
Zigbee Sleepy End Device
2 0 1 9

Welcome to this training. Today we will do a hands-on about sleepy end device. First
we will introduce some knowledge about this hands-on.

1

Agenda

2

▪ Basic concepts of sleepy end device

▪ End Device and Sleepy End Device

▪ Polling

▪ Timeout and Keepalive

▪ Step-by-Step hands-on: temperature sensor

▪ Hands-on overview

▪ Temperature sampling

▪ Reporting

▪ Finding and Binding

▪ Sleep

▪ Q & A

First, we will introduce some basic knowledge about sleepy end device.
Then we will introduce about the hands-on. In this hands-on, we will develop a
temperature sensor, includes the temperature sampling, reporting, finding and binding,
sleeping.

2

▪ End Device (ED)

▪ Nodes on Zigbee network that don’t participate in routing

▪ Communicate only through the parent node

▪ Use data polling as keep-alive mechanism with parent

▪ Rejoin to another router device when the parent is lost.

▪ Able to receive messages at any time, not dependent on data
polling

▪ Sleepy End Device (SED)

▪ A special category of end device that turns off the radio when
idle

▪ Parent node holds messages meant for the Sleepy end device

▪ Polls the parent node periodically to receive incoming
messages

▪ No data is sent to SED unless it is requested by said device

What are End Devices ?

3

1 – coordinator
2 – router
3 – end device
4 – sleepy end device

• In a Zigbee network, there are three types of devices:, Coordinators, routers and end
devices. This training module focus on the end devices. If you are not familiar with
the node types yet, please review the “Zigbee Introduction: Node Types, PAN IDs,
Addresses” training module.

• End devices are leaf nodes. They communicate only through their parent nodes and,
unlike router devices, cannot relay messages intended for other nodes. They don’t
participate in any routing. End devices rely on their parent routers to send and
receive messages. End devices that do not have tight power consumption
requirements may choose to have their radio on at all times. These end devices are
known as RX-on-when-idle devices.

• The Sleepy End Device is a special kind of end device, that turns off its radio when
idle, which makes it a suitable choice for battery operated devices.

3

▪ The Main Function of Polling

▪ keep-alive message between the child and parent

▪ SED may use polling to request data from parent

▪ Long Poll

The maximum amount of time an end device shall wait before
polling its parent.

▪ Short Poll

The amount of time that an end device may wait before polling
its parent when it is in the process of sending or receiving a
message.

▪ Fast Polling

The state during which the stack actively polls its parent at the
rate of short poll interval

▪ Poll Control Cluster

Providing a mechanism for the management of an end device’s
MAC Data Request rate

What is Polling?

4

Short polling when sending and receiving a message

Now that we are familiar with end-devices, lets talk about polling.

• Polling is the event wherein an end device sends a “data request message” to its
parent node.

• Polling has 2 main purposes :
• KEEP ALIVE : End devices poll their parent nodes periodically as a keep-alive

mechanism to prevent being aged out of the network.
• REQUEST MESSAGES: On the sleepy end device, polling is additionally used to

request messages sent to it that are held by the parent node.

• The Long Poll Interval represents the maximum amount of time between MAC Data
Requests from the end device to its parent. When the device does not need to be
responsive on the network, it polls its parent on the LONG_POLL interval.

• The Short Poll Interval : When a device needs to be responsive to messages being
sent to it from the network, it goes into a state where it polls its parent on the
SHORT_POLL interval. This ensures that any messages received by its parent will

4

immediately be retrieved by the sleepy end device and processed. The time during
which the sleepy end device is polling at the SHORT_POLL interval is referred to as
“Fast Polling mode”. When the device expects data (such as the zcl/zdo message
responses, etc.), it enters fast polling mode. Sometimes a sleepy device needs to stay
in fast poll mode while sending a complex series of messages that constitute a
complete application level transaction with another device. The usage of this API is
documented in app/framework/include/af.h.

• The packet trace on the right was captured using the Silicon Labs Network Analyzer. It
shows the end device polling its parent at the short poll interval(1 second) for 3
seconds (which is determined by Wake timeout) after sending a ZCL toggle
command and expecting the default response.

• Poll Control cluster provides a mechanism for the management of an end device’s
data polling rate with ZCL command. the details of Poll Control cluster are discussed
further in a separate training module (App Layer: Poll Control Cluster).

4

▪ Used by Sleepy End Devices

▪ Poll at least once within the
EMBER_INDIRECT_TRANSMISSION_TIMEOUT
to check for data at the parent to ensure
receiving incoming messages reliably

▪ Some sleepy end devices(example: sensors)
are not expected to receive messages
asynchronously. They just need to poll within
the end device poll timeout

Polling as a means to request data from the parent

5

Sleepy End Device

Wake Up
MAC Data Poll

MAC Ack (Pending data = False)

MAC Data Poll

MAC Ack (Pending data = TRUE)

MAC Ack

Parent

Back to sleep

Message

Wake Up

Back to sleep

• Sleepy end devices do not receive data directly from other devices on the network.
Instead, they must poll their parent for data and receive the data from their parent.
The parent acts as a surrogate for the sleepy device, staying awake and buffering
messages while the child sleeps.

• The figure on the right illustrates the data polling process. Sleepy end devices wake
up and poll their parents at regular intervals. The parent node uses the pending data
flag in the MAC ACK to indicate that it has one or more messages waiting for the
sleepy end device. If the pending data flag is true, the sleepy end device stays awake
to receive the message(s) and acks them before going to sleep. If it is false, the
sleepy end device is free to go back to sleep until the next poll attempt.

• Please keep in mind that if you want the device to receive incoming messages and
incoming APS ACKs (for its outgoing messages) reliably, you should poll at least once
within the EMBER_INDIRECT_TRANSMISSION_TIMEOUT (7.68 seconds by default)
to check for data at the parent because the length of time that the parent will hold
on to a message is determined by this number. Some sleepy end devices(such as
sensors) are not expected to asynchronously receive messages, so they don’t have
the above limitation. They just need to poll within the end device poll timeout

5

which we will talk about in the next slide.

5

▪ All end devices MUST keepalive with their parents.

Keepalive and timeout

6

End Device

MAC Data Poll(from unknown child)

MAC Ack

Rejoin Request

Leave Request(Rejoin = TRUE)

Parent

MAC Ack

▪ When is a Rejoin initiated?

▪ Parent initiates rejoin if it receives a mac data poll
after the end device has been aged out of its child
table

▪ End device initiates a rejoin if its data polling
message isn’t acknowledged by the parent over
EMBER_AF_PLUGIN_END_DEVICE_SUPPORT_MAX
_MISSED_POLLS tries.

▪ End device will move to a new parent if it loses the
connection of the current parent .

▪ Parent will remove the child when the child is not
active.

▪ Two keepalive mechanism

▪ By polling

▪ By timeout request/response message

Mac Data Polling is used as the keep-alive message between the child and parent.

End devices have to poll their parent at least once within the End Device Poll Timeout
(as set by EMBER_END_DEVICE_POLL_TIMEOUT or
EZSP_CONFIG_END_DEVICE_POLL_TIMEOUT). Otherwise, these devices will be
removed from the child table of the parent, effectively being aged out of the network.
This is done to ensure that the child table slot is not permanently reserved for an end
device that has been removed from the network ungracefully (i.e., if no Leave
notification was heard from that device. Leave notifications are broadcasts and are not
guaranteed to be received);

The parent node will ask the end device to leave and rejoin the network if it receives a
mac data poll from the end device which doesn’t exist in the child table. The figure on
the right illustrates the leave and rejoin process.
In addition to this, if the data polling message isn’t acknowledged by the parent for
EMBER_AF_PLUGIN_END_DEVICE_SUPPORT_MAX_MISSED_POLLS times, the end
device will attempt to rejoin the network to find a new parent.

6

▪ End Device Timeout Request Command

End Device Poll Timeout Negotiation

7

Zigbee R21 Specification offers an end device timeout negotiation protocol and a
standard way to implement child aging. The End Device Timeout Request command is
sent by an end device to inform the parent of its timeout value when joining/rejoining
the network. When the parent receives this command, it will update the End Device
Timeout value for this end device locally and generate an end Device timeout response
command with a status of SUCCESS. Pre-R21 devices do not support end device
timeout command. So they can only use the default end device timeout value set
initially on the parent node.

7

Hands-on: Overview

8

Temperature

▪ Data sampling -- ADC

▪ Reporting

▪ Periodically

▪ Report on change

▪ Binding

▪ Sleep

▪ What’s the requirement for a sensor?

In this hands-on, we will develop a sleepy temperature sensor which will report
temperature to the gateway periodically.
To achieve this, we need to implement the data sampling, reporting, binding and
sleeping.

8

Hands-on: Data Sampling

9

▪ EFR32xG12 Reference Manual

▪ AN0021

▪ Example:

▪ app\mcu_example\SLSTK3402A_EFM3
2PG12\inttemp

We will use the internal temperature sensor of the internal ADC to get the
temperature.
Here is an example in the SDK. We can use that source code directly.

9

Hands-on: Reporting

10

To report the temperature data, we need to use the reporting plugin.
In this plugin, we need to save the attributes which will be reported into a reporting
table. The table size is configurable.

10

Hands-on: Reporting

11

In the reporting table, the cluster and attribute ID will be saved. Also the interval of the
reporting will be recorded in this table entry.

11

Hands-on: Reporting

12

To configure the attributes which will need to be reported, you just need to enable the
reporting option of the selected attribute.

12

▪ Finding & Binding

▪ Is a cluster commissioning method to establish application connection automatically

▪ How to start

▪ Invoked by user interaction on two or more devices

▪ How to implement

▪ Identifies and discovers end points using the Identify cluster

▪ What’s the result

▪ Binding is created at the initiator

Overview of Finding & Binding

As we have set the reporting table, where will the attributes be reported?

Report message will be sent through binding tables.
There could be multiple destination of a reporting.

The binding table is set up through the finding and binding procedure per Zigbee BDB
spec.

13

▪ The application SHALL perform finding & binding as an initiator endpoint

▪ Type 1 client cluster

▪ Type 2 server cluster

▪ The application SHALL perform finding & binding as a target endpoint

▪ Type 1 server cluster

▪ Type 2 client cluster

Which device needs perform Finding & Binding

14

Device 1 Device 2

Type 1
cluster

Type 2
cluster

As we know, there are two kinds of clusters: Type 1 and Type 2.
A application cluster is either a Type 1 or Type 2 cluster, depends on its primary
functional transactions. A transaction has an initiator and a target.

A type 1 cluster’s primary function is to initiate transactions from the client to the
server. For example: An On/Off client sends commands (data) to the On/Off server.
A type 2 cluster’s primary function is to initiate transactions from the server to the
client. For example: An Temperature Measurement server reports to the Temperature
Measurement client.

For a type 1 client or a type 2 server cluster, the application shall perform finding &
binding as an initiator endpoint.
For a type 1 server or type 2 client cluster, the application shall perform finding &
binding as a target endpoint.

14

▪ Finding & Binding target

▪ Write identify time attribute

▪ Handle identify query requests from the initiator

▪ Plugin in Appbuilder

Finding & Binding procedure for a target endpoint

15

Initiator

Find and Bind target start

Find and Bind start

Create entry in binding table

Broadcast Identify Query (0xFFFF)

Identify Query Response

IEEE Address Request

IEEE Address Response

Simple Descriptor Request

Simple Descriptor Response

Clusters matched

TargetTarget

Please look at the right graph, which shows the working flow of the finding & binding
procedure. We will talk about the target side firstly.

On the finding & binding target endpoint, once the finding & binding target start, it will
write the identify time attribute firstly to make sure the target can be identified. In
Appbuilder, the identify time can be configurated in “Find and Bind Target” plugin and
the default value is 180 seconds. During the identify time, the target should respond to
the identify query from initiator. Once the decrementing identify time attribute reaches
zero, the target shall terminate the finding & binding procedure.

It means that the finding & binding target should write identify time attribute to make
sure it can be identified during the finding & binding procedure.

15

▪ Finding & Binding initiator

▪ Broadcast identify query

▪ Identify query responses received

▪ Send simple descriptor request

▪ Binding table is created for matched clusters

▪ Plugin in Appbuilder

Finding & binding procedure for an initiator endpoint

16

Initiator

Find and Bind target start

Find and Bind start

Create entry in binding table

Broadcast Identify Query (0xFFFF)

Identify Query Response

IEEE Address Request

IEEE Address Response

Simple Descriptor Request

Simple Descriptor Response

Clusters matched

TargetInitiator

On the finding & binding Initiator endpoint, it broadcasts identify query to all nodes
which include sleepy end device(using the broadcast address 0xffff). If no identify query
response commands received, the initiator sets status to
NO_IDENTIFY_QUERY_RESPONSE and terminates the finding & binding procedure.

If at least one identify query response is received, the initiator sends IEEE address
request to get the EUI64 of the target, which will be used for binding table entry later.
And then the initiator sends simple descriptor request to get the clusters info on target.
Once some clusters matched between initiator and target endpoints, then the binding
is created for every matched clusters on initiator. If a group binding is requested, the
initiator endpoint configures group membership of the target endpoint, which means
that the initiator unicasts “add group” command to the target.

In Appbuilder, there are two options can be configured in “Find and Bind Initiator”
plugin. The “Target Responses Count” means the number of the target responses that
the initiator will accept. The “Target Responses Delay” means how long the initiator will
listen for target responses. You can feel free to configure these options to fit your user
case.

16

▪ Start target finding and binding operations

▪ EmberAfStatus emberAfPluginFindAndBindTargetStart(uint8_t endpoint)

▪ In find-and-bind-target.h

▪ Start initiator finding and binding operations

▪ EmberStatus emberAfPluginFindAndBindInitiatorStart(uint8_t endpoint)

▪ In find-and-bind-initiator.h

The APIs to start finding & binding operations

17

You may want to know what are the APIs to start finding & binding operations.

The API to start target finding and binding operations is
emberAfPluginFindAndBindTargetStart(), which can be found in find-and-bind-target.h.
It is a call to this function will commence the target finding and binding operations.
Specifically, the target will attempt to start identifying on the endpoint that is passed as
a parameter. The EmberAfStatus value describing the success of the commencement of
the target operations.

As the similar, the API to start initiator finding and binding operations is
emberAfPluginFindAndBindInitiatorStart(), which can be found in find-and-bind-
initiator.h. It is a call to this function will commence the initiator finding and binding
operations. Specifically, the initiator will attempt to start searching for potential
bindings that can be made with identifying targets. The EmberStatus value describing
the success of the commencement of the initiator operations.

Please note that, the target should be started first during the finding & binding
procedure.

17

Debug Commands

18

▪ Finding & Binding target

▪ Finding & Binding initiator

▪ Binding Table info

ZSED>plugin find-and-bind initiator 1
Processing message: len=3 profile=0104 cluster=0003
T00000000:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 00 cmd 01 payload[]
Processing message: len=5 profile=0104 cluster=0003
T00000000:RX len 5, ep 01, clus 0x0003 (Identify) FC 09 seq 00 cmd 00 payload[72 00]
T00000000:TX (resp) Ucast 0x00 TX buffer: [00 00 0B 00 00]
Processing message: len=12 profile=0000 cluster=8001
Processing message: len=25 profile=0000 cluster=8004
Find and bind initiator complete: 0x00

ZCO>plugin find-and-bind target 1
Find and Bind Target: Start target: 0x00
T00000000:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 00 cmd 01 payload[]
T00000000:RX len 5, ep 01, clus 0x0003 (Identify) FC 00 seq 00 cmd 0B payload[00 00]

Packet trace of Finding & Binding procedure

ZSED>option binding-table print
type nwk loc rem clus node eui
0: UNICA 0 0x01 0x01 0x0003 0xD0E4 (>)000B57FFFE648DA0
1: UNICA 0 0x01 0x01 0x0006 0xD0E4 (>)000B57FFFE648DA0
2: UNICA 0 0x01 0x01 0x0008 0xD0E4 (>)000B57FFFE648DA0
3 of 10 bindings used

It is easy to set up the testing for finding & binding with Z3LightSoc and Z3SwitchSoc
samples.
First you can build the two samples directly, download the firmware to the kits
separately, and then join to the same Z3.0 network formed by a Z3Gateway.
On the Z3LightSoc side, launch the console and type CLI command “plugin find-
and-bind target 1”.
On the Z3SwitchSoc side, launch the console and type CLI command “plugin
find-and-bind initiator 1”.

You will see the log “Find and bind initiator complete: 0x00” is printed on console after
the finding & binding procedure finish. When you print the binding table on
Z3SwitchSoc side(initiator), you will see the entries are created in binding table. All the
matched clusters between initiator and target are bound. The finding & binding
transactions can be found in packet trace, which proves the finding & binding working
flow works as expected.

Let’s summarize how the finding and binding procedure works.

On the target side, it will write the identify time attribute for

18

EMBER_AF_PLUGIN_FIND_AND_BIND_TARGET_COMMISSIONING_TIME. During the
duration, the initiator broadcasts identify query and the target responds identify query
response. Then the initiator sends IEEE address request to target to get the EUI64 of
target, which will be used in creating binding table. The simple descriptor request will
be sent to target to get the clusters info on target side. Once the clusters matched, the
entries will be created in binding table of initiator.

18

Sleeping

19

▪ Press button0 to
force device to
stay awake

▪ Press button1 to
allow device to
sleep

To make the device sleep, we need to use the plugin “idle/sleep”.

There are two options in this plugin, we can enable the two options so that we can
debug the application easily.
Press button-0 to force the device to stay awake, so that we can input debug
commands.
Press button-1 to allow device to sleep, so that we can measure the sleep current.

19

Q&A

Q&A

Any questions?

20

Thank you!

Thanks

21

