
An Integrated Security Framework For

GOSS Power Grid Analytics Platform

Tara Gibson

PNNL

PNNL-SA-103595

1st International Workshop on Trustworthiness of Smart Grids

June 23, 2014

What is GOSS?

GOSS is a middleware architecture designed as a research prototype

future data analytics and integration platform

What does that mean?

Extensibility – ease of integration of new/existing power grid applications

developed in many different languages

Separates data sources from applications and provides a unified

application programming interface (API) for access

Quickly make new data available to the many applications already

integrated with GOSS

Provide redundant data access for improved reliability

Real-time - subscription to streaming data and events

Scalability & Performance

GOSS Conceptual Architecture

3

™

Sample GOSS applications: GCA

Graphical Contingency Analysis (GCA) - a visual analysis application

that aids power grid operators and planners to effectively manage

potential network failures (N-1)

GOSS simplified the application by allowing us to combine all input

files (power system model, SCADA, power-flow) into a single data

source instead of managing multiple files separately

Application initiates a request for a topology and allows users to select

the model to analyze

Access is restricted by roles. For

each utility, access is granted to a

set of roles and the user must be

in one of these roles in order to

access the data for that utility

Sample GOSS applications: NIS

Now able to re-use the

algorithm with different data

types.

The input is controlled the

same as other PMU data

sources, the application will

only have access to PMU

streams that the user has been

granted access to.

Net Interchange Schedule (NIS) displays the sum of the energy

import and export transactions between an Independent System

Operator (ISO) or a Balancing Authority and neighbors. NIS

forecasting (NISF) application was developed to aid the ISOs in

economically dispatching the generation resources

The original application used manually formulated files for the desired

time series. With GOSS can use a light-weight client adapter and

any time series

Why is security important for powergrid data?

Data is sensitive, must be protected

Risk of cyber-attacks

Identification of critical points

Inject erroneous data

Critical infrastructure

Serious implications for market, stability, and security

Stability and redundancy are also important

Features such as security should not interfere with

stability

Security Requirements

Authentication should:
Provide authentication & identities across multiple domains

Prevent intrusions by 3rd party

When making a request users/applications should not need to present

their credentials many times

Access Control should:
Fine-grained access control - each data source and application can have

different security constraints

Some users have limited access based on source/age, other users have

access to all

Access to summarized data may be different than raw data

Higher-level organizations can see the data of utilities within their domain

Users can’t find out about data/services they don’t have access for

GOSS Conceptual Architecture

8

™

GOSS Security & Request Flow

September 24, 2014 9

 GOSS Data Management Layer

1. Access Control Lookup and Check

2. Request Handler Lookup

JAAS Authentication

 Security Handlers

Request Handlers

Powergrid AC handler

Forecasting AC handler

PMU AC handler

Event AC handler

Powergrid model handler

Request

Credentials

Forecasting model handler

PMU request handler

Events request handler

Client API

Returns allowed roles
Processes request,

Returns Data

Response Request Request

Roles

GOSS Authentication

Authentication – uses widely accepted tools already

integrated into communication platform

Java Authentication and Authorization Service (JAAS)

Easily substitute login modules

Lightweight Directory Access Protocol (LDAP)

Open, industry standard application protocol for accessing and

maintaining distributed directory information services

Transport Layer Security/Secure Sockets Layer (SSL)

Cryptographic protocols to provide communication security

10

GOSS Access Control

Access Control – customizable for each data source

Request Specific Security Handlers

Security Handlers map request to list of allowed roles

User verified for correct role access

Multi-role Access

Request combining multiple sources

Handler implementations for common data types

Time series data

Security Case Studies – Static Access Control

Shows PMU data access via a UI

Developed to test and demonstrate fine grained access control

Configured to use 2 user roles, 3 users

Access per PMU is granted to one of these roles

Web UI to choose which PMUs to display in a graph

Fails and notifies user if access denied for any of the selected PMUs

Can view data for multiple roles/utilities

Security Case Studies – Dynamic Access Control

Shared Perspectives

Visual application to share live steaming data between users in

separate organizations/utilities

Data is delivered in a CIM compatible format, representing geographic

information, sensor data such as angle and voltage, and contingency

analysis.

Two instances representing a ‘north’ and a ‘south’ utility.

When a user from one utility wants to share data with the other utility

the sharing occurs

within the Shared

Perspective application

Performance Benchmarking Results

September 24, 2014 14

Test 1: Comparison of average time

taken by data store and GOSS

individually in total READ request

processing time

• Data size ~700 KB

• Number of requests = 4,000

• Number of Clients = 1

• Each client executed in separate

thread.

Test 2: Request processing time

with increasing number of

concurrent READ data requests

• Each client sends 10

requests

• Data size ~700 KB

• Each client executed in

separate thread

Synchronous Performance After Enhancements

GOSS Overheads using same method as previous slide

Before enhancements, security adds almost 100% increase

After enhancements, reduced to only ~10%

0

5

10

15

20

25

No Security 9.8842 ms Security w/o Enhancements 19.6122
ms

Security w Enhancements 10.0631
ms

Overhead in ms

Overhead in ms

Performance Benchmarking Analysis

Per Client Request, processing time is stable even with increasing

number of clients

Scales well with increasing load

Total time spent inside GOSS includes not only data access but also:

Data routing between data source and application

Query conversion. Generic query format to data store specific query

(e.g., SQL)

Result conversion. Converting the results to format requested by the

application (including object transformation). Eg., JSON, XML, Serialized

Object, etc.

Security and access control

Tests show results in “synchronous” access mode. Asynchronous

access hides most of these latencies via pipelining.

Real-time applications likely to use either event-based or

asynchronous access.

September 24, 2014 16

Performance Issues & Enhancements

Issues Identified

Frequent calls to LDAP to verify authorization

Logging adds significant overhead

Time spent encrypting/decrypting certificate if

used

Enhancements applied

Use Caching for authorization implementation

Make sure any additional logging only happens

when server is configured in that mode

Other Challenges

Human element

Passwords

Effective caching

Optimization

Separate Networks

Multiple organizations

Trust & communication

Authentication/Authorization

Future work

Certificate based authentication

Username/password not practical for applications

Instead use certificate based authentication

Supports multi-organizations

Certs from various orgs registered with centralized trust store

Roles can be stored within certificates, but may not be as up to date as

LDAP store

Improved Multi-domain support

Trust between separate entities

Redundancy

Fault tolerance

Conclusion

GOSS – open-source freely available data management and

application framework

https://github.com/GridOPTICS/GOSS

Tutorial workshop on July 16 (See reference slides for more details)

Integration with existing applications

Security Framework Implementation

Adaptable authentication mechanism

Allows fine-grained complex access controls

Easy integration of new data sources

Performance evaluation and impact

Proper Caching reduced the majority of the performance impact

Separate access control checks may still add performance hit and is not

something controllable by core GOSS

https://github.com/GridOPTICS/GOSS
https://github.com/GridOPTICS/GOSS

Thanks to the rest of the GOSS Team!

Bora Akyol bora@pnnl.gov

Poorva Sharma poorva.sharma@pnnl.gov

Craig Allwardt craig.allwardt@pnnl.gov

Mark Rice mark.rice@pnnl.gov

mailto:bora@pnnl.gov
mailto:poorva.sharma@pnnl.gov
mailto:craig.allwardt@pnnl.gov
mailto:mark.rice@pnnl.gov

Questions?

Contact Email: tara@pnnl.gov

mailto:tara@pnnl.gov

Reference slides

Tutorial Information

 ~July 16, 2014

 Contact Tara Gibson tara@pnnl.gov for

more details

mailto:tara@pnnl.gov

Sample GOSS applications: Event Detection

Detects generator trips from PMU data

Analyzes PMU data as time ordered segments, originally data stored

in files

Performs data cleaning step to eliminate common errors within the

data and reduce false positives

Saves identified generator trips to a custom data store. These events

are viewed through a web application

Written in R

GOSS made it very simple to request data for any time period

allowing us to process near real-time data. GOSS also enabled us to

submit discovered events back to the GOSS framework

When requesting PMU data to process, we need to verify that the

application/user doing the processing has access to all of the raw

PMU data that they are requesting.

Example: Time series access control

Many time series data sources have the same core properties

Time

Source

Use Settings in table to map from Request to allowed roles

Core implementation Time Series Handler allows developers to

extend for their own data sources

Time Series Data Access Fields

• dataType (PMU, SCADA, etc)

• source (sensor ID or *)

• age (# of days old, or -1)

• accessLevel (Raw, summary, etc…)

• roles (comma separated list of roles allowed)

• operationsAllowed

• expiration (date this access policy expires)

