SILICON LABS

Zigbee Sleepy End Device

2019

Welcome to this training. Today we will do a hands-on about sleepy end device. First
we will introduce some knowledge about this hands-on.

Agenda

= Basic concepts of sleepy end device
= End Device and Sleepy End Device
= Polling
= Timeout and Keepalive
= Step-by-Step hands-on: temperature sensor
= Hands-on overview
= Temperature sampling
= Reporting
= Finding and Binding
= Sleep

"Q&A

First, we will introduce some basic knowledge about sleepy end device.

Then we will introduce about the hands-on. In this hands-on, we will develop a
temperature sensor, includes the temperature sampling, reporting, finding and binding,
sleeping.

What are End Devices ?

= End Device (ED)

.) L. . . € silicon Labs Zigbee, version:6.6.3.0

= Nodes on Zigbee network that don’t participate in routing =
& General | ZCL Clusters | ZigbeeStack “._ &% Printingand CLI | @ HAL |4 Plugins | S Callba

= Communicate only through the parent node ~ Zighee

~ ZigBee PRO network configuration

= Use data polling as keep-alive mechanism with parent

Name

= Rejoin to another router device when the parent is lost. Primary (default)
= Able to receive messages at any time, not dependent on data
polling
. EEE 802.15.4 [18 bytes] UFG String e 0
" Sleepy End DeV|ce (SED) v |EEE 802,154 Command [2 bytes] igs‘%;[%g)gggg%%FEE?gE}{égE;EE?n [
. . . pramandldentifisr Aocociation Request (0x p:?gﬂ =! = o Earen XSS) k&
= A special category of end device that turns off the radio when p—— ‘o pozent]D [0xDE3) pmematiess 100
|d|e Alternate Pan Coordinator: false ngETva [omerored
Device Type: RFD (0)
= Parent node holds messages meant for the Sleepy end device Power Source: Mains (1)
Receiver On When |dle: true
= Polls the parent node periodically to receive incoming Securty Capabiliy: false
Allocate Address: true
messages

1 - coordinator

2 —router

3 —end device

4 —sleepy end device

= No data is sent to SED unless it is requested by said device

* |na Zigbee network, there are three types of devices:, Coordinators, routers and end
devices. This training module focus on the end devices. If you are not familiar with
the node types yet, please review the “Zigbee Introduction: Node Types, PAN IDs,
Addresses” training module.

* End devices are leaf nodes. They communicate only through their parent nodes and,
unlike router devices, cannot relay messages intended for other nodes. They don’t
participate in any routing. End devices rely on their parent routers to send and
receive messages. End devices that do not have tight power consumption
requirements may choose to have their radio on at all times. These end devices are
known as RX-on-when-idle devices.

* The Sleepy End Device is a special kind of end device, that turns off its radio when
idle, which makes it a suitable choice for battery operated devices.

What is Polling?

" The Main Function Of PoIIing Events total:242 shown:209 Decoders: EmberZNet 6.5, ZigheePro
.) i 5 MACSre MACD.

= keep-alive message between the child and parent Time Trpe ummary e =t
: 0087181 Packet Link Status 029E FFFF
= SED may use polling to request data from parent 0000000 Packet 6L Toggie 638 000
= Long Poll I 0001904 Packet B02.15.4 Ack 0000 138
. .)) 1.013383 Packet Data Request 1E3B 0000
The maximum amount of time an end device shall wait before 1014144 Packet 802.15.4 Ack 0000 138
polling its parent. 1015078 Packet ZCL: DefaultResponse 0000 1E38
. Poll 1017078 Packet 802.15.4 Ack 1E3B 0000
Short Po i i . . 1.0313713 Packet Data Request 1E3B 0000
The amount of time that an end device may wait before polling 1032124 Packet 802.15.4 Ack 0000 138
its parent when it is in the process of sending or receiving a | 1034013 Packet APS Ack 0000 1E38
message. L. 1.035853 Packet 802.15.4 Ack 1E3B 0000
. 1038535 Packet APS Ack 1638 0000
® Fast Polling 104043 Packet 802.15.4 Ack 0000 1E38
The state during which the stack actively polls its parent at the 2027752 Packet Dats Request 1E38 0000
rate of short poll interval 20851 | Packet | H2.134Ad =8
3.040828 Packet Data Request 1E3B 0000
= Poll Control Cluster 2041579 Packet 802.15.4 Ack 0000 1E38
Providing a mechanism for the management of an end device’s 93608 | Packet Link Status 0000 FFFF

MAC Data Request rate

Short polling when sending and receiving a message

Now that we are familiar with end-devices, lets talk about polling.

* Polling is the event wherein an end device sends a “data request message” to its
parent node.

* Polling has 2 main purposes :
* KEEP ALIVE : End devices poll their parent nodes periodically as a keep-alive
mechanism to prevent being aged out of the network.
* REQUEST MESSAGES: On the sleepy end device, polling is additionally used to
request messages sent to it that are held by the parent node.

* The Long Poll Interval represents the maximum amount of time between MAC Data
Requests from the end device to its parent. When the device does not need to be
responsive on the network, it polls its parent on the LONG_POLL interval.

* The Short Poll Interval : When a device needs to be responsive to messages being
sent to it from the network, it goes into a state where it polls its parent on the
SHORT _POLL interval. This ensures that any messages received by its parent will

immediately be retrieved by the sleepy end device and processed. The time during
which the sleepy end device is polling at the SHORT_POLL interval is referred to as
“Fast Polling mode”. When the device expects data (such as the zcl/zdo message
responses, etc.), it enters fast polling mode. Sometimes a sleepy device needs to stay
in fast poll mode while sending a complex series of messages that constitute a
complete application level transaction with another device. The usage of this APl is
documented in app/framework/include/af.h.

The packet trace on the right was captured using the Silicon Labs Network Analyzer. It
shows the end device polling its parent at the short poll interval(1 second) for 3
seconds (which is determined by Wake timeout) after sending a ZCL toggle
command and expecting the default response.

Poll Control cluster provides a mechanism for the management of an end device’s
data polling rate with ZCL command. the details of Poll Control cluster are discussed
further in a separate training module (App Layer: Poll Control Cluster).

Polling as a means to request data from the parent

= Poll at least once within the
EMBER_INDIRECT_TRANSMISSION_TIMEOUT Wake Up
to check for data at the parent to ensure
MAC Ack (Pending data = False)

receiving incoming messages reliably to sfeegf€ <o e T
Back to sleepj

MAC Data Poll

= Some sleepy end devices(example: sensors)
are not expected to receive messages
asynchronously. They just need to poll within Wake Up MAC Data Poll
the end de\”ce po” tlmeOUt ~ |EEE 802.15.4 [4 bytes] ¢ - ---- '!I /_\S_/_cl(_(_l’_er_ujlp_g_d_af:f]’tlyf)_ __________
PHY Header: 003 Message .
Packet Length: 5

Frame Control: 0x0012 MAC Ack

FrameType Ack(2) o e e e e e e e e »
o e Back to sleep
ec e

5
Fra
A

Radio Info EFR32 [6 bytes]

* Sleepy end devices do not receive data directly from other devices on the network.
Instead, they must poll their parent for data and receive the data from their parent.
The parent acts as a surrogate for the sleepy device, staying awake and buffering
messages while the child sleeps.

* The figure on the right illustrates the data polling process. Sleepy end devices wake
up and poll their parents at regular intervals. The parent node uses the pending data
flag in the MAC ACK to indicate that it has one or more messages waiting for the
sleepy end device. If the pending data flag is true, the sleepy end device stays awake
to receive the message(s) and acks them before going to sleep. If it is false, the
sleepy end device is free to go back to sleep until the next poll attempt.

* Please keep in mind that if you want the device to receive incoming messages and
incoming APS ACKs (for its outgoing messages) reliably, you should poll at least once
within the EMBER_INDIRECT_TRANSMISSION_TIMEOUT (7.68 seconds by default)
to check for data at the parent because the length of time that the parent will hold
on to a message is determined by this number. Some sleepy end devices(such as
sensors) are not expected to asynchronously receive messages, so they don’t have
the above limitation. They just need to poll within the end device poll timeout

which we will talk about in the next slide.

Keepalive and timeout

= All end devices MUST keepalive with their parents.

= End device will move to a new parent if it loses the
connection of the current parent .

= Parent will remove the child when the child is not
active.

= Two keepalive mechanism
= By polling

= By timeout request/response message

MAC Data Poll(from unknown child)
MAC Ack

Leave Request(Rejoin = TRUE)

MAC Ack

Rejoin Request

= When is a Rejoin initiated?
= Parent initiates rejoin if it receives a mac data poll

after the end device has been aged out of its child
table

= End device initiates a rejoin if its data polling
message isn’t acknowledged by the parent over
EMBER_AF_PLUGIN_END_DEVICE_SUPPORT_MAX
_MISSED_POLLS tries.

Mac Data Polling is used as the keep-alive message between the child and parent.

End devices have to poll their parent at least once within the End Device Poll Timeout
(as set by EMBER_END_DEVICE_POLL_TIMEOUT or
EZSP_CONFIG_END_DEVICE_POLL_TIMEOUT). Otherwise, these devices will be
removed from the child table of the parent, effectively being aged out of the network.
This is done to ensure that the child table slot is not permanently reserved for an end
device that has been removed from the network ungracefully (i.e., if no Leave
notification was heard from that device. Leave notifications are broadcasts and are not
guaranteed to be received);

The parent node will ask the end device to leave and rejoin the network if it receives a
mac data poll from the end device which doesn’t exist in the child table. The figure on
the right illustrates the leave and rejoin process.

In addition to this, if the data polling message isn’t acknowledged by the parent for
EMBER_AF_PLUGIN_END_DEVICE_SUPPORT_MAX_MISSED_POLLS times, the end
device will attempt to rejoin the network to find a new parent.

End Device Poll Timeout Negotiation

= End Device Timeout Request Command Bonoasi .
vent Detail b4
NWEK crypto: ROOT, BS 5F 9E 42 5C 48 87 8B FE 74 3C FO
|EEE 802.15.4 [10 bytes]

Zighee Network [24 bytes]
ZigBee Network Security [14 bytes]

Child ‘ Parent ‘ Trust Center ‘
% ZigBee Command [3 bytes]
tion Command Id: Network Timeout Request (0xDB)
- 0 N Fnjoln Enchamge o APS Update Device o Requested Timeout Enumeration: 8 minutes (0x03)
- o Join allowsd End Device Configuration: 0x00
A APS Tunnel Command Network encryption MIC [4 bytes]
.) P SRR AL
- Radio Info EM35x [3 bytes]
ZDO Device Announce o
% Event Detail - A
x| Evvhon Thmad ergenst Crmmmexd NWK crypto: ROOT, B9 5F 9 42 5C 48 87 88 FE 74 3C FO,
) > EEE 802.15.4 [10 bytes]
Setup child timeout ZigBee Network [24 bytes]
. ZigBee Network Security [14 bytes]
Receive supparted | ZigBee Command [3 bytes]
keepelive method Yy A\ v Command Id: Metwark Timeout Response (0x0C)

Timeout Request Status: (00
Parent Information: 0x01
MAC Data Poll Supported: (01
Orphan notification supported: (00
Netwark encryption MIC (4 bytes]
Radio Info EM35x [3 bytes]

Zigbee R21 Specification offers an end device timeout negotiation protocol and a
standard way to implement child aging. The End Device Timeout Request command is
sent by an end device to inform the parent of its timeout value when joining/rejoining
the network. When the parent receives this command, it will update the End Device
Timeout value for this end device locally and generate an end Device timeout response
command with a status of SUCCESS. Pre-R21 devices do not support end device
timeout command. So they can only use the default end device timeout value set
initially on the parent node.

Hands-on: Overview

= What'’s the requirement for a sensor?

. Temperature

= Data sampling -- ADC

Cloud

= Reporting
= Periodically
= Report on change

= Binding
= Sleep

In this hands-on, we will develop a sleepy temperature sensor which will report
temperature to the gateway periodically.

To achieve this, we need to implement the data sampling, reporting, binding and
sleeping.

Hands-on: Data Sampling

ADCn_BIASPROG
[ADGn_cwPTAR = EFR32xG12 Reference Manual
» ADCn_CTRL
T = AN0021
‘ADCn_SINGLECTRL —_—
| acn_sTaTus \'ADCn_S\NGLECTRLx | ADCn_SINGLEDATA | [ADCn_SCANDATA
ADCn_SCANCTRL T o & = Example:
ADCn_SCANCTRLX e

anceLkmone — 1 i = app\mcu_example\SLSTK3402A_EFM3
: s e 2PG12\inttemp

ADC_CLK 7 T * A
APORTIX B p]
APORT2X g—,\'\ Control
APORTIX —————»
APORTAX 5 »

WFPERCLIucce L

Sequencer

ADCRCLE

APORTOX [
VDACEIT / OAY12 Channals —]
{f avataia) |

TEWP b

VDD REVTT e
ovoD vEs —B
DECOUPLE - —
iovop —(8
1oveo1

APORTHY [
APORTZY [>
APORTSY [>
APORTAY [} »

v
INP_MUX

INN_MUX
d

vss — W -

We will use the internal temperature sensor of the internal ADC to get the
temperature.
Here is an example in the SDK. We can use that source code directly.

Hands-on: Reporting

& General [ZCL Clusters | Zigbee Stack | Printingand CLl (@ HAL (<> Plugins

Plugin configuration
Use this section to seleet or unselect the plugins that you want to use in your application

S Cellbacks | & Includes | & Otheroptions | @ Bluetooth GATT

v [@%. Common Clusters
(<> Basic Server Cluster
<> Bulb userinterface
O+

i
[Identify Cluster
[Identify Feedback

< Reporting, provides API: reporting

T

O+
O+

v []% Great Britain Companien Specification
[Comms Hub Function (CHF)
(<> Comms Hub Function (Sub-GHz)
[GBCS Compatibility
[GBCS Device Log
[GBCS Gas Smart Metering Equipment (GSME)
[]4> GBZ Message Contraller
4> Gas Proxy Function (GPF)

v % Green Power
O+

O+
O+
v @% HAL

(<> ADC, provides API: adc-cortexms3, adc
== Antenna, provides APl: antenna

Plugin: 4> Reporting

Quality: %/ Production Ready

Description:

Ember of reporting, Reports

messages sent out when an ZCL attribute has changed, This plugin
supperts both requesting reports from another device and sending out attribute reports when the device has been configured to do
so. If the application will receive reports from multiple sources, Ember recommends configuring it as 2 concentrator. Note: This
plugin only supports the binding-based interpretatien of reporting in which reports are sent to corresponding entries in the binding
table, Either the node sending the reports, the node receiving the reports, or another third-party configuration device may create the
binding table entry(s) on the reporting node. For more details, please refer to Zigbee Application Framework Developer Guide.

Options:

Reset to defaults

Reporting tablesize1-255] [5|

Details (double-click on files to show content):

| Allow reports to send via group bindings (zigbee 3.0 mandatory behavior)

(= Located at: C:\SiliconL_
&2, Common source files (3)
S Implemented callbacks (6)
S Defined callbacks (2)
2, Setup contributions (2)
/* Options (2)

v 4 APIs ()

gecko_sdk_suite\v2.6'

To report the temperature data, we need to use the reporting plugin.
In this plugin, we need to save the attributes which will be reported into a reporting

table. The table size is configurable.

10

Hands-on: Reporting

% Event Detail - 8
NWK crypto: ROOT, B3 F3 3D 62 42 C0 84 CF CA4
EEE 802.15.4 [10 bytes]

ZigBes Network 8 bytes]
ZigBes Network Security [14 bytes]
~ ZigBee Application Support [8 bytes]
Frame Control: Ox40
Frame Type: Data (0)
Delivery Mode: Direct (8]
Indirect Address Mode: Dest Endpoint Pres
Security Enabled: false
Ack Required: true
Extended Header Present: false
Destination Endpoint: 0:01
Cluster Identifier: 0x0402

Profile Identifier: 00104

APS Counter: (xCO
~ ZigBee Cluster Library [8 bytes]
ZCL Frame Control: 0x08
Frame Type: Global command (0)
Manufacturer Specific: false
Command Direction: Server to Client (1)
Disable default response: false
Reserved: 000
ableChange; Sequence number: 0x05
Command |dentifier il [Ox0DA)
Attribute Id: measured value (6x0000)
Attribute Type: Signed 16-bit integer (0:29)
Int16s_0: 00CID
Network encryption MIC [4 bytes]
Radio Info EFR32 [6 bytes]

In the reporting table, the cluster and attribute ID will be saved. Also the interval of the
reporting will be recorded in this table entry.

11

Hands-on: Reporting

% General |4 ZCL Clusters &% Zigbee Stack | & Printingand CLI | @ HAL | <= Plugins | Callbacks | & Includes | & Other options | @ Bluctooth GATT

Clusters
Manufacturer (name or code): | Ember [0x1002] ~| Defautt response policy: | Always ~
Multiple endpoint configuration Selected cluster description:
Endpo.. Profile.. Devic.. Version Configuration Netwerk New Attributes and commands for configuring the of and reporting
#dh Hom.. O0x03.. 1 Primary Primary Delete
*e Attributes | ®s Commands | *e Reporting
R Client/ Serv... Attribute name Min Interval {s) __ MaxIntenval (s Reportable change
Selected configuration name: Primary v Server measured value 1 65534 0]
201 device type A Termperture Sensor = [T Server i measured value T G 0
[] server max measured value 1 65534]
=5EA | sewer cluster revision 1 65534 0
Client luster revisi 1 65534 0
Cluster name Cluster.. Client Sever Mfgld L] Clen clusterrevision
&, General
&, Closures
& HYAC
&, Lighting
~ & Measurement & Sensing
*4 llluminance Measurement D400
*, llluminance Level Sensing 00401
¢, Temperature Measurement 0x0402 v
*, Pressure Measurement D403

To configure the attributes which will need to be reported, you just need to enable the
reporting option of the selected attribute.

12

Overview of Finding & Binding

= Finding & Binding
= |s a cluster commissioning method to establish application connection automatically

= How to start

= Invoked by user interaction on two or more devices

= How to implement

= |dentifies and discovers end points using the Identify cluster

= What'’s the result

= Binding is created at the initiator

As we have set the reporting table, where will the attributes be reported?

Report message will be sent through binding tables.
There could be multiple destination of a reporting.

The binding table is set up through the finding and binding procedure per Zigbee BDB
spec.

13

Which device needs perform Finding & Binding

= The application SHALL perform finding & binding as an initiator endpoint
= Type 1 client cluster
= Type 2 server cluster

= The application SHALL perform finding & binding as a target endpoint
= Type 1 server cluster
= Type 2 client cluster

Device 1 Device 2
Type 1 Client Data Server
cluster (Initiator) (Target)

Data

Type 2 Server Client

cluster (Initiator) i (Target)

As we know, there are two kinds of clusters: Type 1 and Type 2.
A application cluster is either a Type 1 or Type 2 cluster, depends on its primary
functional transactions. A transaction has an initiator and a target.

A type 1 cluster’s primary function is to initiate transactions from the client to the
server. For example: An On/Off client sends commands (data) to the On/Off server.

A type 2 cluster’s primary function is to initiate transactions from the server to the
client. For example: An Temperature Measurement server reports to the Temperature
Measurement client.

For a type 1 client or a type 2 server cluster, the application shall perform finding &
binding as an initiator endpoint.

For a type 1 server or type 2 client cluster, the application shall perform finding &
binding as a target endpoint.

14

Finding & Binding procedure for a target endpoint

= Finding & Binding target

= Write identify time attribute Initiator

= Handle identify query requests from the initiator

Target

Find and Bind start —

= Plugin in Appbuilder

Broadcast Identify Query (OxFFFF)

l«— Find and Bind target start

Identify Query Response

IEEE Address Request

Productian Ready IEEE Address Response

4 Find and Bind Target.

Simple Descriptor Request

Simple Descriptor Response

Clusters matched —p

Create entry in binding table —b]

Please look at the right graph, which shows the working flow of the finding & binding

procedure. We will talk about the target side firstly.

On the finding & binding target endpoint, once the finding & binding target start, it will

write the identify time attribute firstly to make sure the target can be

Appbuilder, the identify time can be configurated in “Find and Bind Target” plugin and
the default value is 180 seconds. During the identify time, the target should respond to
the identify query from initiator. Once the decrementing identify time attribute reaches

zero, the target shall terminate the finding & binding procedure.

It means that the finding & binding target should write identify time attribute to make

sure it can be identified during the finding & binding procedure.

identified. In

15

Finding & binding procedure for an initiator endpoint

= Finding & Binding initiator

= Broadcast identify query Initiator Target
= |dentify query responses received
= Send simple descriptor request [Find and Bind target start
= Binding table is created for matched clusters Findand Bind start —] o dentity Query (OKFFFE)
Identify Query Response
= Plugin in Appbuilder IEEE Address Request

IEEE Address Response

Simple Descriptor Request

Simple Descriptor Response

Clusters matched —p

Create entry in binding table —b]

On the finding & binding Initiator endpoint, it broadcasts identify query to all nodes
which include sleepy end device(using the broadcast address 0xffff). If no identify query
response commands received, the initiator sets status to
NO_IDENTIFY_QUERY_RESPONSE and terminates the finding & binding procedure.

If at least one identify query response is received, the initiator sends IEEE address
request to get the EUI64 of the target, which will be used for binding table entry later.
And then the initiator sends simple descriptor request to get the clusters info on target.
Once some clusters matched between initiator and target endpoints, then the binding
is created for every matched clusters on initiator. If a group binding is requested, the
initiator endpoint configures group membership of the target endpoint, which means
that the initiator unicasts “add group” command to the target.

In Appbuilder, there are two options can be configured in “Find and Bind Initiator”
plugin. The “Target Responses Count” means the number of the target responses that
the initiator will accept. The “Target Responses Delay” means how long the initiator will
listen for target responses. You can feel free to configure these options to fit your user
case.

16

The APIs to start finding & binding operations

= Start target finding and binding operations

= EmberAfStatus emberAfPluginFindAndBindTargetStart(uint8_t endpoint)
= |n find-and-bind-target.h

= Start initiator finding and binding operations

= EmberStatus emberAfPluginFindAndBindInitiatorStart(uint8_t endpoint)
= In find-and-bind-initiator.h

You may want to know what are the APIs to start finding & binding operations.

The API to start target finding and binding operations is
emberAfPluginFindAndBindTargetStart(), which can be found in find-and-bind-target.h.
It is a call to this function will commence the target finding and binding operations.
Specifically, the target will attempt to start identifying on the endpoint that is passed as
a parameter. The EmberAfStatus value describing the success of the commencement of
the target operations.

As the similar, the API to start initiator finding and binding operations is
emberAfPluginFindAndBindInitiatorStart(), which can be found in find-and-bind-
initiator.h. It is a call to this function will commence the initiator finding and binding
operations. Specifically, the initiator will attempt to start searching for potential
bindings that can be made with identifying targets. The EmberStatus value describing
the success of the commencement of the initiator operations.

Please note that, the target should be started first during the finding & binding
procedure.

17

Debug Commands

= Finding & Binding target
zco>plugin find-and-bind target 1
Find and Bind Target: Start target: 0x00

T00000000:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 00 cmd 01 payload[]
T00000000:RX Ten 5, ep 01, clus 0x0003 (Identify) FC 00 seq 00 cmd OB payload[00 00]
ZigBee
= Finding & Binding initiator /

zsep>plugin find-and-bind initiator 1 1}
Processing message: len=3 profile=0104 cluster=0003

T00000000:RX len 3, ep FF, clus 0x0003 (Identify) FC 01 seq 00 cmd 01 payload[]

Processing message: len=5 profile=0104 cluster=0003

T00000000:RX len 5, ep 01, clus 0x0003 (Identify) FC 09 seq 00 cmd 00 payload[72 00]

T00000000:TX (resp) Ucast 0x00 TX buffer: [00 00 0B 00 00]

Processing message: len=12 profile=0000 cluster=8001

Processing message: len=25 profile=0000 cluster=8004

Find and bind initiator complete: 0x00

Transactions _t01al:50 shown:50

T . Time Duration Summary NWKSt NWKDest P# Stats
" Bmdlng Table info 101341170 0946 Many-to-One Route Discovery 0100 FFFC 7
. . . . 101347586 0030 ZCL: IcentifyQuery 3B FFF 3
zSep>option binding-table print 101347599 0030 ZCL: IdentifyQueryResponse DOE4 3083 2
type nwk Toc rem clus node eui 101247623 0013 ZCL DefaultResponse Ee) DOE4 2
0: UNICA O 0x01 0x01 0x0003 0xDOE4 (>)000B57FFFE648DA0 101350612 0011 IEEE Address Request Ee DOE4 2
1: UNICA 0O 0x01 0x01 0x0006 0xDOE4 (>)000B57FFFE648DA0 101350618 0008 lese Address Response DOE4 3C88 2
2: UNICA O 0x01 0x01 0x0008 0xDOE4 (>)000B57FFFE648DA0 101350628 0012 Simple Description Request ea DOE4 2
3 of 10 bindings used 101350634 0013 Simple Description Resporse DOE4 3CB3 2

TR T e o O Rl Doy U0 T

101545518 0942 Many-to-One Route Discovery 0000 FFFC E

Packet trace of Finding & Binding procedure

It is easy to set up the testing for finding & binding with Z3LightSoc and Z3SwitchSoc
samples.

First you can build the two samples directly, download the firmware to the kits
separately, and then join to the same Z3.0 network formed by a Z3Gateway.

On the Z3LightSoc side, launch the console and type CLI command “plugin find-
and-bind target 1”

On the Z3SwitchSoc side, launch the console and type CLI command “pTlugin
find-and-bind initiator 1"

You will see the log “Find and bind initiator complete: 0x00” is printed on console after
the finding & binding procedure finish. When you print the binding table on
Z3SwitchSoc side(initiator), you will see the entries are created in binding table. All the
matched clusters between initiator and target are bound. The finding & binding
transactions can be found in packet trace, which proves the finding & binding working
flow works as expected.

Let’s summarize how the finding and binding procedure works.

On the target side, it will write the identify time attribute for

18

EMBER_AF_PLUGIN_FIND_AND_BIND_TARGET_COMMISSIONING_TIME. During the
duration, the initiator broadcasts identify query and the target responds identify query
response. Then the initiator sends IEEE address request to target to get the EUI64 of
target, which will be used in creating binding table. The simple descriptor request will
be sent to target to get the clusters info on target side. Once the clusters matched, the
entries will be created in binding table of initiator.

18

Sleeping

8 Genersl |, ZCLClustes |8y Tighee Stack | Printingand CU @ HAL |95 Pluges 55 Calbacks s incudes | By Orharoptions | (3 Buetcoth GATT

= Press buttonO to
force device to
stay awake

= Press buttonl to
allow device to
sleep

To make the device sleep, we need to use the plugin “idle/sleep”.

There are two options in this plugin, we can enable the two options so that we can
debug the application easily.

Press button-0 to force the device to stay awake, so that we can input debug
commands.

Press button-1 to allow device to sleep, so that we can measure the sleep current.

19

Q&A

Q&A

Any questions?

20

Thank you!

Thanks

21

