

Introduction

• Visual Object Tracking Goal: Continuously localize object of interest in a video.

Motivation

- > Exploring the scaling law in tracking to advance the field.
- > Applying LoRA to pure vision models is still lack of exploration, presenting unique challenges.
- > Training large-scale trackers with laboratory-manageable resources.

Contributions

- First generic object tracking model trained in a parameterefficient way.
- Two simple yet effective designs enabling better adaption of LoRA for tracking.
- LoRAT: New state-of-the-art performance on multiple benchmarks with reasonable resource requirements.

Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance

Liting Lin¹, Heng Fan², Zhipeng Zhang³, Yaowei Wang^{1#}, Yong Xu⁴, Haibin Ling^{5#}

¹Peng Cheng Laboratory ²Department of CSE, University of North Texas ³KargoBot ⁴School of Computer Science & Engineering, South China Univ. of Tech. ⁵Department of Computer Science, Stony Brook University

Challenges and Solutions

Position embeddings Token type embeddings Patch embeddings

🗱 Frozen

🔥 Trainable

Our Finding

Existing one-stream trackers fail to converge when simply adopting LoRA on linear layers. Changes to model design essential to lower "optimization difficulty" (quantified by Gradient Norm of loss function during training). Bottlenecks include:

- Separate positional embeddings for template and search region tokens: *disrupt* the structure of the pre-trained ViT model
- Inductive bias introduced by convolutional heads: CNNs have much image-specific *inductive bias* but not applied in pre-training tasks of ViTs. Our Solution

We apply **LoRA** for efficient training via two key solutions:

- Decoupled Positional Embedding: We separate positional embeddings into shared spatial embeddings (inherited from pre-trained backbones) and independent type embeddings (learned from scratch). This design preserves the structure of the pre-trained model, ensuring compatibility with LoRA for efficient fine-tuning. We also adopt type embeddings to explicitly annotating foreground and background parts within the template, further reducing the confusion during training.
- MLP-Based Anchor-Free Head: We replace the convolutional head with an MLP-based anchor-free head to eliminate inductive biases, enabling more flexible and efficient fine-tuning with LoRA.

Comparison with state-of-the-arts

Trackor]	LaSOT	۲	L	aSOT _e	\mathbf{xt}	Tra	ackingI	Net	(GOT-1	.0k	TNI	L2K
Tracker	SUC	$\mathbf{P}_{\mathbf{Norm}}$	Р	SUC	$\mathrm{P}_{\mathrm{Norm}}$	Р	SUC	$\mathrm{P}_{\mathrm{Norm}}$	Р	AO	$\mathrm{SR}_{0.5}$	$\mathrm{SR}_{0.75}$	SUC	Р
OSTrack	71.1	81.1	77.6	50.5	61.3	57.6	83.9	88.5	83.2	73.7	83.2	70.8	55.9	56.7
SwinTrack	71.3	-	76.5	49.1	-	55.6	84.0	-	82.8	72.4	80.5	67.8	55.9	57.1
DropTrack	71.8	81.8	78.1	52.7	63.9	60.2	-	-	-	75.9	86.8	72.0	56.9	57.9
SeqTrack	72.5	81.5	79.3	50.7	61.6	57.5	85.5	89.8	85.8	74.8	81.9	72.2	57.8	-
ARTrack	73.1	82.2	80.3	52.8	62.9	59.7	85.6	89.6	86.0	78.5	87.4	77.8	60.3	-
CiteTracker	69.7	78.6	75.7	-	-	-	84.5	89.0	84.2	74.7	84.3	73.0	57.7	59.6
MixViT	72.4	82.2	80.1	-	-	-	85.4	90.2	85.7	75.7	85.3	75.1	-	-
LoRAT-B-224	71.7	80.9	77.3	50.3	61.6	57.1	83.5	87.9	82.1	72.1	81.8	70.7	58.8	61.3
LoRAT-B-378	72.9	81.9	79.1	53.1	64.8	60.6	84.2	88.4	83.0	73.7	82.6	72.9	59.9	63.7
LoRAT-L-224	74.2	83.6	80.9	52.8	64.7	60.0	85.0	89.5	84.4	75.7	84.9	75.0	61.1	65.1
LoRAT-L-378	75.1	84.1	82.0	56.6	69.0	65.1	85.6	89.7	85.4	77.5	86.2	78.1	62.3	67.0
LoRAT-g-224	74.9	84.5	82.3	53.3	65.4	61.1	85.2	89.8	85.1	77.7	87.7	77.7	61.8	66.6
LoRAT-g-378	76.2	85.3	83.5	56.5	69.0	64.9	86.0	90.2	86.1	78.9	87.8	80.7	62.7	67.8

Inference efficiency.

Tracker Speed (fps) MACs (G) #Params (M)							
SwinTrack-B-384	45	69.7	91				
OSTrack-256	130	21.5	-				
OSTrack-384	68	48.3	-				
SeqTrack-B256	38	66	89				
SeqTrack-L384	6	524	309				
LoRAT-B-224	209	30	99 $(11, 2)$				
LoRAT-B-378	151	97	$99\ (11,\ 2)$				
LoRAT-L-224	119	103	$336\ (28,\ 4)$				
LoRAT-L-378	63	325	$336\ (28,\ 4)$				
LoRAT-g-224	50	378	$1216\ (71,\ 9)$				
LoRAT-g-378	20	1161	$1216\ (71,\ 9)$				

Ablations on proposed decoupled positional embedding

	Shared P. Emb.	Type Emb.	Foreg. Indic.	$\left \operatorname{Res.} \right $	$\begin{vmatrix} LaS \\ SUC \end{vmatrix}$	OT P	LaSC SUC	P P	TNI SUC	L2K P
1				224	73.5	80.2	51.8	59.1	60.7	64.4
2	\checkmark			224	73.8	80.6	53.7	61.4	60.6	64.5
3	\checkmark	\checkmark		224	74.0	80.7	52.4	59.6	60.7	64.7
4	\checkmark	\checkmark	\checkmark	224	74.2	80.9	52.8	60.0	61.1	65.1
5	\checkmark	\checkmark		378	74.4	82.6	55.2	63.2	62.3	67.1
6	\checkmark	\checkmark	\checkmark	378	75.1	82.0	56.6	65.1	62.3	67.0

GitHub

MILANO

Experimental Results

Training efficiency

	Variant	Time(h)	Memory(GB)
	B-224	5.9	2.4
	B-378	12.2	5.7
A A	L-224	10.8	6.6
LoI	L-378	32.2	14.9
	g-224	22.3	14.0
	g-378	60.0	25.8
Full Fine-tuning	B-224	5.9	3.2
	B-378	12.5	6.5
	L-224	12.1	10.0
	L-378	34.1	19.1
	g-224	29.3	27.1
	g-378	Out o	of Memory

Gradient norm (conv head vs. mlp head)

