EXU R/W 0

5 IFU R/W 0

4 LSU R/W 0

3 Bus R/W 0

2 PIC R/W 0

1 DCCM R/W 0

0 ICCM RIW 0
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9 Standard RISC-V CSRs with Core-Specific Adaptations

A summary of standard RISC-V control/status registers in CSR space with platform-specific adaptations:

e  Machine Interrupt Enable (mie) and Machine Interrupt Pending (mip) Registers (see Section 9.1.1)
e Machine Cause Enable Register (mcause) (see Section 9.1.2)

All reserved and unused bits in these control/status registers must be hardwired to ‘0’. Unless otherwise noted, all
read/write control/status registers must have WARL (Write Any value, Read Legal value) behavior.

9.1.1 Machine Interrupt Enable (mie) and Machine Interrupt Pending (mip) Registers

The standard RISC-V mie and mip registers hold the machine interrupt enable and interrupt pending bits,
respectively. Since SweRV EH1 only supports machine mode, all supervisor- and user-specific bits are not
implemented. In addition, the mie/mip registers also host the platform-specific local interrupt enable/pending bits
(shown with a gray background in Table 9-1 and Table 9-2 below).

Table 9-1 Machine Interrupt Enable Register (mie, at CSR 0x304)

Field Bits Description Access | Reset
Reserved 31 Reserved R 0
mceie 30 Correctable error local interrupt enable R/W 0
Reserved 29:12 | Reserved R 0
meie 11 Machine external interrupt enable R/W 0
Reserved 10:8 Reserved R 0
mtie 7 Machine timer interrupt enable R/W 0
Reserved 6:4 Reserved R 0
msie 3 Machine software interrupt enable!’ RW 0
Reserved 2:0 Reserved R 0

Table 9-2 Machine Interrupt Pending Register (mip, at CSR 0x344)

Field Bits Description Access | Reset
Reserved 31 Reserved R 0
mceip 30 Correctable error local interrupt pending R 0
Reserved 29:12 | Reserved R 0
meip 11 Machine external interrupt pending R 0
Reserved 10:8 Reserved R 0
mtip 7 Machine timer interrupt pending R 0
Reserved 6:0 Reserved R 0

7 The msie bit is physically implemented, but has no functional effect since the ‘software interrupt’ request signal is hardwired to ‘0.
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The standard RISC-V mcause register indicates the cause for a trap as shown in Table 9-3, including standard
exceptions/interrupts, platform-specific local interrupts (with light gray background), and NMI causes (with dark gray

background).

Note: The mcause register has WLRL (Write Legal value, Read Legal value) behavior.

Table 9-3 Machine Cause Register (mcause, at CSR 0x342)

Value
Interrupt Exé‘;%téon Loy Description Section(s)
EEEE ) mcause[30:0]
0x0000_0000 NMI pin assertion 2.12
1 0x0000_0001 Instruction access fault if&%_iﬁ'e‘
2 0x0000_0002 lllegal instruction
3 0x0000_0003 Breakpoint
4 0x0000_0004 Load address misaligned 2.6.5
0 5 0x0000_0005 Load access fault if&%_iﬁﬁ’
6 0x0000_0006 Store/AMO address misaligned 2.6.5
7 0x0000_0007 | Store/AMO access fault 2}16&43;_2'6'6'
11 0x0000_000B Environment call from M-mode
7 0x8000_0007 Machine timer interrupt
11 0x8000_000B Machine external interrupt
1 30 0x8000_001E Machine correctable error local interrupt 2.6.2
0xF000_0000 Machine D-bus store error NMI 2.6.1
0xF000_0001 Machine D-bus non-blocking load error NMI 2.6.1
Note: All other values are reserved.
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10 CSR Address Map

10.1 Core-Specific Standard RISC-V CSRs

Table 10-1 lists the SweRV EH1 core-specific standard RISC-V Machine Information CSRs.

Table 10-1 SweRV EH1 Core-Specific Standard RISC-V Machine Information CSRs

1/24/2019

Number | Privilege | Name Description Value

0x301 MRW misa ISA and extensions (Note: writes ignored) 0x4000_1104
OxF11 MRO mvendorid | Vendor ID 0x0000_0045
OxF12 MRO marchid Architecture ID 0x0000_000B
O0xF13 MRO mimpid Implementation ID 0x0000_0001
OxF14 MRO mhartid Hardware thread ID 0x0000_0000

10.2 Non-Standard RISC-V CSRs

Table 10-2 summarizes the SweRV EH1 non-standard RISC-V CSR address map.

Table 10-2 SweRV EH1 Non-Standard RISC-V CSR Address Map

Number | Privilege | Name Description Section
0x7CO0 MRW mrac Region access control 27.1
0x7C2 MRW mcpc Core pause control 4472
0x7C4 DRW dmst Memory synchronization trigger (debug mode only) 2.7.2
0x7C6 MRW mpmc Power management control 44.1
0x7C8 DRW dicawics I-cache array/way/index selection (debug mode only) 75.1
0x7C9 DRW dicad0 I-cache array data O (debug mode only) 7.5.2
0x7CA DRW dicadl I-cache array data 1 (debug mode only) 7.5.3
0x7CB DRW dicago I-cache array go (debug mode only) 75.4
0x7DO0 MRW mgpmc Group performance monitor control 6.2.2.1
0x7FO0 MRW micect I-cache error counter/threshold 351
Ox7F1 MRW miccmect | ICCM correctable error counter/threshold 3.5.2
O0x7F2 MRW mdccmect | DCCM correctable error counter/threshold 3.5.3
Ox7F8 MRW mcgc Clock gating control 8.1.2
0x7F9 MRW mfdc Feature disable control 8.1.1
0xBCO MRW mdeau D-Bus error address unlock 274
0xBC8 MRW meivt External interrupt vector table 5.11.6
0xBC9 MRW meipt External interrupt priority threshold 5.115
OxBCA MRW meicpct External interrupt claim ID / priority level capture trigger 5.11.8
0xBCB MRW meicidpl External interrupt claim ID’s priority level 5.11.9
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Number | Privilege | Name Description Section
0xBCC MRW meicurpl External interrupt current priority level 5.11.10
0xFCO MRO mdseac D-bus first error address capture 2.7.3
0xFC8 MRO meihap External interrupt handler address pointer 5.11.7
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11 Interrupt Priorities

Table 11-1 summarizes the SweRV EH1 platform-specific (Local) and standard RISC-V (External and Timer) relative
interrupt priorities.

Table 11-1 SweRV EH1 Platform-specific and Standard RISC-V Interrupt Priorities

Interrupt Section

Highest Interrupt Priority | Non-Maskable Interrupt (standard RISC-V)

External interrupt (standard RISC-V)

Correctable error (local interrupt) 26.2

Lowest Interrupt Priority Timer interrupt (standard RISC-V)
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12 Clock and Reset

This chapter describes clocking and reset signals used by the SweRV EH1 core complex.

12.1 Features

The SweRV EH1 core complex’s clock and reset features are:

e  Support for independent clock ratios for four separate system bus interfaces
o  System bus clock ratios controlled by SoC

e Single core clock input
o  System bus clock ratios controlled by enable signals

e Single core reset signal
o Ability to reset to Debug Mode

12.2 Clocking

12.2.1 Regular Operation

The SweRV EH1 core complex is driven by a single clock (c1k). All input and output signals, except those listed in
Table 12-1, are synchronous to c1k.

The core complex provides three master system bus interfaces (for instruction fetch, load/store data, and debug) as
well as one slave (DMA) system bus interface. The SoC controls the clock ratio for each system bus interface via the
clock enable signal (*_bus_clk_en). The clock ratios selected by the SoC may be the same or different for each

system bus.

Figure 12-1 depicts the conceptual relationship of the clock (c1k), system bus enable (*_bus clk en) used to
select the clock ratio for each system bus, and the data (*data) of the respective system bus.

ck___f~ N \_/_

* bus_clk_en _/ \

* bus_clk / | N\ .

*data

Figure 12-1 Conceptual Clock, Clock-Enable, and Data Timing Relationship

Note that the clock net is not explicitly buffered, as the clock tree is expected to be synthesized during place-and-
route. The achievable clock frequency depends on the configuration, the sizes and configuration of I-cache and
I/DCCMs, and the silicon implementation technology.

12.2.2 System Bus-to-Core Clock Ratios

Figure 12-2 to Figure 12-9 depict the timing relationships of clock, clock-enable, and data for the supported system
bus clock ratios from 1:1 (i.e., the system bus and core run at the same rate) to 1:8 (i.e., the system bus runs eight
times slower than the core).
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Figure 12-2 1:1 System Bus-to-Core Clock Ratio
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Figure 12-3 1:2 System Bus-to-Core Clock Ratio
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Figure 12-4 1:3 System Bus-to-Core Clock Ratio
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Figure 12-5 1:4 System Bus-to-Core Clock Ratio
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Figure 12-6 1:5 System Bus-to-Core Clock Ratio
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Figure 12-7 1:6 System Bus-to-Core Clock Ratio
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Figure 12-8 1:7 System Bus-to-Core Clock Ratio
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* bus_clk_en \

*_bus_clk

*data

Figure 12-9 1:8 System Bus-to-Core Clock Ratio

12.2.3 Asynchronous Signals

Table 12-1 provides a list of signals which are asynchronous to the core clock (c1k). Signals which are inputs to the
core complex are synchronized to c1k in the core complex logic. Signals which are outputs of the core complex must
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be synchronized outside of the core complex logic if the respective receiving clock domain is driven by a different
clock than c1k.

Note that each asynchronous input passes through a two-stage synchronizer. The signal must be asserted for at
least two full c1k cycles to guarantee it is detected by the core complex logic. Shorter pulses might be dropped by
the synchronizer circuit.

Table 12-1 Core Complex Asynchronous Signals

Signal Dir | Description
Interrupts
extintsrc_req[RV_PIC_TOTAL_INT:1] in External interrupts
timer_int in Standard RISC-V timer interrupt
nmi_int in Non-Maskable Interrupt
Power Management Interface
i_cpu_halt_req in Halt request to core
0_cpu_halt_ack out | Core acknowledgement for halt request
0_cpu_halt_status out | Core halted indication
0_debug_mode_status out | Core in debug mode indication
i_cpu_run_req in Run request to core
0_cpu_run_ack out | Core acknowledgement for run request
JTAG
jtag_tck in JTAG Test Clock
jtag_tms in JTAG Test Mode Select
jtag_tdi in JTAG Test Data In
jtag_trst_n in JTAG Test Reset
jtag_tdo out | JTAG Test Data Out
12.3 Reset

As shown in Figure 12-10, the core complex reset signal (rst_1) is active-low, may be asynchronously asserted, but
must be synchronously de-asserted to avoid any glitches. The rst_1 input signal is not synchronized to the core
clock (c1k) inside the core complex logic. All core complex flops are reset asynchronously.

ok N\ )

SENNNNNN\N\\N v

\ \
Figure 12-10 Conceptual Clock and Reset Timing Relationship

Note that the core complex clock (c1k) must be stable before the core complex reset (rst_1) is deasserted. Also,
the rst_1 signal is not explicitly buffered, as synthesis tools are expected to automatically buffer the rst_1 net.
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12.3.1 Debugger Initiating Reset via JTAG Interface

A debugger may also initiate a reset of the core complex logic via the JTAG interface. Note that such a reset
assertion is not visible to the SoC. Resetting the core complex while the core is accessing any SoC memory
locations may result in unpredictable behavior. Recovery may require an assertion of the SoC master reset.

12.3.2 Core Complex Reset to Debug Mode

The RISC-V Debug specification [3] states a requirement that the debugger must be able to be in control from the first
executed instruction of a program after a reset.

The Debug Module controls the core-complex-internal ndmreset (non-debug module reset) signal. This signal
resets the core complex (except for the Debug Module and Debug Transport Module).

The following sequence is used to reset the core and execute the first instruction in debug mode (i.e., db-halt state):
1. Take Debug Module out of reset
e  Set dmactive bit in dmcontrol register (dmcontrol = 0x0000_0001)

2. Haltthe core
e Set haltreq bit in dncontrol register (dmcontrol = 0x8000_0001)

3.  Wait for core halt and remove halt request
e Clear haltreq bit in dmcontrol register (dmcontrol = 0x0000_0001)

4. Reset core complex
e Set ndmreset bit in dmcontrol register (dmcontrol = 0x0000_0003)

5.  While in reset, assert halt request again with ndmreset still asserted
e  Set haltreq bit in dncontrol register (dmcontrol = 0x8000_0003)

6. Take core complex out of reset with halt request still asserted
e Clear ndmreset bit in dmcontrol register (dmcontrol = 0x8000_0001)
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13 SweRV EH1 Core Complex Port
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Table 13-1 lists the core complex signals. Not all signals are present in a given instantiation. For example, a core
complex can only have one bus interface type (AXI4 or AHB-Lite). Signals which are asynchronous to the core
complex clock (c1k) are marked with “(async)” in the ‘Description’ column.

Table 13-1 Core Complex Signals

Signal Dir | Description

Clock and Clock Enables
clk in Core complex clock
ifu_bus_clk_en in IFU master system bus clock enable
Isu_bus_clk_en in LSU master system bus clock enable
dbg_bus_clk_en in Debug master system bus clock enable
dma_bus_clk_en in DMA slave system bus clock enable

Reset
rst_| in Core complex reset
rst_vec[31:1] in Core complex reset vector
Interrupts

nmi_int in Non-Maskable Interrupt (async)
nmi_vec[31:1] in Non-Maskable Interrupt vector
timer_int in Standard RISC-V timer interrupt (async)
extintsrc_req[RV_PIC_TOTAL_INT:1] in External interrupts (async)

System Bus Interfaces

AXI4
Instruction Fetch Unit Master AXI8
Write address channel signals
ifu_axi_awvalid out | Write address valid (hardwired to 0)
ifu_axi_awready in Write address ready
ifu_axi_awid[RV_IFU_BUS_TAG-1:0] out | Write address ID
ifu_axi_awaddr[31:0] out | Write address
ifu_axi_awlen[7:0] out | Burstlength
ifu_axi_awsize[2:0] out | Burstsize
ifu_axi_awburst[1:0] out | Bursttype
ifu_axi_awlock out | Lock type
ifu_axi_awcache[3:0] out | Memory type
ifu_axi_awprot[2:0] out | Protection type

18 The IFU issues only read, but no write transactions. However, the IFU write address, data, and response channels are present,

but the valid/ready signals are tied off to disable those channels.
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Signal Dir | Description

ifu_axi_awqgos[3:0] out | Quality of Service (Qo0S)
ifu_axi_awregion[3:0] out | Region identifier

Write data channel signals

ifu_axi_wvalid out | Write valid (hardwired to 0)
ifu_axi_wready in Write ready

ifu_axi_wdata[63:0] out | Write data

ifu_axi_wstrb[7:0] out | Write strobes

ifu_axi_wlast out | Write last

Write response channel signals

ifu_axi_bvalid in Write response valid

ifu_axi_bready out | Write response ready (hardwired to 0)
ifu_axi_bid[RV_IFU_BUS_TAG-1:0] in Response ID tag

ifu_axi_bresp[1:0] in Write response

Read address channel signals

ifu_axi_arvalid out | Read address valid

ifu_axi_arready in Read address ready
ifu_axi_arid[RV_IFU_BUS_TAG-1:0] out | Read address ID
ifu_axi_araddr[31:0] out | Read address

ifu_axi_arlen[7:0] out | Burst length (hardwired to 0b0000_0000)
ifu_axi_arsize[2:0] out | Burst size (hardwired to Ob011)
ifu_axi_arburst[1:0] out | Bursttype (hardwired to Ob01)
ifu_axi_arlock out | Lock type (hardwired to 0)
ifu_axi_arcache[3:0] out | Memory type (hardwired to 0b1111)
ifu_axi_arprot[2:0] out | Protection type (hardwired to 0b100)
ifu_axi_argqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
ifu_axi_arregion[3:0] out | Region identifier

Read data channel signals

ifu_axi_rvalid in Read valid

ifu_axi_rready out | Read ready
ifu_axi_rid[RV_IFU_BUS_TAG-1:0] in Read ID tag

ifu_axi_rdata[63:0] in Read data

ifu_axi_rresp[1:0] in Read response

ifu_axi_rlast in Read last

Load/Store Unit Master AXI

Write address channel signals

Isu_axi_awvalid out | Write address valid
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Signal Dir | Description

Isu_axi_awready in Write address ready
Isu_axi_awid[RV_LSU_BUS_TAG-1:0] out | Write address ID

Isu_axi_awaddr[31:0] out | Write address

Isu_axi_awlen[7:0] out | Burstlength (hardwired to Ob0000_0000)
Isu_axi_awsize[2:0] out | Burstsize

Isu_axi_awburst[1:0] out | Burst type (hardwired to 0b01)
Isu_axi_awlock out | Lock type (hardwired to 0)
Isu_axi_awcache[3:0] out | Memory type

Isu_axi_awprot[2:0] out | Protection type (hardwired to 0b000)
Isu_axi_awqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
Isu_axi_awregion[3:0] out | Region identifier

Write data channel signals

Isu_axi_wvalid out | Write valid

Isu_axi_wready in Write ready

Isu_axi_wdata[63:0] out | Write data

Isu_axi_wstrb[7:0] out | Write strobes

Isu_axi_wlast out | Write last

Write response channel signals

Isu_axi_bvalid in Write response valid

Isu_axi_bready out | Write response ready
Isu_axi_bid[RV_LSU_BUS_TAG-1:0] in Response ID tag

Isu_axi_bresp[1:0] in Write response

Read address channel signals

Isu_axi_arvalid out | Read address valid

Isu_axi_arready in Read address ready
Isu_axi_arid[RV_LSU_BUS_TAG-1:0] out | Read address ID

Isu_axi_araddr[31:0] out | Read address

Isu_axi_arlen[7:0] out | Burstlength (hardwired to Ob0000_0000)
Isu_axi_arsize[2:0] out | Burstsize

Isu_axi_arburst[1:0] out | Bursttype (hardwired to Ob01)
Isu_axi_arlock out | Lock type (hardwired to 0)
Isu_axi_arcache[3:0] out | Memory type

Isu_axi_arprot[2:0] out | Protection type (hardwired to 0b000)
Isu_axi_arqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
Isu_axi_arregion[3:0] out | Region identifier

Read data channel signals
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Signal Dir | Description

Isu_axi_rvalid in Read valid

Isu_axi_rready out | Read ready
Isu_axi_rid[RV_LSU_BUS_TAG-1:0] in Read ID tag

Isu_axi_rdata[63:0] in Read data

Isu_axi_rresp[1:0] in Read response

Isu_axi_rlast in Read last

System Bus (Debug) Master AXI

Write address channel signals

sb_axi_awvalid out | Write address valid
sb_axi_awready in Write address ready
sb_axi_awid[RV_SB_BUS_TAG-1:0] out | Write address ID (hardwired to 0)
sb_axi_awaddr[31:0] out | Write address

sb_axi_awlen[7:0] out | Burst length (hardwired to 0b0O000_0000)
sb_axi_awsize[2:0] out | Burstsize

sb_axi_awburst[1:0] out | Bursttype (hardwired to Ob01)
sb_axi_awlock out | Lock type (hardwired to 0)
sb_axi_awcache[3:0] out | Memory type (hardwired to Ob1111)
sb_axi_awprot[2:0] out | Protection type (hardwired to 0b000)
sb_axi_awqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
sb_axi_awregion[3:0] out | Region identifier

Write data channel signals

sb_axi_wvalid out | Write valid

sb_axi_wready in Write ready

sb_axi_wdata[63:0] out | Write data

sb_axi_wstrb[7:0] out | Write strobes

sb_axi_wlast out | Write last

Write response channel signals

sb_axi_bvalid in Write response valid
sb_axi_bready out | Write response ready
sb_axi_bid[RV_SB_BUS_TAG-1:0] in Response ID tag

sb_axi_bresp[1:0] in Write response

Read address channel signals

sb_axi_arvalid out | Read address valid

sb_axi_arready in Read address ready
sb_axi_arid[RV_SB_BUS_TAG-1:0] out | Read address ID (hardwired to 0)
sb_axi_araddr[31:0] out | Read address
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Signal Dir | Description

sb_axi_arlen[7:0] out | Burst length (hardwired to Ob0000_0000)
sb_axi_arsize[2:0] out | Burst size (hardwired to Ob011)
sb_axi_arburst[1:0] out | Burst type (hardwired to 0b01)
sb_axi_arlock out | Lock type (hardwired to 0)
sb_axi_arcache[3:0] out | Memory type (hardwired to 0b0000)
sb_axi_arprot[2:0] out | Protection type (hardwired to 0b000)
sb_axi_arqos[3:0] out | Quality of Service (QoS) (hardwired to 0b0000)
sb_axi_arregion[3:0] out | Region identifier

Read data channel signals

sb_axi_rvalid in Read valid

sb_axi_rready out | Read ready
sb_axi_rid[RV_SB_BUS_TAG-1:0] in Read ID tag

sb_axi_rdata[63:0] in Read data

sb_axi_rresp[1:0] in Read response

sb_axi_rlast in Read last

DMA Slave AXI

Write address channel signals

dma_axi_awvalid in Write address valid
dma_axi_awready out | Write address ready
dma_axi_awid[RV_DMA_BUS_TAG-1:0] in Write address ID
dma_axi_awaddr[31:0] in Write address

dma_axi_awlen[7:0] in Burst length

dma_axi_awsize[2:0] in Burst size

dma_axi_awburst[1:0] in Burst type

dma_axi_awprot[2:0] in Protection type

Write data channel signals

dma_axi_wvalid in Write valid

dma_axi_wready out | Write ready

dma_axi_wdata[63:0] in Write data

dma_axi_wstrb[7:0] in Write strobes

dma_axi_wlast in Write last

Write response channel signals

dma_axi_bvalid out | Write response valid
dma_axi_bready in Write response ready
dma_axi_bid[RV_DMA_BUS_TAG-1:0] out | Response ID tag
dma_axi_bresp[1:0] out | Write response
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Signal Dir | Description
Read address channel signals
dma_axi_arvalid in Read address valid
dma_axi_arready out | Read address ready
dma_axi_arid[RV_DMA_BUS_TAG-1:0] in Read address ID
dma_axi_araddr[31:0] in Read address
dma_axi_arlen[7:0] in Burst length
dma_axi_arsize[2:0] in Burst size
dma_axi_arburst[1:0] in Burst type
dma_axi_arprot[2:0] in Protection type
Read data channel signals
dma_axi_rvalid out | Read valid
dma_axi_rready in Read ready
dma_axi_rid[RV_DMA_BUS_TAG-1:0] out | Read ID tag
dma_axi_rdata[63:0] out | Read data
dma_axi_rresp[1:0] out | Read response
dma_axi_rlast out | Read last

AHB-Lite

Instruction Fetch Unit Master AHB-Lite
Master signals
haddr[31:0] out | System address
hburst[2:0] out | Burst type (hardwired to Ob000)
hmastlock out | Locked transfer (hardwired to 0)
hprot[3:0] out | Protection control
hsize[2:0] out | Transfer size
htrans[1:0] out | Transfer type
hwrite out | Write transfer
Slave signals
hrdata[63:0] in Read data
hready in Transfer finished
hresp in Slave transfer response
Load/Store Unit Master AHB-Lite
Master signals
Isu_haddr[31:0] out | System address
Isu_hburst[2:0] out | Burst type (hardwired to Ob000)
Isu_hmastlock out | Locked transfer (hardwired to 0)
Isu_hprot[3:0] out | Protection control
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Signal Dir | Description
Isu_hsize[2:0] out | Transfer size
Isu_htrans[1:0] out | Transfer type
Isu_hwdata[63:0] out | Write data

Isu_hwrite out | Write transfer

Slave signals

Isu_hrdata[63:0] in Read data

Isu_hready in Transfer finished
Isu_hresp in Slave transfer response
System Bus (Debug) Master AHB-Lite

Master signals

sb_haddr[31:0] out | System address
sb_hburst[2:0] out | Burst type (hardwired to Ob000)
sb_hmastlock out | Locked transfer (hardwired to 0)
sb_hprot[3:0] out | Protection control
sb_hsize[2:0] out | Transfer size
sb_htrans[1:0] out | Transfer type
sb_hwdata[63:0] out | Write data

sb_hwrite out | Write transfer

Slave signals

sb_hrdata[63:0] in Read data

sb_hready in Transfer finished
sb_hresp in Slave transfer response
DMA Slave AHB-Lite

Master signals

dma_haddr[31:0] in System address
dma_hburst[2:0] in Burst type
dma_hmastlock in Locked transfer
dma_hprot[3:0] in Protection control
dma_hsize[2:0] in Transfer size
dma_htrans[1:0] in Transfer type
dma_hwdata[63:0] in Write data

dma_hwrite in Write transfer

Slave signals

dma_hrdata[63:0] out | Read data

dma_hready out | Transfer finished
dma_hresp out | Slave transfer response
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Signal Dir | Description

Power Management Interface
i_cpu_halt_req in Halt request to core (async)
o_cpu_halt_ack out | Core acknowledgement for halt request (async)
o_cpu_halt_status out | Core halted indication (async)
o_debug_mode_status out | Core in debug mode indication (async)
i_cpu_run_req in Run request to core (async)
0_cpu_run_ack out | Core acknowledgement for run request (async)

Performance Counter Activity

dec_tlu_perfcntO out | Performance counter O incrementing
dec_tlu_perfcntl out | Performance counter 1 incrementing
dec_tlu_perfcnt2 out | Performance counter 2 incrementing
dec_tlu_perfcnt3 out | Performance counter 3 incrementing
Trace Port
trace_rv_i_insn_ip[63:0] out | Instruction opcode
trace_rv_i_address_ip[63:0] out | Instruction address
trace_rv_i_valid_ip[2:0] out | Instruction trace valid
trace_rv_i_exception_ip[2:0] out | Exception
trace_rv_i_ecause_ip[4:0] out | Exception cause
trace_rv_i_interrupt_ip[2:0] out | Interrupt exception
trace_rv_i_tval _ip[31:0] out | Exception trap value
JTAG Port
jtag_tck in JTAG Test Clock (async)
jtag_tms in JTAG Test Mode Select (async)
jtag_tdi in JTAG Test Data In (async)
jtag_trst_n in JTAG Test Reset (async)
jtag_tdo out | JTAG Test Data Out (async)
Memory Testing
scan_mode in Enable MBIST for internal memories
mbist_mode in Chip select of all DCCM banks (for debug at SoC level)
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14 SweRV EH1 Core Build Arguments
14.1 Core Memory-Related Build Arguments

14.1.1 Core Memories and Memory-Mapped Register Blocks Alignment Rules

Placement of SweRV EH1’s core memories and memory-mapped register blocks in the 32-bit address range is very

flexible. Each memory or register block may be assigned to any region and within the region’s 28-bit address range

to any start address on a naturally aligned power-of-two address boundary relative to its own size (i.e., start_address
=n x size, whereas n is a positive integer number).

For example, the start address of an 8KB-sized DCCM may be 0x0000_0000, 0x0000_2000, 0x0000_4000,
0x0000_6000, etc. A memory or register block with a non-power-of-two size must be aligned to the next bigger
power-of-two size. For example, the starting address of a 48KB-sized DCCM must aligned to a 64KB boundary, i.e.,
it may be 0x0000_0000, 0x0001_0000, 0x0002_0000, 0x0003_0000, etc.

Also, no two memories or register blocks may overlap each other, and no memory or register block may cross a
region boundary.

The start address of the memory or register block is specified with an offset relative to the start address of the region.
This offset must follow the rules described above.
14.1.2 Memory-Related Build Arguments

e ICCM
o Enable (RV_ICCM_ENABLE): 0, 1 (0 = no ICCM; 1 = ICCM enabled)

o Region (RV_ICCM_REGION): 0..15
o Offset (RV_ICCM_OFFSET): (offset in bytes from start of region satisfying rules in Section 14.1.1)
o Size (RV_ICCM_SIZE): 4, 8, 16, 32, 64, 128, 256, 512 (in KB)

e DCCM

o Region (RV_DCCM_REGION}): 0..15
o Offset (RV_DCCM_OFFSET): (offset in bytes from start of region satisfying rules in Section 14.1.1)
o Size (RV_DCCM_SIZE): 4, 8, 16, 32, 48, 64, 128, 256, 512 (in KB)
e |-Cache
o Enable (RV_ICACHE_ENABLE): 0, 1 (0 = no I-cache; 1 = I-cache enabled)
o Size (RV_ICACHE_SIZE): 16, 32, 64, 128, 256 (in KB)
o Protection (RV_ICACHE_ECC): 0, 1 (0 = parity; 1 = ECC)
¢ PIC Memory-mapped Control Registers
o Region (RV_PIC_REGION): 0..15
o Offset (RV_PIC_OFFSET): (offset in bytes from start of region satisfying rules in Section 14.1.1)
o Size (RV_PIC_SIZE): 32, 64, 128, 256 (in KB)
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15 SweRV EH1 Errata

15.1 Core May Handle Write Transactions with Different Transaction IDs
Incorrectly on AXI System Bus

Description:

The AXI protocol requires all transactions with a given transaction ID to remain ordered, but there is no ordering
requirement for transactions with different transaction IDs. The core implementation currently does not correctly
handle AXI write transactions with different transaction IDs.

Symptoms:

Two writes to the same address or overlapping addresses with different transaction IDs may not be handled
correctly by the core.

Workaround:

Design fix is in progress. Expect release of design fix in early February, 2019.
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