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Introduction

This tutorial describes how to specify character state-dependent branching process models in RevBayes.
Frequently referred to as state-dependent speciation and extinction (SSE) models, these models are a
birth-death process where the diversification rates are dependent on the state of an evolving character.
The original model of this type considered a binary character (a trait with two discrete state values;
called BiSSE, Maddison et al. 2007). Several variants have also been developed for other types of traits
(FitzJohn 2010; Goldberg et al. 2011; Goldberg and Igi¢ 2012; Magnuson-Ford and Otto 2012; FitzJohn
2012; Beaulieu and O’Meara 2016; Freyman and Hohna 2017).

We will outline the theory behind this method, and then you will fit it to data using Markov chain Monte
Carlo (MCMC). RevBayes is a powerful tool for SSE analyses. After working through this tutorial you
should be able to set up custom SSE models and use them to infer character-dependent diversification
rates and ancestral states. We also provide examples of how to plot the results using the RevGadgets R
package.

Contents

The State-Dependent Speciation and Extinction tutorial contains several sections:

e Section 1: Introduction to diversification rate estimation

e Section 2: Theory behind diversification rate models

e Section 3: Theory behind SSE models

o Section 4: Running a BiSSE/MuSSE analysis in RevBayes
e Section 5: Running a HiSSE analysis in RevBayes

e Section 6: Running a ClaSSE analysis in RevBayes

Requirements

We assume that you have read and hopefully completed the following tutorials:

o Getting started


https://github.com/revbayes/revbayes_tutorial/raw/master/tutorial_TeX/RB_Getting_Started/RB_Getting_Started.pdf
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e Very Basic Introduction to Rev
e General Introduction to the Rev syntax
e General Introduction to MCMC using an archery example
e General Introduction to MCMC using a coin-flipping example
e Basic Diversification Rate Estimation
Note that the Rev basics tutorial introduces the basic syntax of Rev but does not cover any phylogenetic

models. We tried to keep this tutorial very basic and introduce all the language concepts and theory on
the way. You may only need the Rev syntax tutorial for a more in-depth discussion of concepts in Rev.

Data and files

We provide the data files which we will use in this tutorial. You may want to use your own data instead.
In the data folder, you will find the following files:

o primates treenex: Dated primate phylogeny including 233 out of 367 species. (This tree is from
Magnuson-Ford and Otto 2012, who took it from Vos and Mooers 2006 and then randomly resolved
the polytomies using the method of Kuhn et al. 2011.)

e primates morph.nex: A set of several discrete-valued characters. The characters are described in
the file primates morph_description.txt.

e primates biogeo.tre: A dated phylogeny of the 23 primate species.

e primates biogeo.tsv: Biogeographic range data for 23 primate species.

— Open the tree files primates_tree.nex and primates_biogeo.tre in FigTree.

— Open the character data files primates_morph.nex and primates_biogeo.tsv in a text editor.


https://github.com/revbayes/revbayes_tutorial/raw/master/tutorial_TeX/RB_Intro_Tutorial/RB_Intro_Tutorial.pdf
https://github.com/revbayes/revbayes_tutorial/raw/master/tutorial_TeX/RB_Rev_Tutorial/RB_Rev_Tutorial.pdf
https://github.com/revbayes/revbayes_tutorial/raw/master/tutorial_TeX/RB_MCMC_Archery_Tutorial/RB_MCMC_Archery_Tutorial.pdf
https://github.com/revbayes/revbayes_tutorial/raw/master/tutorial_TeX/RB_MCMC_Binomial_Tutorial/RB_MCMC_Binomial_Tutorial.pdf
https://github.com/revbayes/revbayes_tutorial/raw/master/tutorial_TeX/RB_DiversificationRate_Tutorial/RB_DiversificationRate_Tutorial.pdf
https://github.com/revbayes/revbayes_tutorial/raw/master/tutorial_TeX/RB_Intro_Tutorial/RB_Intro_Tutorial.pdf
https://github.com/revbayes/revbayes_tutorial/raw/master/tutorial_TeX/RB_Rev_Tutorial/RB_Rev_Tutorial.pdf
https://github.com/revbayes/revbayes_tutorial/raw/master/RB_DiversificationRate_CharacterDependent_Tutorial/data/primates_tree.nex
https://github.com/revbayes/revbayes_tutorial/raw/master/RB_DiversificationRate_CharacterDependent_Tutorial/data/primates_morph.nex
https://github.com/revbayes/revbayes_tutorial/raw/master/RB_DiversificationRate_CharacterDependent_Tutorial/data/primates_morph_description.txt
https://github.com/revbayes/revbayes_tutorial/raw/master/RB_DiversificationRate_CharacterDependent_Tutorial/data/primates_biogeo.tre
https://github.com/revbayes/revbayes_tutorial/raw/master/RB_DiversificationRate_CharacterDependent_Tutorial/data/primates_biogeo.tsv
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1 Overview: Diversification Rate Estimation

Models of speciation and extinction are fundamental to any phylogenetic analysis of macroevolutionary
processes (e.g., divergence time estimation, diversification rate estimation, continuous and discrete trait
evolution, and historical biogeography). First, a prior model describing the distribution of speciation
events over time is critical to estimating phylogenies with branch lengths proportional to time. Second,
stochastic branching models allow for inference of speciation and extinction rates. These inferences allow
us to investigate key questions in evolutionary biology.

Diversification-rate parameters may be included as nuisance parameters of other phylogenetic models—
i.e., where these diversification-rate parameters are not of direct interest. For example, many methods
for estimating species divergence times—such as BEAST (Drummond et al. 2012), MrBayes (Ronquist et al.
2012), and RevBayes (Hohna et al. 2016)—implement ‘relaxed-clock models’ that include a constant-
rate birth-death branching process as a prior model on the distribution of tree topologies and node ages.
Although the parameters of these ‘tree priors’ are not typically of direct interest, they are nevertheless
estimated as part of the joint posterior probability distribution of the relaxed-clock model, and so can be
estimated simply by querying the corresponding marginal posterior probability densities. In fact, this may
provide more robust estimates of the diversification-rate parameters, as they accommodate uncertainty in
the other phylogenetic-model parameters (including the tree topology, divergence-time estimates, and the
other relaxed-clock model parameters). More recent work, e.g., Heath et al. (2014), uses macroevolutionary
models (the fossilized birth-death process) to calibrate phylogenies and thus to infer dated trees.

In these tutorials we focus on the different types of macroevolutionary models to study diversification
processes and thus the diversification-rate parameters themselves. Nevertheless, these macroevolutionary
models should be used for other evolutionary questions, when an appropriate prior distribution on the tree
and divergence times is needed.

1.1 Types of Hypotheses for Estimating Diversification Rates

Many evolutionary phenomena entail differential rates of diversification (speciation — extinction); e.g.,
adaptive radiation, diversity-dependent diversification, key innovations, and mass extinction. The specific
study questions regarding lineage diversification may be classified within three fundamental categories of
inference problems. Admittedly, this classification scheme is somewhat arbitrary, but it is nevertheless
useful, as it allows users to navigate the ever-increasing number of available phylogenetic methods. Below,
we describe each of the fundamental questions regarding diversification rates.

(1) Diversification-rate through time estimation What is the (constant) rate of diversification in
my study group? The most basic models estimate parameters of the stochastic-branching process (i.e., rates
of speciation and extinction, or composite parameters such as net-diversification and relative-extinction
rates) under the assumption that rates have remained constant across lineages and through time; i.e.,
under a constant-rate birth-death stochastic-branching process model (Nee et al. 1994). Extensions to
the (basic) constant-rate models include diversification-rate variation through time (Stadler 2011; Hohna
2015). First, we might ask whether there is evidence of an episodic, tree-wide increase in diversification
rates (associated with a sudden increase in speciation rate and/or decrease in extinction rate), as might
occur during an episode of adaptive radiation. A second question asks whether there is evidence of a
continuous/gradual decrease in diversification rates through time (associated with decreasing speciation
rates and /or increasing extinction rates), as might occur because of diversity-dependent diversification (i.e.,
where competitive ecological interactions among the species of a growing tree decrease the opportunities for
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speciation and/or increase the probability of extinction, e.g., Hohna (2014)). Third, we can ask whether
changes in diversification rates are correlated with environmental factors, such as environmental CO2 or
temperature (Condamine et al. 2013). A final question in this category asks whether our study tree was
impacted by a mass-extinction event (where a large fraction of the standing species diversity is suddenly
lost, e.g., May et al. (2016)). The common theme of these studies is that the diversification process is
tree-wide, that is, all lineages of the study group have the exact same rates at a given time.

(2) Diversification-rate variation across branches estimation Is there evidence that diversification
rates have varied significantly across the branches of my study group? Models have been developed to detect
departures from rate constancy across lineages; these tests are analogous to methods that test for departures
from a molecular clock—i.e., to assess whether substitution rates vary significantly across lineages (Alfaro
et al. 2009; Rabosky 2014). These models are important for assessing whether a given tree violates the
assumptions of rate homogeneity among lineages. Furthermore, these models are important to answer
questions such as: What are the branch-specific diversification rates?; and Have there been significant
diversification-rate shifts along branches in my study group, and if so, how many shifts, what magnitude
of rate-shifts and along which branches?

(3) Character-dependent diversification-rate estimation Are diversification rates correlated with
some variable in my study group? Character-dependent diversification-rate models aim to identify overall
correlations between diversification rates and organismal features (binary and multi-state discrete morpho-
logical traits, continuous morphological traits, geographic range, etc.). For example, one can hypothesize
that a binary character, say if an organism is herbivorous/carnivorous or self-compatible/self-incompatible,
impact the diversification rates. Then, if the organism is in state 0 (e.g., is herbivorous) it has a lower (or
higher) diversification rate than if the organism is in state 1 (e.g., carnivorous) (Maddison et al. 2007).

2 Diversification Rate Models

We begin this section with a general introduction to the stochastic birth-death branching process that
underlies inference of diversification rates in RevBayes. This primer will provide some details on the
relevant theory of stochastic-branching process models. We appreciate that some readers may want to skip
this somewhat technical primer; however, we believe that a better understanding of the relevant theory
provides a foundation for performing better inferences. We then discuss a variety of specific birth-death
models, but emphasize that these examples represent only a tiny fraction of the possible diversification-rate
models that can be specified in RevBayes.

2.1 The birth-death branching process

Our approach is based on the reconstructed evolutionary process described by Nee et al. (1994); a birth-death
process in which only sampled, extant lineages are observed. Let N (t) denote the number of species at time
t. Assume the process starts at time ¢; (the ‘crown’ age of the most recent common ancestor of the study
group, tmrca) when there are two species. Thus, the process is initiated with two species, N(t1) = 2. We
condition the process on sampling at least one descendant from each of these initial two lineages; otherwise
t1 would not correspond to the tyrca of our study group. Each lineage evolves independently of all other
lineages, giving rise to exactly one new lineage with rate b(¢) and losing one existing lineage with rate d(t)
(Figure 1 and Figure 2). Note that although each lineage evolves independently, all lineages share both a
common (tree-wide) speciation rate b(¢) and a common extinction rate d(t) (Nee et al. 1994; Hohna 2015).
Additionally, at certain times, tp;, a mass-extinction event occurs and each species existing at that time
has the same probability, p, of survival. Finally, all extinct lineages are pruned and only the reconstructed
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tree remains (Figure 1).

{

/

Extinction event ~ Mass-extinction event  Speciation event

Figure 1: A realization of the birth-death process with mass extinction. Lineages that have no extant or
sampled descendant are shown in gray and surviving lineages are shown in a thicker black line.
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Figure 2: Examples of trees produced under a birth-death process. The process is initiated at
the first speciation event (the ‘crown-age’ of the MRCA) when there are two initial lineages. At each
speciation event the ancestral lineage is replaced by two descendant lineages. At an extinction event one
lineage simply terminates. (A) A complete tree including extinct lineages. (B) The reconstructed tree of
tree from A with extinct lineages pruned away. (C) A uniform subsample of the tree from B, where each
species was sampled with equal probability, p. (D) A diversified subsample of the tree from B, where the
species were selected so as to maximize diversity.

Time

To condition the probability of observing the branching times on the survival of both lineages that descend

from the root, we divide by P(N(T) > 0|N(0) = 1)2. Then, the probability density of the branching times,
T, becomes

both initial lineages have one descendant

P<N(T):1|N(O):1)2 n_li b(t; P(N(T)=1|N(;) =1
PVT) > 0| MO =1F < LD X b X PINT) =1 N () = 1)

both initial lineages survive

speciation rate lineage has one descendant

P(T) =
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and the probability density of the reconstructed tree (topology and branching times) is then

5)

n—1
x [[ i % b(t:) x P(N(T) = 1| N(t:) = 1) (1)
=2

PAC P(N(T)=1|N(0)

P(¥) = nl(n —1)! 8 <P(N(T) > 0] N(0)

We can expand Equation (1) by substituting P(N(T) > 0 | N(t) = 1)2exp(r(t,T)) for P(N(T) = 1 |
N(t) = 1), where r(u,v) = [ d(t) — b(t)dt; the above equation becomes

2n—1

B P(N(T) > 0| N(0) = 1)2exp(r(0, 7))\
PO = = < PIN(T) >0 N(0) = 1) )

n—1
x [ i x blts) x P(N(T) > 0| N(t;) = 1)® exp(r(t;, T))
=2

n—1
_ 2n! < (P(N(T) > 0| N(0) = 1) exp(r(0, 7))
n—1
« T blt:) x P(N(T) > 0| N(t;) = 1) exp(r(t:, T)). (2)
=2

For a detailed description of this substitution, see Hohna (2015). Additional information regarding the
underlying birth-death process can be found in (Thompson 1975; Equation 3.4.6) and Nee et al. (1994) for
constant rates and Hohna (2013; 2014; 2015) for arbitrary rate functions.

To compute the equation above we need to know the rate function, r(¢,s) = [’d(z) — b(x)dx, and the
probability of survival, P(N(T)>0|N(t)=1). Yule (1925) and later Kendall (1948) derived the probability
that a process survives (N (7") > 0) and the probability of obtaining exactly n species at time T' (N(T") = n)
when the process started at time ¢ with one species. Kendall’s results were summarized in Equation (3)
and Equation (24) in Nee et al. (19941)

-1

T
P(N(T)>0|N(t)=1) = (1+/<u(s)exp(r(t,s)))ds> (3)

P(N(T)=n|N(t)=1) = (1—P(N(T)>0|N(t)=1)exp(r(t,T)))" "
x P(N(T)>0|N(t)=1)?exp(r(t, T)) (4)

An overview for different diversification models is given in Hohna (2015).

Sidebar: Phylogenetic trees as observations

The branching processes used here describe probability distributions on phylogenetic trees. This prob-
ability distribution can be used to infer diversification rates given an “observed” phylogenetic tree. In
reality we never observe a phylogenetic tree itself. Instead, phylogenetic trees themselves are estimated
from actual observations, such as DNA sequences. These phylogenetic tree estimates, especially the
divergence times, can have considerable uncertainty associated with them. Thus, the correct approach
for estimating diversification rates is to include the uncertainty in the phylogeny by, for example, jointly
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estimating the phylogeny and diversification rates. For the simplicity of the following tutorials, we take
a shortcut and assume that we know the phylogeny without error. For publication quality analysis you
should always estimate the diversification rates jointly with the phylogeny and divergence times.
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3 Theory behind state-dependent diversification models

The Binary State Speciation and Extinction model (BiSSE; Maddison et al. 2007) was introduced because
of two problems identified by Maddison (2006). First, inferences about character state transitions based
on simple transition models (like Pagel 1999) can be thrown off if the character affects rates of speciation
or extinction. Second, inferences about whether a character affects lineage diversification based on sister
clade comparisons (Mitter et al. 1988) can be thrown off if the transition rates are asymmetric. BiSSE and
related models are now mostly used to assess if the states of a character are associated with different rates
of speciation or extinction.

RevBayes implements the extension of BiSSE to any number of discrete states (i.e., the MuSSE model in
diversitree; FitzJohn 2012). We will first describe the general theory about the model; you may skip
over this section if you are not interested in the math behind the model. Then we will show how to run
an analysis in RevBayes.

speciation speciation
extinction g A A A1 extinction
do1
v} 0 3 > {v
dio0
transition

Figure 3: A schematic overview of the BiSSE model. Each lineage has a binary trait associated with it, so it is either
in state 0 (blue) or state 1 (red). When a lineage is in state 0, it can either (a) speciate with rate Ao which results
into two descendant lineage both being in state 0; (b) go extinct with rate po; or (c) transition to state 1 with rate
go1- The same types of events are possible when a lineage is in state 1 but with rates A1, u1, and q19, respectively.

3.1 General approach

The BiSSE model assumes two discrete states (i.e., a binary character), and that the state of each extant
species is known (i.e., the discrete-valued character is observed). The general approach adopted by BiSSE
and related models is to derive a set of ordinary differential equations (ODEs) that describe how the
probability of observing a descendant clade changes along a branch in the observed phylogeny. Each
equation in this set describes how the probability of observing a clade changes through time if it is in a
particular state over that time period; collectively, these equations are called dDg;f (t), where 7 is the state
of a lineage at time t and N is the clade descended from that lineage.

Computing the likelihood proceeds by establishing an initial value problem. We initialize the procedure by
observing the character states of some lineages, generally the tip states. Then starting from those proba-
bilities (e.g., species X has state 0 with probability 1 at the present), we describe how those probabilities
change over time (described by the ODEs), working our way back until we have computed the probabilities
of observing that collection of lineages at some earlier time (e.g., the root).

As we integrate from the tips to the root, we need to deal with branches coming together at nodes. Assuming
that the parent and daughter lineages have the same state, we multiply together the probabilities that the
daughters are state ¢ and the instantaneous speciation rate A\; to get the initial value for the ancestral
branch subtending that node.
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Proceeding in this way down the tree results in a set of k probabilities at the root; these k probabilities
represent the probability of observing the phylogeny conditional on the root being in each of the states
(i.e., the i conditional probability is the probability of observing the tree given that the root is in state
). The overall likelihood of the tree is a weighted average of the k probabilities at the root, where the
weighting scheme represents the assumed probability that the root was in each of the k states.

As with all birth-death process models, special care must be taken to account for the possibility of extinc-
tion. Specifically, the above ODEs must accommodate lineages that may arise along each branch in the
tree that subsequently go extinct before the present (and so are unobserved). This requires a second set

of k ODEs, dEi(t), which define how the probability of eventual extinction from state ¢ changes over time.

dt
These ODEs must be solved to compute the differential equations dDZif(t). We will derive both sets of

equations in the following sections.

3.2 Derivation for the binary state birth-death process

The derivation here follows the original description in Maddison et al. (2007). Consider a (time-independent)
birth-death process with two possible states (a binary character), with diversification rates {\g, o} and

{1, 1}
3.2.1 Clade probabilities, Dy ;

We define Dy o(t) as the probability of observing lineage N descending from a particular branch at time
t, given that the lineage at that time is in state 0. To compute the probability of observing the lineage at
some earlier time point, Dy o(t + At), we enumerate all possible events that could occur within the interval
At. Assuming that At is small—so that the probability of more than one event occurring in the interval
is negligible—there are four possible scenarios within the time interval (Fig. 4):

1. nothing happens;
2. a transition occurs, so the state changes 0 — 1;
3. a speciation event occurs, and the right descendant subsequently goes extinct before the present, or;
4. a speciation event occurs and the left descendant subsequently goes extinct before the present.
We are describing events within a branch of the tree (not at a node), so for (3) and (4), we require that

one of the descendant lineages go extinct before the present because we do not observe a node in the tree
between t and t + At.

We can thus compute Dy o(t + At) as:

Dy o(t+ At) = (1 — poAt)x in all cases, no extinction of the observed lineage
(1 — go1At)(1 — AoAt) D o(t) case (1) nothing happens
+ (go1At)(1 — NoAt)Dn 1 (t) case (2) state change but no speciation

+ (1 — qo1At)(MoAt)Eo(t)Dno(t) case (3) no state change, speciation, extinction
+ (1 — qo1At)(MAL)Ey(t)Dno(t)]  case (4) no state change, speciation, extinction

A matching equation can be written down for Dy 1(t + At).
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a) No state change, b) State change, C) No state change, d) No state change,
No speciation No speciation Speciation & Extinction Speciation & Extinction

t+At =0 t+At =0 t+At == 0

Figure 4: Possible events along a branch in the BiSSE model, used for deriving Dy o(t + At). This is Figure 2 in
Maddison et al. (2007).

To convert these difference equations into differential equations, we take the limit At — 0. With the

notation that ¢ can be either state 0 or state 1, and j is the other state, this yields:
dDy ;(t
Nall) _ (Mt it i) Dova(t) + Do () + 2B () Do 1) 6

3.2.2 Extinction probabilities, F;

To solve the above equations for Dy ;, we see that we need the extinction probabilities. Define Ey(t) as the
probability that a lineage in state 0 at time ¢ goes extinct before the present. To determine the extinction

probability at an earlier point, Fy(t + At), we can again enumerate all the possible events in the interval
At (Fig. 5):

1. the lineage goes extinct within the interval;

2. the lineage neither goes extinct nor speciates, resulting in a single lineage that must eventually go
extinct before the present;

3. the lineage neither goes extinct nor speciates, but there is a state change, resulting in a single lineage
that must go extinct before the present, or;

4. the lineage speciates in the interval, resulting in two lineages that must eventually go extinct before
the present.

Eo(t + At) = poAt+ case (1) extinction in the interval
(1 — poAt)x no extinction in the interval and ...

[(1 —qgo1At)(1 — MAt)Eyp(t)  case (2) nothing happens, but subsequent extinction

+ (qo1At)(1 — MAt)Eq (1) case (3) state change and subsequent extinction

+ (1 = g1 At)(MAL) Ey(t)?] case (4) speciation and subsequent extinctions

10
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a) b) No speciation, C) No speciation, d) Speciation,
Extinction in At No state change State change No character change
Extinction since t Extinction since t Extinction of both since t
X x x X
—5 t 30 t 3 t 30
t+At == 0 t+At 2= 0 t+At 2= 0 t+At 2= 0

Figure 5: Possible events along a branch in the BiSSE model, used for deriving Ey(t + At). This is Figure 3 in
Maddison et al. (2007).

Again, a matching equation for F;(t + At) can be written down.

To convert these difference equations into differential equations, we again take the limit At — 0:

dE;(t)

M- (N + i+ qij) Bi(t) + qij Ej (1) + N Bi(t)? (6)

3.2.3 Initial values: tips and sampling

The equations above describe how to get the answer at time ¢t + At assuming we already have the answer
at time t. How do we start this process? The answer is with our character state observations, which are
generally the tip state values. If species s has state i, then D,;(0) = 1 (probability is 1 at time O [the
present| because we observed it for sure) and F;(0) = 0 (probability 0 of being extinct at the present). For
all states other than i, Dy ;(0) = 0 and E;(0) = 1.

We can adjust these initial conditions to allow for incomplete sampling. If a proportion p of species are
included on the tree, we would instead set D, ;(0) = p (probability of having state s and of being on the
tree) and F;(0) = 1 — p (probability of absent, due to sampling rather than extinction). This simple form
of incomplete sampling assumes that any species is equally likely to be on the tree (FitzJohn et al. 2009).

3.2.4 At nodes

Equations (5) and (6) are the BiSSE ODEs, describing probabilities along the branches of a phylogeny. We
also need to specify what happens with the clade probabilities (the Ds) at the nodes of the tree. BiSSE
assumes the ancestor (called A) and descendants (called N and M) have the same state (i.e., there is no
cladogenetic character change). The initial value for the ancestral branch going into a node (at time ¢4) is
then the product of the final values for each of the daughter branches coming out of that node, times the
instantaneous speciation rate (to account for the observed speciation event):

Dy,i(ta) = Dn,i(ta)Dari(ta) (7)

11
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3.2.5 At the root

After we integrate Equations (5) and (6) from the tips to the root, dealing with nodes along the way via
Equation (7), we arrive at the root with the D values (called Dpg;), one for each state. These need to be
combined somehow to get the overall likelihood of the data:

Likelihood(tree, tip states | model) = Z DRipri
i

What probability weighting, pr; should be used for the possible root states? Sometimes a fixed approach is
used, assuming that the prior root state probabilities are either all equal, or are the same as the observed tip
state frequencies, or are the equilibrium state frequencies under the model parameters. These assumptions
do not have a real basis, however (unless there is some external data that supports them), and they can
cause trouble (Goldberg and Igi¢ 2008). An alternative is to use the BiSSE probabilities themselves to
determine the root state weightings, essentially adjusting the weightings to be most consistent with the
data and BiSSE parameters (FitzJohn et al. 2009). Perhaps better is to treat the weightings as unknown
parameters to be estimated. These estimates are usually quite uncertain, but in a Bayesian framework,
one can treat the pr; as nuisance parameters and integrate over them.

Table 1: BiSSE model parameters and their interpretation

Parameter Interpretation

v Phylogenetic tree with divergence times
T Root age

qo1 Rate of transitions from 0 to 1

q10 Rate of transitions from 1 to 0

Ao Speciation rate for state 0

1o Extinction rate for state 0

A1 Speciation rate for state 1

141 Extinction rate for state 1

3.3 Equations for the multi-state birth-death process

The entire derivation above can easily be expanded to accommodate an arbitrary number of states
(FitzJohn 2012). The only extra piece is summing over all the possible state transitions. The result-
ing differential equations within the branches are:

dDn,(?) a i
ar =— | Ni+pu+ Z qij DNJ'(t) + Z QijDN,j (t) + 2)\iEi(t)DN7i(t)
J#i JFi
dE;(t) u k )
T i + pi + Z#: gj | Ei(t) + Z#: 0i; E;(t) + NiE;i(t)
j#i j#i

12



REVBAYES TUTORIAL — STATE-DEPENDENT DIVERSIFICATION RATE ESTIMATION

4 Using state-dependent diversification models with RevBayes: the BiSSE
model

Now let’s start to analyze an example in RevBayes using the BiSSE model. In RevBayes, it’s called
“CDBDP,” meaning Character Dependent Birth Death Process.

4.1 Read in the data

Begin by reading in the observed tree and the character state data. We have both stored in separate nexus
files.

observed_phylogeny <- readTrees("data/primates_tree.nex") [1]
data <- readCharacterData("data/primates_activity_period.nex")

Note, the character-dependent birth-death process currently uses always the first character/site in the
alignment file. We have therefore split the character dataset into several small files that include only one
character each.

It will be convenient to pull out the list of tip names from the tree:

taxa <- observed_phylogeny.taxa()

Our vectors of moves and monitors will be defined later, but here we initialize iterator variables for them:

mvi = O
mni = O

Finally, we create a helper variable that specifies the number of states that the observed character has:

NUM_STATES = 2

Using this variable we can easily change our script to use a different character with a different number of
states, essentially changing out model from BiSSE to MuSSE. (This will also be handy in our later example
with the hidden-state speciation and extinction model.)

4.2 Specify the model

The basic idea behind the model in this example is that speciation and extinction rates are dependent on
a binary character, and the character transitions between its two possible states (Maddison et al. 2007).

13
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4.2.1 Priors on the rates

We start by specifying prior distributions on the diversification rates. We will assume here an identical prior
distribution on each of the speciation and extinction rates. Furthermore, we will use a normal distribution
as the prior distribution on the log of each speciation and extinction rate. Hence, we will use a mean of

ln(@) /tree-age which is the expected net diversification rate.

rate_mean <- 1n( 1n(367.0/2.0) / observed_phylogeny.rootAge() )
rate_sd <- 2.0

Now we can specify our character-specific speciation and extinction rate parameters. Because we will use
the same prior for each rate, it’s easy to specify them all in a for-loop. We set up moves at the same time;
a sliding move is good for a log-transformed variable.

for (i in 1:NUM_STATES) {

### Create a lognormal distributed variable for the diversification rate
log_speciation[i] ~ dnNormal (mean=rate_mean,sd=rate_sd)

speciation[i] := exp( log_speciation[i] )

moves [++mvi] = mvSlide(log_speciation[i],delta=0.20,tune=true,weight=3.0)

### Create a lognormal distributed variable for the turnover rate
log_extinction[i] ~ dnNormal (mean=rate_mean,sd=rate_sd)

extinction[i] := exp( log_extinction[i] )

moves [++mvi] = mvSlide(log_extinction[i],delta=0.20,tune=true,weight=3.0)

Next we specify the transition rates between the states 0 and 1, qo; and ¢19. As a prior, we choose that
each transition rate is drawn from an exponential distribution with a mean of 10 character state transitions
over the entire tree. This is reasonable because we use this kind of model for traits that transition not-
infrequently, and it leaves a fair bit of uncertainty. (You may want to compare the posterior to the prior
and/or check the resulting posterior estimates for different choices of the prior.)

rate_pr := observed_phylogeny.treeLength() / 10
rate_12 ~ dnExponential(rate_pr)
rate_21 ~ dnExponential(rate_pr)

For both transition rate variables we specify a scaling move.

moves [++mvi] = mvScale( rate_12, weight=2 )
moves [++mvi] = mvScale( rate_21, weight=2 )
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Finally, we put the rates into a matrix, because this is what’s needed by the function for the state-dependent
birth-death process.

rate_matrix := fnFreeBinary( [rate_12, rate_21 ], rescaled=false)

Note that we do not “rescale” the rate matrix. Rate matrices for molecular evolution are rescaled to have
an average rate of 1.0, but for this model we want estimates of the transition rates with the same time
scale as the diversification rates.

4.2.2 Prior on the root state

Create a variable with the prior probabilities of each rate category at the root. We are using a flat Dirichlet
distribution as the prior on each state. In this case we are actually estimating the prior frequencies of the
root states. There has been some discussion about this in FitzJohn et al. (2009). You could also fix the
prior probabilities for the root states to be equal (generally not recommended), or use empirical state
frequencies.

rate_category_prior ~ dnDirichlet( rep(1l,NUM_STATES) )
moves [++mvi] = mvDirichletSimplex(rate_category_prior,tune=true,weight=2)

4.2.3 Incomplete taxon sampling

We know that we have sampled 233 out of 367 living primate species. To account for this we can set the
sampling parameter as a constant node with a value of 233/367.

rho <- observed_phylogeny.ntips() /367

4.2.4 Root age

The birth-death process requires a parameter for the root age. In this exercise we use a fixed tree and thus
we know the age of the tree.

root <- observed_phylogeny.rootAge ()

4.2.5 The time tree

Now we have all of the parameters we need to specify the full character state-dependent birth-death model.
We initialize the stochastic node representing the time tree.

timetree ~ dnCDBDP( rootAge = root,
speciationRates = speciation,
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extinctionRates = extinction,

Q = rate_matrix,

pi = rate_category_prior,
delta =1.0,

rho = rho,

condition = "survival" )

And then we attach data to it.

timetree.clamp( observed_phylogeny )
timetree.clampCharData( data )

Finally, we create a workspace object of our whole model. The model() function traverses all of the
connections and finds all of the nodes we specified.

mymodel = model(rate_matrix)

4.3 Running an MCMC analysis
4.3.1 Specifying monitors

For our MCMC analysis, we set up a vector of monitors to record the states of our Markov chain. The
first monitor will model all numerical variables; we are particularly interesed in the rates of speciation,
extinction, and transition.

monitors[++mni] = mnModel(filename="output/primates_BiSSE.log", printgen=1)

The second monitor is a new type of monitor: an joint-ancestral-states monitor. This monitor takes a draw
from the joint posterior distribution of the ancestral states. Thus, with this output file we will be able to
make a nice plot with ancestral states.

monitors[++mni] = mnJointConditionalAncestralState(tree=timetree, cdbdp=timetree, type
="Standard", printgen=1, withTips=true, withStartStates=false, filename="output/
anc_states_primates_BiSSE.log")

(Note that this is a bit different than the marginal ancestral state reconstructions commonly produced by,
e.g., Mesquite or various R packages. These joint draws are a self-consistent set of states across all nodes.
Pagel (1999) discusses the differences.)

Finally, we add a screen monitor showing some updates during the MCMC run.
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monitors[++mni] = mnScreen(printgen=10, rate_12, rate_21, speciation, extinction)

4.3.2 Initializing and running the MCMC simulation

With a fully specified model, a set of monitors, and a set of moves, we can now set up the MCMC algorithm
that will sample parameter values in proportion to their posterior probability. The mcmc () function will
create our MCMC object:

mymcmc = mcmc (mymodel, monitors, moves)

First, we will run a pre-burnin to tune the moves and to obtain starting values from the posterior distri-
bution.

mymcmc . burnin (generations=5000, tuningInterval=200)

Now, run the MCMC:

mymcmc . run (generations=20000)

4.3.3 Summarizing ancestral states

After our MCMC run has finished, we read-in again our samples from the joint-ancestral-state posterior
distribution.

anc_states = readAncestralStateTrace("output/anc_states_primates_BiSSE.log")

Then we can use this trace and our fixed tree to compute the posterior probabilities of the ancestral states
and prepare the output for plotting. We will use the function called ancestralStateTree which stores
the tree with ancestral states automatically in a file.

anc_tree = ancestralStateTree(tree=observed_phylogeny, ancestral_state_trace_vector=
anc_states, include_start_states=false, file="output/
anc_states_primates_BiSSE_results.tree", burnin=0, summary_statistic="MAP", site=0)

4.3.4 Plotting ancestral states

Let us first plot the ancestral states mapped on the phylogeny. We will use R and the package RevGadgets.
Execute the following code in R.
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library(RevGadgets)
tree_file = "output/anc_states_primates_BiSSE_results.tree"

plot_ancestral_states(tree_file, summary_statistic="MAP",
tip_label_size=0,
x1lim_visible=NULL,
node_label_size=0,
show_posterior_legend=TRUE,
node_size_range=c(2, 6),
alpha=0.75)

output_file = "RevBayes_Anc_States_BiSSE.pdf"
ggsave (output_file, width = 11, height = 9)

The resulting plot is shown in Figure 6. We see both the maximum a posteriori (MAP) estimate for each
node as well as the posterior probability of the states represented by the size of the dots.

4.3.5 Plotting diversification rates

Now let us plot the diversification rate estimates. Again, we are going to use R for our plotting. Specifically,
we will use the package ggplot2 but you can also use any other package that you prefer. We are only
taking advantage of reading in the tab-delimited file as a table and plot the different diversification rate
parameters. Note that we also rely on another provided R script for plotting multiple plots in one file.

library(ggplot2)
source("scripts/multiplot.R")

data <- read.table("output/primates_BiSSE.log",header=TRUE)

dat_ext <- data.frame(dens = c(data$extinction.l, data$extinction.2), Type = rep(c
("1", "2"), each = length(data$extinction.1)))

dat_spec <- data.frame(dens = c(data$speciation.l, data$speciation.2), Type = rep(c
("1", "2"), each = length(data$extinction.1)))

dat_div <- data.frame(dens = c(data$speciation.l-data$extinction.l, data$speciation.2-
data$extinction.2), Type = rep(c("1", "2"), each = length(data$extinction.1)))

dat_rel <- data.frame(dens = c(data$extinction.l/data$speciation.l, data$extinction.2/
data$speciation.2), Type = rep(c("1", "2"), each = length(data$extinction.1)))

pdf ("RevBayes_BiSSE_Results.pdf")
pl <- ggplot(dat_spec, aes(x = dens, fill = Type)) + labs(title = "Speciation", x="
Rate", y="Posterior Density") + geom_density(alpha = 0.5)

p2 <- ggplot(dat_ext, aes(x = dens, fill = Type)) + labs(title = "Extinction", x="Rate
", y="Posterior Density") + geom_density(alpha = 0.5)
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Figure 6: Estimated ancestral states for the activity period of primates.

p3 <- ggplot(dat_div, aes(x = dens, fill = Type)) + labs(title = "Net-Diversification

", x="Rate", y="Posterior Density") + geom_density(alpha = 0.5)

p4 <- ggplot(dat_rel, aes(x = dens, fill = Type)) + labs(title = "Relative Extinction

", x="Rate", y="Posterior Density") + geom_density(alpha = 0.5)
multiplot(pl, p2, p3, p4)

dev.off ()

4.4 Exercise
1. Run an MCMC simulation to estimate the posterior distribution of the speciation rate and extinction

rate.
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Figure 7: Estimated diversification rate for activity period (state 1 = Diurnal and state 2 = Nocturnal). We see that
there is a noticeable difference in the estimated speciation rates but only little difference in the estimated extinction
rates.

2. Visualize the state-specific diversification rates using R.
3. Do you see evidence for rate differences between the two states?

4. Repeat this analysis for a different binary character.
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5 Accommodating uncorrelated diversification rate changes: the HiSSE
model

BiSSE and MuSSE are powerful approaches for testing the association of a character with diversification
rate heterogeneity. However, BiSSE has been shown to be prone to falsely identifying a positive association
when diversification rate shifts are correlated with a character not included in the model (Maddison and
FitzJohn 2015; Rabosky and Goldberg 2015). One approach to reduce the possibility of falsely associating
a character with diversification rate heterogeneity is to incorporate a second, unobserved character into the
model (i.e. a Hidden State-Dependent Speciation and Extinction (HiSSE) model; Beaulieu and O'Meara
2016). The changes in the unobserved character’s state represent background diversification rate changes
that are not correlated with the oberved character. See Figure 8 for a schematic overview of the HiSSE
model, and Table 2 for an explanation of the HiSSE model parameters. Now let’s set up and run a HiSSE
analysis in RevBayes.

speciation speciation
extinction )\OA{\ transition AMA extinction
f10A qor_, A
0A
dio
transition dAB dBA daB dBA transition
do1
HoB e < > 1B
0 q10 \
extinction )\OBV transition \}MB extinction
speciation speciation

Figure 8: A schematic overview of the HiSSE model. Each lineage has an observed binary state associated to it:
state 0 (blue) or state 1 (red). Furthermore, there is a second, unobserved (hidden), binary character with states A
or B. The HiSSE model describes jointly the evolution of both of these two characters; a lineage must be in one of
four different states: 0A, 0B, 1A, or 1B. We estimate separate speciation and extinction rates for each of these four
states. Note that just like BiSSE can easily be extended to MuSSE, RevBayes allows you to extend HiSSE models
beyond binary observed and unobserved characters.

5.1 Setting up the analysis
5.1.1 Reading in the data

Begin by reading in the observed tree and the character data. We have both stored in separate nexus files.

observed_phylogeny <- readTrees("data/primates_tree.nex") [1]
data <- readCharacterData("data/primates_activity_period.nex")
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Table 2: HiSSE model parameters and their interpretation

Parameter Interpretation

v Phylogenetic tree with divergence times.

T The root age.

qo1 The rate of shifts between observed states 0 to 1.
q10 The rate of shifts between observed states 1 to 0.
gAB The rate of shifts between hidden states A to B.
4dBA The rate of shifts between hidden states B to A.
oA Speciation rate for state OA.

10A Extinction rate for state OA.

A4 Speciation rate for state 1A.

1A Extinction rate for state 1A.

AoB Speciation rate for state 0B.

HoB Extinction rate for state 0B.

B Speciation rate for state 1B.

B Extinction rate for state 1B.

Note, the character-dependent birth-death process currently uses always the first character/site in the
alignment file. We have therefore split the character dataset into several small files that include only one
character each.

From the tree, we can get some helpful variables:

taxa <- observed_phylogeny.taxa()
Additionally, we can initialize an iterator variable for our vector of moves and monitors:
mvi = 0

mni = O

Finally, we create a helper variable that specifies the number of states that the character has.

NUM_STATES = 2
NUM_HIDDEN = 2
NUM_RATES = NUM_STATES * NUM_HIDDEN

Using this variable we can easily change our script to use a different character with a different number
of states. We will also use this variable in our second example on hidden-state speciation and extinction
model.
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5.1.2 Priors on rates

We start by specifying prior distributions on the diversification rates. We will assume here an identical
prior distribution on the speciation and extinction rate. Furthermore, we will use a normal distribution

as the prior distribution on the log of the speciation and extinction rate. Hence, we will use a mean of
ln(#Taxa)

2
tree-age

which is the expected net-diversification rate.

rate_mean <- 1n( 1n(367.0/2.0) / observed_phylogeny.rootAge() )
rate_sd <- 2.0

Now we can specify our character-specific specification and extinction rate parameters. As we just said
before, we are going to use normal distributions for the prior on the log-speciation and log-extinction rate.
Here we will use a for-loop to specify speciation and extinction parameters for each character, e.g., two
in a binary state case.

for (i in 1:NUM_STATES) {

### Create a lognormal distributed variable for the diversification rate
log_speciation[i] ~ dnNormal (mean=rate_mean,sd=rate_sd)

speciation[i] := exp( log_speciation[i] )

moves [++mvi] = mvSlide(log_speciation[i],delta=0.20,tune=true,weight=3.0)

### Create a lognormal distributed variable for the turnover rate
log_extinction[i] ~ dnNormal (mean=rate_mean,sd=rate_sd)

extinction[i] := exp( log_extinction[i] )

moves [++mvi] = mvSlide(log_extinction[i],delta=0.20,tune=true,weight=3.0)

Now we need to create the variable for the hidden states.

for (i in 1:(NUM_HIDDEN-1)) {

### Create an exponential distributed wvariable for the diversification rate
speciation_beta[i] ~ dnExp(1.0)
moves [++mvi] = mvScale(speciation_betal[i] ,lambda=0.20,tune=true,weight=2.0)

### Create an normal distributed variable for the turnover rate

extinction_betal[i] ~ dnNormal(0.0,1.0)
moves [++mvi] = mvSlide(extinction_betal[i] ,delta=0.20,tune=true,weight=2.0)
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Finally, we match the rates to all possible —hidden and observed— states.

As before, we specify a rate prior.

For both rate variable we specify a scaling move.

Finally, we build a rate matrix for the relative-rate of change between categories. This is because we need
a rate matrix in our state-dependent birth-death process.

Set up the transition rate matrix for hidden states. We assume the transitions among the hidden states
are all equal and drawn from an exponential distribution.
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Create the rate matrix for the combined observed and hidden states

rate _matrix := fnHiddenStateRateMatrix(Q, R, rescaled=false)

A specific note here is that we do not rescale the rate matrix. This is very important because otherwise
rate matrices, as used for molecular evolution, are always rescaled to have an average rate of 1.0. If such
a rescaled rate matrix was used, then you need to provide an overall rate scalar 4.

5.1.3 Prior on the root state

Create a variable with the prior probabilities of each rate category at the root. We are using a flat Dirichlet
distribution as the prior on each state. In this case we are actually estimating the prior frequencies of the
root states.

rate_category_prior ~ dnDirichlet( rep(1,NUM_STATES) )
moves [++mvi] = mvDirichletSimplex(rate_category_prior,tune=true,weight=2)

5.1.4 Incomplete Taxon Sampling
We know that we have sampled 233 out of 367 living primate species. To account for this we can set the

sampling parameter as a constant node with a value of 233/367

rho <- observed_phylogeny.ntips()/367

5.1.5 Root age

The birth-death process requires a parameter for the root age. In this exercise we use a fix tree and thus
we know the age of the tree. Hence, we can get the value for the root from the Magnuson-Ford and Otto
(2012) tree.

root <- observed_phylogeny.rootAge ()

5.1.6 The time tree

Now we have all of the parameters we need to specify the full state-dependent birth-death model. We
initialize the stochastic node representing the time tree.

timetree ~ dnCDBDP( rootAge = root,
speciationRates = speciation,
extinctionRates = extinction,
Q = rate_matrix,
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pi = rate_category_prior,
delta =1.0,

rho = rho,

condition = "survival" )

And then we attach data to it.

timetree.clamp( observed_phylogeny )
timetree.clampCharData( data )

Finally, we create a workspace object of our whole model using the model () function.

mymodel = model(rate_matrix)

The model () function traversed all of the connections and found all of the nodes we specified.
5.2 Running an MCMC analysis

5.2.1 Specifying Monitors

For our MCMC analysis, we set up a vector of monitors to record the states of our Markov chain. For
more details

monitors[++mni] = mnModel(filename="output/primates_HiSSE.log", printgen=1)

monitors [++mni] mnJointConditionalAncestralState (tree=timetree, cdbdp=timetree, type
="NaturalNumbers", printgen=1, withTips=true, withStartStates=false, filename="
output/anc_states_primates_HiSSE.log")

monitors[++mni] = mnScreen(printgen=100, Q, R)

5.2.2 Initializing and Running the MCMC Simulation

With a fully specified model, a set of monitors, and a set of moves, we can now set up the MCMC algorithm
that will sample parameter values in proportion to their posterior probability. The mcmc() function will
create our MCMC object:

mymcmc = mcmc (mymodel, monitors, moves)

First, we will run a pre-burnin to tune the moves and to obtain starting values from the posterior distri-
bution.

26



REVBAYES TUTORIAL — STATE-DEPENDENT DIVERSIFICATION RATE ESTIMATION

mymcmc . burnin (generations=5000, tuningInterval=200)

Now, run the MCMC:

mymcmc . run (generations=20000)

5.2.3 Summarizing ancestral states

After the MCMC run we summarize and estimate the joint-ancestral-state estimates.

anc_states = readAncestralStateTrace("output/anc_states_primates_HiSSE.log")

anc_tree = ancestralStateTree(tree=observed_phylogeny, ancestral_state_trace_vector=
anc_states, include_start_states=false, file="output/
anc_states_primates_HiSSE_results.tree", burnin=0, summary_statistic="MAP", site=0)

5.2.4 Plotting diversification rates

Again, we plot the diversification rate as before.

library(ggplot2)
source("scripts/multiplot.R")

data <- read.table("output/primates_HiSSE.log",header=TRUE)

start <- round(0.5*length(data$extinction.1))
end <- length(data$extinction.1)

HiSSE_types <- rep(c("1A", "2A", "1B", "2B"), each = length(data$extinction.1[start:
end]))

dat_ext <- data.frame(dens = c(data$extinction.1[start:end], data$extinction.2[start:
end], data$extinction.3[start:end], data$extinction.4[start:end]), Type =
HiSSE_types)

dat_spec <- data.frame(dens = c(data$speciation.l[start:end], data$speciation.2[start:
end], data$speciation.3[start:end], data$speciation.4[start:end]), Type =
HiSSE_types)

dat_div <- data.frame(dens = c(data$speciation.l[start:end]-data$extinction.1[start:
end], data$speciation.2[start:end]-data$extinction.2[start:end], data$speciation.3[
start:end]-data$extinction.3[start:end], data$speciation.4[start:end]-
data$extinction.4[start:end]), Type = HiSSE_types)

dat_rel <- data.frame(dens = c(data$extinction.1[start:end]/data$speciation.1[start:
end], data$extinction.2[start:end]/data$speciation.2[start:end], data$extinction.3[
start:end]/data$speciation.3[start:end], data$extinction.4[start:end]/
data$speciation.4[start:end]), Type = HiSSE_types)
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5.3 Exercise

1. Run an MCMC simulation to estimate the posterior distribution of the speciation rate and extinction
rate.

2. Visualize the state-specific diversification rates using R.

Do you see evidence for rate differences between the two states?

- W

Do you see differences to the previous BiSSE estimates?

5. Repeat this analysis for a different binary character.
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Figure 9: Estimated diversification rate for activity period (state 1 = Diurnal and state 2 = Nocturnal).

6 Accommodating both cladogenetic and anagenetic changes: the ClaSSE
model

In the previous examples we have modeled all character state transitions as anagenetic changes. Anagenetic
changes occur along the branches of a phylogeny, within a lineage. Cladogenetic changes, on the other
hand, occur at speciation events. They represent changes in a character state that may be associated with
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speciation events due to increased reproductive isolation, for example colonizing a new geographic area or
a shift in chromosome number. Note that it can be quite tricky to determine if a character state shift is a
cause or a consequence of speciation, but we can at least test if state changes tend to occur in the same
time window as speciation events.

A major challenge for all phylogenetic models of cladogenetic character change is accounting for unobserved
speciation events due to lineages going extinct and not leaving any extant descendants (Bokma 2002), or due
to incomplete sampling of lineages in the present. Teasing apart the phylogenetic signal for cladogenetic and
anagenetic processes given unobserved speciation events is a major difficulty. Commonly used biographic
models like the dispersal-extinction-cladogenesis (DEC; Ree and Smith 2008) simply ignore unobserved
speciation events and so result in biased estimates of cladogenetic versus anagenetic change.

This bias can be avoided by using the Cladogenetic State change Speciation and Extinction (ClaSSE)
model (Goldberg and Igi¢ 2012), which accounts for unobserved speciation events by jointly modeling both
character evolution and the phylogenetic birth-death process. ClaSSE models extend other SSE models
by incorporating both cladogenetic and anagenetic character evolution. This approach has been used to
model biogeographic range evolution (Goldberg et al. 2011) and chromosome number evolution (Freyman
and Hohna 2017).

Here we will use RevBayes to examine biogeographic range evolution in the primates. We will model
biogeographic range evolution similar to a DEC model, however we will use ClaSSE to account for speciation
events unobserved due to extinction or incomplete sampling.

6.1 Setting up the analysis

6.1.1 Reading in the data

Begin by reading in the observed tree.

observed_phylogeny <- readTrees("data/primates_biogeo.tre") [1]

Get the taxa in the tree. We’ll need this later on.

taxa = observed_phylogeny.taxa()

Now let’s read in the biogeographic range data. The areas are represented as the following character states:

e 0 = 00 = the null state with no range
e 1 =01 = New World only

e 2 =10 = Old World only

e 3 =11 = both New and Old World

For consistency, we have chosen to use the same representation of biogeographic ranges used in the RevBayes
biogeography /DEC tutorial. Each range is represented as both a natural number (0, 1, 2, 3) and a
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corresponding bitset (00, 01, 10, 11). The null state (state 0) is used in DEC models to represent a lineage
that has no biogeographic range and is therefore extinct. Our model will include this null state as well,
however, we will explicitly model extinction as part of the birth-death process so our character will never
enter state 0.

data_biogeo = readCharacterDataDelimited("data/primates_biogeo.tsv", statelLabels
="0123", type="NaturalNumbers", delimiter="\t", headers=TRUE)

Also we need to set the move and monitor indices.

mvi = O
mni = 0O

6.1.2 Set up the extinction rates

We are going to draw both anagenetic transition rates and diversification rates from a lognormal distribu-
tion. The mean of the prior distribution will be ln(@) /tree-age which is the expected net diversification
rate, and the SD will be 1.0 so the 95% prior interval ranges well over 2 orders of magnitude.

num_species <- 424 # approximate total number of primate spectes
rate_mean <- 1n( ln(num_species/2.0) / observed_phylogeny.rootAge() )
rate_sd <- 1.0

The extinction rates will be stored in a vector where each element represents the extinction rate for the
corresponding character state. We have chosen to allow a lineage to go extinct in both the New and Old
World at the same time (like a global extinction event). As an alternative, you could restrict the model so
that a lineage can only go extinct if it’s range is limited to one area.

extinction_rates[1] <- 0.0 # the null state (state 0)

extinction_rates[2] ~ dnLognormal (rate_mean, rate_sd) # eztinction when the lineage %s
in New World (state 1)

extinction_rates[3] ~ dnLognormal (rate_mean, rate_sd) # exztinction when the lineage s
in 0ld World (state 2)

extinction_rates[4] ~ dnLognormal (rate_mean, rate_sd) # extinction when in both (state
3)

Note Rev vectors are indexed starting with 1, yet our character states start at 0. So extinction_rate[1]
will represent the extinction rate for character state 0.

Add MCMC moves for each extinction rate.
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Let’s also create a deterministic variable to monitor the overall extinction rate.

6.1.3 Set up the anagenetic transition rate matrix

First, let’s create the rates of anagenetic dispersal:

Now add MCMC moves for each anagenetic dispersal rate.

The anagenetic transitions will be stored in a 4 by 4 instantaneous rate matrix. We will construct this by
first creating a vector of vectors. Let’s begin by initalizing all rates to 0.0:

Now we can populate non-zero rates into the anagenetic transition rate matrix:
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Note that we have modeled the rate of 11 — 01 (3 — 1) as being the rate of going extinct in area 2, and
the rate of 11 — 10 (3 — 2) as being the rate of going extinct in area 1.

Now we pass our vector of vectors into the fnFreeK function to create the instaneous rate matrix.

ana_rate_matrix := fnFreeK(r, rescaled=false)

6.1.4 Set up the cladogenetic speciation rate matrix

Here we need to define each cladogenetic event type in the form [ancestor_state, daughterl_state,
daughter2_state] and assign each cladogenetic event type a corresponding speciation rate.

The first type of cladogenetic event we’ll specify is widespread sympatry. Widespread sympatric cladogen-
esis is where the biogeographic range does not change; that is the daughter lineages inherit the same range
as the ancestor. In this example we are not going to allow the speciation events like 11 — 11, 11, as it
seems biologically implausible. However if you wanted you could add this to your model.

Define the speciation rate for widespread sympatric cladogenesis events:

speciation_wide_sympatry ~ dnLognormal(rate_mean, rate_sd)
moves [++mvi] = mvSlide( speciation_wide_sympatry, weight=4 )

Define the widespread sympatric cladogenetic events:

(1, 1, 11 # 01 -> 01, 01
[2, 2, 2] # 10 -> 10, 10

clado_events[1]
clado_events[2]

and assign each the same speciation rate:

speciation_rates[1] := speciation_wide_sympatry/2
speciation_rates[2] speciation_wide_sympatry/2

Subset sympatry is where one daughter lineage inherits the full ancestral range but the other lineage
inherits only a single region.

speciation_sub_sympatry ~ dnLognormal (rate_mean, rate_sd)
moves [++mvi] = mvSlide( speciation_sub_sympatry, weight=4 )

Define the subset sympatry events and assign each a speciation rate:

33



REVBAYES TUTORIAL — STATE-DEPENDENT DIVERSIFICATION RATE ESTIMATION

[3, 3, 11 # 11 -> 11, 01
[3, 1, 3] # 11 -> 01, 11
clado_events [5] [3, 38, 2] # 11 -> 11, 10
clado_events[6] [3, 2, 3] # 11 —> 10, 11
speciation_rates[3] speciation_sub_sympatry/4
speciation_rates[4] speciation_sub_sympatry/4
speciation_rates[5] speciation_sub_sympatry/4
speciation_rates[6] speciation_sub_sympatry/4

clado_events[3]
clado_events[4]

Allopatric cladogenesis is when the two daughter lineages split the ancestral range:

speciation_allopatry ~ dnLognormal(rate_mean, rate_sd)
moves [++mvi] = mvSlide( speciation_allopatry, weight=4 )

Define the allopatric events:

clado_events[7] = [3, 1, 2] # 11 -> 01, 10
clado_events([8] = [3, 2, 1] # 11 -> 10, 01
speciation_rates[7] := speciation_allopatry/2
speciation_rates[8] := speciation_allopatry/2

Now let’s create a deterministic variable to monitor the overall speciation rate:

total_speciation := sum(speciation_rates)

Finally, we construct the cladogenetic speciation rate matrix from the cladogenetic event types and the
speciation rates.

clado_matrix := fnCladogeneticSpeciationRateMatrix(clado_events, speciation_rates, 4)

Let’s view the cladogenetic matrix to see if we have set it up correctly:

clado_matrix

6.1.5 Set up the cladogenetic character state-dependent birth-death process

For simplicity we will fix the root frequencies to be equal except for the null state which has probability of
0
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root_frequencies <- simplex([0, 1, 1, 1])

rho is the probability of sampling species at the present:

rho <- observed_phylogeny.ntips()/num_species

Now we construct a stochastic variable drawn from the cladogenetic character state-dependent birth-death
process.

classe ~ dnCDBDP( rootAge = observed_phylogeny.rootAge(),
cladoEventMap = clado_matrix,
extinctionRates = extinction_rates,

Q = ana_rate_matrix,
delta =1.0,

pi = root_frequencies,
rho = rho,

condition = "time" )

Clamp the model with the observed data.

classe.clamp( observed_phylogeny )
classe.clampCharData( data_biogeo )

6.1.6 Finalize the model

Just like before, we must create a workspace model object.

mymodel = model(classe)

6.2 Set up and run the MCMC

First, set up the monitors that will output parameter values to file and screen.

monitors[++mni] = mnModel (filename="output/primates_ClaSSE.log", printgen=1)

monitors[++mni] = mnJointConditionalAncestralState(tree=observed_phylogeny, cdbdp=
classe, type="NaturalNumbers", printgen=1, withTips=true, withStartStates=true,
filename="output/anc_states_primates_ClaSSE.log")

monitors[++mni] = mnScreen(printgen=1, speciation_wide_sympatry,
speciation_sub_sympatry, speciation_allopatry, extinction_rates)
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Now define our workspace MCMC object.

mymcmc = mcmc (mymodel, monitors, moves)

We will perform a pre-burnin to tune the proposals and then run the MCMC. Note that for a real analysis
you would want to run the MCMC for many more iterations.

mymcmc . burnin(generations=200, tuningInterval=5)
mymcmc . run (generations=1000)

6.3 Summarize ancestral states

When the analysis has completed you now summarize the ancestral states. The ancestral states are
estimated both for the “beginning” and “end” state of each branch, so that the cladogenetic changes
that occurred at speciation events are distinguished from the changes that occurred anagenetically along
branches. Make sure the include_start_states argument is set to true.

anc_states = readAncestralStateTrace("output/anc_states_primates_ClaSSE.log")

anc_tree = ancestralStateTree(tree=observed_phylogeny, ancestral_state_trace_vector=
anc_states, include_start_states=true, file="output/
anc_states_primates_ClaSSE_results.tree", burnin=0, summary_statistic="MAP", site
=0)

6.3.1 Plotting ancestral states

Like before, we’ll plot the ancestral states using the RevGadgets R package. Execute the script
plot_anc_states_ClaSSE.R in R. The results can be seen in Figure 10. The maximum a posteriori (MAP)
estimate for each node is shown as well as the posterior probability of the states represented by the size of
the dots.

library(RevGadgets)
tree_file = "output/anc_states_primates_ClaSSE_results.tree"

plot_ancestral_states(tree_file, summary_statistic="MAPRange",
tip_label_size=3,
tip_label_offset=1,
x1im_visible=c(0,100),
node_label size=0,
shoulder_label_size=0,
include_start_states=TRUE,
show_posterior_legend=TRUE,
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node_size_range=c(4, 7),
alpha=0.75)

output_file = "RevBayes_Anc_States_ClaSSE.pdf"
ggsave (output_file, width = 11, height = 9)
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Figure 10: Maximum a posteriori estimate of biogeographic range evolution of the primates. The most recent
common ancestor of the primates is inferred to be in the Old World (green). According to this reconstruction,
approximately 70 Mya one lineage dispersed to be in both New and Old World (blue). This widespread lineage
underwent allopatric cladogenesis, resulting in one daughter lineage in the Old World and one in the New World

(green).

6.4 Exercise

1. Using either R or Tracer, visualize the posterior estimates for different types of cladogenetic events.

What kind of speciation events are most common?
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2. As we have specified the model, we did not allow cladogenetic long distance (jump) dispersal, for
example 01 — 01, 10. Modify this script to include cladogenetic long distance dispersal and calculate
Bayes factors to see which model fits the data better. How does this affect the ancestral state
estimate?
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