
Specifying Graphical Models in RevBayes

Will Freyman

Department of Ecology, Evolution & Behavior
University of Minnesota

willfreyman@gmail.com
http://willfreyman.org

UC Berkeley Workshop, February 26-27 2018

Workshop goals:
I not simply demonstrate “standard” phylogenetic

analyses in RevBayes

I instead we’ll explore the flexibility of a graphical
modeling framework

I use graphical models to see how the models
underlying tree inference and downstream tree use
(comparative methods) are linked

I enable participants to specify custom and unique
phylogenetic analyses in RevBayes

What are we doing in phylogenetics?
I “inference”? (i.e. statistical inference?)
I “learning”? (i.e. machine learning?)
I “prediction”?

In a probabilistic framework (maximum likelihood or
Bayesian) inference and learning are the same

When we “train” a machine learning algorithm we are
doing parameter estimation

The field of machine learning includes camps that use
principled probabilistic approaches and camps that use
heuristic ad hoc methods (like in phylogenetics!)

In phylogenetics we should be doing more prediction!
i.e. model adequacy/posterior predictive tests

What is a model?
I in statistics?
I in machine learning?
I in biology?

maybe:
I a way to relate data to hypotheses?

I what about heuristic or ad hoc approaches?
I is parsimony in phylogenetics a model, an algorithm,

or a philosophy?
I a set of assumptions about the data-generating

process?
I “a formal representation of a theory”?
I a set of mathematical equations that relate one or

more random variables?

The distinction between models and algorithms:

model algorithm
phylogenetic models pruning algorithm

Bayesian graphical model belief propagation
neural networks backpropagation

Hidden Markov model forward-backward
k-means clustering Lloyd’s algorithm

linear regression least-squares

Learning algorithms typically either optimize θ̂ or integrate
to infer p(θ|D)

They are often very similar and can be used with other
models

Any well defined model can be treated in a probabilistic
framework and then we can use Bayesian or maximum
likelihood approaches

Probabilistic models:

Instead of a hodgepodge of different heuristic methods these
models use the principles of probability theory

Why use them?
I Quantify uncertainty: they know when they don’t know

I what is the best prediction/decision/inference given
data?

I what is the best model/hypothesis given the data?
I do I need more/different data?

I natural complexity control
I preventing overfitting / regularization

I modularity
I models as “lego kits”
I different inferential algorithms can use the same

model
I different models can use the same inferential

algorithm

Discriminative vs Generative Models

Discriminative (or conditional) models:

1. models a response variable conditioned on a predictor
variable

2. models the conditional distribution p(y|x)

3. makes fewer assumptions about the data: p(x) not
necessary

Phylogenetic examples:

I estimating divergence times over a fixed topology
I estimating ancestral states on a fixed tree
I estimating shifts in diversification rates over a fixed tree

Discriminative vs Generative Models
Generative models:

1. models the entire process used to generate the data
2. models the joint distribution p(x, y)

3. makes more assumptions about the data: need to define
p(x)

4. richer representation of the relations between variables
5. more powerful: allows us to compute p(y|x) or p(x|y)
6. more powerful: can simulate both x and y

Phylogenetic examples:

I jointly estimating divergence times and the tree topology
I jointly estimating ancestral states and the tree
I jointly estimating shifting diversification rates and the tree

What is a graphical model?

Also called:
1. Bayesian networks
2. belief networks
3. causal networks

A useful way to represent a probabilistic model: a
joint distribution of random variables.

We can specify both generative and discriminative models as
graphical models.

What is a graphical model?

Nodes represent variables and edges represent
conditional dependencies:

p(θ,D) = p(θ)
[N∏
i=1

p(xi|θ)
]

Image from Murphy (2012)

What is a graphical model?

Image from Höehna et al. (2014)

phylogenetic graphical model

Image from Höehna et al. (2014)

phylogenetic graphical models as modules

Image from Höehna et al. (2014)

assembling phylogenetic models like lego kits

Image from Höehna et al. (2014)

Is the graphical model paradigm really helpful?

Disadvantages:
1. steep learning curve...

I constant, stochastic, deterministic nodes
I clamping
I MCMC proposals

Advantages:
1. transparency: all modeling assumptions are specified
2. power and flexibility: build custom models that test your

specific hypotheses
3. efficiency: customize inference algorithm to efficiently

perform inference
4. applicability: the same concepts are widely used in many

probabilistic programming languages like Stan, BUGS,
Edward, PyMC3... and Rev!

The Rev probabilistic programming language:

Most Rev scripts have two important aspects woven together:
1. the graphical model specification
2. the inference algorithm specification (MCMC moves, etc.)

Since our goal is think abstractly in terms of graphical models
we’re going to learn these two aspects separately.

In Rev we can specify any type of probabilistic model, not just
phylogenetic models:

I classification models
I time series models
I neural networks
I etc...

linear regression as a graphical model

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

x

y

y = βx+ α+ ε

linear regression as a graphical model

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

x

y

µy = βx+ α
y ∼ Normal(µy, σε)

Bayesian linear regression

µy = βx+ α
y ∼ Normal(µy, σε)

We need some priors!

β ∼ Normal(µ = 0, σ2 = 1)
α ∼ Normal(µ = 0, σ2 = 1)
σε ∼ Exponential(λ = 1)

Now let’s program the model in Rev...

First clone the workshop’s repo and start rb:

git clone https://github.com/wf8/

RevBayes_UC_Berkeley_2018_Workshop.git

cd RevBayes_UC_Berkeley_2018_Workshop

rb

The full example scripts are in the src/ directory, but
instead of using source() let’s walk through the script
interactively...

Our observed data are constant nodes:

x_obs <- readDataDelimitedFile(file="data/x.csv", header=FALSE

, delimiter=",")[1]

y_obs <- readDataDelimitedFile(file="data/y.csv", header=FALSE

, delimiter=",")[1]

Take a look at x obs and y obs: they are simply vectors
containing these points:

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

x

y

We’ll specify relatively uninformative priors for our
parameters. These are stochastic nodes:

beta ~ dnNormal(0, 1)

alpha ~ dnNormal(0, 1)

sigma ~ dnExponential(1)

Deterministic nodes for µy and stochastic nodes for y:

for (i in 1:x_obs.size()) {

mu_y[i] := (beta * x_obs[i]) + alpha

y[i] ~ dnNormal(mu_y[i], sigma)

}

We have now simulated values of y conditioned on x. So
this is a discriminative model.

What happens if we set the value of β or α to something
else? Try the setValue() and redraw() member methods.

To estimate parameter values, we need to clamp the
observed values of y:

for (i in 1:x_obs.size()) {

mu_y[i] := (beta * x_obs[i]) + alpha

y[i] ~ dnNormal(mu_y[i], sigma)

y[i].clamp(y_obs[i])

}

mymodel = model(beta)

So now we have specified the full linear regression model
in a discriminative form: y conditioned on x.

Let’s set up the MCMC...

We need at least one MCMC move for each parameter
we want to estimate:

moves[1] = mvSlide(beta)

moves[2] = mvSlide(alpha)

moves[3] = mvSlide(sigma)

We also need monitors for the MCMC:

monitors[1] = mnScreen()

monitors[2] = mnModel("output/linear_regression.log")

Now run the MCMC:

mymcmc = mcmc(mymodel, moves, monitors)

mymcmc.run(10000)

Look at the results in Tracer. What estimates do you get for
α, β, and σ?

The true values were α = −2, β = 0.5, and σ = 0.2.

Exercise: modify this to be a fully generative model.

Exercise: experiment with different MCMC moves to make
the analysis converge more efficiently.

Finally phylogenetics!

Let’s use the distinction between a discriminative (or
conditional) model and a generative model to explore
the link between tree inference models and comparative
methods...

One of the most basic comparative methods is ancestral
state estimation.

Ancestral state estimation conditioned over a tree

Here we will estimate ancestral states for a binary
character conditioned over a fixed tree.

This is not a generative model because it does not model
the process that generated all our data (which is both the
tip data and the tree).

Read in the tree and tip data:

tree_obs <- readTrees("data/phylo.tree")[1]

morph_data <- readCharacterData("data/phylo_morph.nex")

Ancestral state estimation conditioned over a tree

character state transition rate matrix

q_01 ~ dnExponential(10)

q_10 ~ dnExponential(10)

Q_morph := fnFreeK([q_01, q_10], rescaled=FALSE)

Ancestral state estimation conditioned over a tree

root frequencies:

pi_morph ~ dnDirichlet([1,1])

the phylogenetic continuous-time Markov process:

ctmc_morph ~ dnPhyloCTMC(tree_obs, Q=Q_morph, rootFrequencies=

pi_morph, nSites=1, type="Standard")

Before clamping the observed data, look at the simulated
values for ctmc morph.

ctmc_morph.clamp(morph_data)

mymodel = model(ctmc_morph)

Ancestral state estimation conditioned over a tree

Now that we have specified our phylogenetic model, just
like in the linear regression example we need moves and
monitors to run the MCMC.

moves[1] = mvScale(q_01)

moves[2] = mvScale(q_10)

moves[3] = mvSimplexElementScale(pi_morph)

monitors[1] = mnScreen(printgen=10)

monitors[2] = mnModel(printgen=10, filename="output/

conditional.log")

monitors[3] = mnJointConditionalAncestralState(printgen=10,

filename="output/

conditional_anc

.log",

tree=tree_obs,

ctmc=ctmc_morph,

type="Standard")

Ancestral state estimation conditioned over a tree

Run the MCMC:

mymcmc = mcmc(mymodel, moves, monitors)

mymcmc.run(10000)

and summarize the ancestral states:

anc_trace = readAncestralStateTrace("output/conditional_anc.

log")

ancestralStateTree(tree_obs,

ancestral_state_trace_vector=anc_trace,

file="output/map_anc_conditional.tree")

Ancestral state estimation conditioned over a tree

Take a look at the results in FigTree and note the high posterior
probabilities.

This reconstruction does not take phylogenetic uncertainty into
account, so it may be an overly confident estimate.

A better approach would be to jointly model the ancestral
states and tree inference.

How would we modify this model so that it is a fully generative
model?

Ancestral states estimated jointly with the tree!

We need to add a model of how trees are generated – the
diversification process – perhaps a birth-death process or a
coalescent tree prior.

The binary morphological character probably won’t help inform
the topology and divergence times, so let’s use molecular data
too. A molecular data alignment is provided
data/phylo mol.nex.

We will need a joint model of:
1. the diversification process
2. morphological character evolution
3. molecular character evolution

Ancestral states estimated jointly with the tree!

Exercise: code up an analysis that jointly estimates ancestral
states, the tree topology, and divergence times.

Suggestions:
1. the diversification process: use dnBirthDeath()

2. morphological character evolution: use the model already
shown

3. molecular character evolution: use fnGTR()

One solution is in src/ancestral states joint.Rev, work through
this script if you get stuck.

Ask questions!

Check out the tutorials on http://revbayes.com

http://revbayes.com

