
Context Free in a Nutshell
Basic Directives Shapes Shape Adjustments

startshape
startshape core

Indicates which rule or path is used as the starting point
for the generated image. If there are multiple startshape
directives then the first one is used and the rest are
ignored.

import
import@font alfreebet.cfdg
import "lib/alien eyes.cfdg"

Causes the contents of a specified file to be inserted after
the import directive. Quotes are optional for the file name;
unless the file name is in a different directory, contains
white space, or does not end in '.cfdg'. The contents can
also be inserted into a separate namespace.

CF::Background
CF::Background = [a -1] // transparent

Causes the color of the background to be other than
opaque white. If there is more than one background
directive then the first one is used and the rest are
ignored.

CF::Tile
CF::Tile = [s 30]
CF::Tile = [s 20 30] # rectangular

Enables tiled rendering and sets the size of the tiling
lattice. If there is more than one tile directive then the first
one is used and the rest are ignored. The tiling lattice can
be square, rectangular, skewed, or rotated as long as one
lattice axis is either perfectly vertical or horizontal.

CF::Tile = [s 30 x 15 y 10]

x or y shifts move the content with respect to the tiling
lattice. This allows the user to center part of the design in
the tile.

CF::Size
CF::Size = [s 30]
CF::Size = [s 20 30] # rectangular

Explicitly sets the canvas dimensions instead of letting
dynamic sizing occur. x or y shifts can be used to move
the canvas around.

shape BoxedCircle {
 SQUARE []
 CIRCLE [b 1]
}

A rule is a list of shape replacements that describes
how a particular shape can be made from other
shapes.

When a rule is executed the current shape is replaced
by the shapes in the list. If one of these shapes is a
primitive shape (SQUARE, CIRCLE, TRIANGLE, or
FILL) or a path then it is drawn immediately. All other
shapes are put in a list to be drawn later.

Randomness
shape foo
rule { SQUARE[] }
rule { CIRCLE[] }

A shape can have more than one rule. If a shape has
more than one rule then each time the shape is
invoked one of the rules is chosen at random and
used to draw the shape.

Rule weights
shape foo
rule { SQUARE[] } # 1/11.01=9.1%
rule 10 { CIRCLE[] } # 10/11.01=90.8%
rule 0.01 {} # 0.01/11.01=0.09%

A rule can have a rule weight following the rule
keyword that indicates the relative probability for that
rule to draw the shape.

shape foo
rule { SQUARE[] } # 9.9% leftover
rule 90% { CIRCLE[] } # 90%
rule 0.1% {} # 0.1%

Rule probability can be directly specified in %. Left-
over probability is distributed to rules w/o %weight.

A shape passes on its state (geometry, color, life-
time, and z position) to the shapes that replace it
when a rule for the shape is executed. Each
replacement can have shape adjustments that
modify the state in the replacement shape:

† The z-axis position determines which shape is on top when
they overlap.

Basic & Ordered Adjustments
// move (2,5), rotate 30°, scale (2,1)
SQUARE [s 2 1 r 30 x 2 y 5]
// move (0.5,0), scale 0.95, move (0.5,0)
SQUARE [[x 0.5 s 0.95 x 0.5]]

If the geometric adjustments are in double square
brackets, [[]], then they are applied in order. If the
adjustments are in single square brackets, [], then
they are re-ordered to x, y, rotate, size, skew, and
flip. Duplicates are dropped.

x num

y num

z num
size num

s num
size x y

s x y
size x y z

s x y z
rotate num

r num
flip num

f num

skew y x

Adjustment

translate num along the x-axis

translate num along the y-axis

translate num along the z-axis†

scale in x and y the same amount

scale in x and y independently

scale in x, y, and z independently

rotate num degrees

reflect across a line through the origin at
num degrees

Meaning

shear y degrees from the y-axis and x
degrees from the x-axis

x x y translate x, y along the x-axis & y-axis

x x y z translate x, y along the x-axis & y-axis,
and z along the z-axis

time b d translate birth time by b
and death time by d

timescale t scale temporal changes by t

Non-zero fill

CF::EvenOdd fill

Operators
() parentheses
^ exponentiation
-, ! negation, boolean not
*, / multiplication and division
+, - addition and subtraction
-- proper subtraction
+-, ±, .., … random ranges
<, >, <=, ≤, >=, ≥, <>, ≠

comparison
&&, ||, ^^ boolean

Functions
sin, cos, tan, cot, all in degrees
asin, acos, atan, acot, returning degrees
sinh, cosh, tanh, asinh, acosh, atanh
log, log10, sqrt, exp, abs, floor,
atan2(y, x), mod(x, y), divides(x, y), div(x, y),
infinity, factorial, sg,
rand_static(), rand_static(x), rand_static(x, y),
rand(), rand(x), rand(x, y),
randint(), randint(x), randint(x, y),
select(index, choice0, choice1, …),
if (condition, true_exp, false_exp),
min(exp0, exp1, exp2, …),
max(exp0, exp1, exp2, …),
ftime, frame

Color Adjustments Paths Expressions
hue num h num

add num to the hue value, wrapping from 360° to 0°
saturation num sat num
brightness num b num
alpha num a num

Range [-1,1]. If num < 0 then change the drawing
saturation, brightness, or alpha num% toward 0. If
num > 0 then change it num% toward 1.

Target Color
hue num target h num target

Range [-1,1]. If num < 0 then change the drawing
hue num% toward the target hue moving clockwise
around the color wheel. If num > 0 then change the
drawing hue in the counterclockwise direction.

saturation num target sat num target
brightness num target b num target
alpha num target a num target

Range [-1,1]. If num < 0 then change the drawing
saturation, brightness, or alpha num% toward 0 or
the target value, whichever is closer. If num > 0 then
change it num% toward 1 or the target value,
whichever is closer.

Path operations
MOVETO(xnum, ynum)
LINETO(xnum, ynum)
ARCTO(xnum, ynum, xradius, yradius, angle{, arc flags})
ARCTO(xnum, ynum, radius{, arc flags})
CURVETO(xnum, ynum, CF::Continuous)
CURVETO(xnum, ynum, xctrl1, yctrl1)
CURVETO(xnum, ynum, xctrl2, yctrl2, CF::Continuous)
CURVETO(xnum, ynum, xctrl1, yctrl1, xctrl2, yctrl2)
CLOSEPOLY() / CLOSEPOLY(CF::Align)

All of the xxxTO path operations have xxxREL variants
where the end point and any control points are relative to
the beginning point.

Path commands
STROKE [adjustments]
STROKE(stroke flags) [adjustments]

CF::IsoWidth, CF::ButtCap, etc.
FILL [adjustments]
FILL(fill flags) [adjustments]

CF::EvenOdd

normal stroke

iso stroke
negative radius
swaps cw & ccw

Numeric variables can be inserted into any expression wherever a
number is permitted. Shape adjustment variables can be inserted
into a shape adjustment using a transform adjustment:
shape tendril {

SQUARE []
bump = [[y 0.5 size 0.98 y 0.5 r 3]]
tendril [transform bump]

}

A shape specification variable can be used in a replacement as if it
were the name of a shape:
shape randShape {

pickShape = select(randint(3),
SQUARE, CIRCLE, TRIANGLE)

pickShape []
}

A variable’s value cannot change after it is defined. A variable with
the same name can be defined if it has a smaller scope, but the
original variable will be hidden, not changed. After the new variable
goes out of scope the old variable will be unhidden with its original
value.
foo = 1 // global scope
shape bar {
 foo = foo + 1 // 2nd foo, always equal to 2
 loop 5 [x 1] {
 foo = foo + 1 // 3rd foo, equal to 3
 // for all loop iterations
 CIRCLE [y foo]
 }
 // 3rd foo out of scope, 2nd foo visible,
 // equal to 2
}
// 2nd foo out of scope, global foo visible,
// equal to 1

Loop Statement
Anonymous form
loop expression [adjustments] loop-body

Where both adjustments can either be basic or
ordered ([] or [[]]).

Named form
loop var = expression [adjustments] loop-body

The loop index is bound to the variable var inside
loop-body (and finally-body).

Finally variants
loop expression [adjustments] loop-body
finally finally-body

or
loop var = expression [adjustments] loop-body
finally finally-body

Loop expression has one of three forms:
count-expression

loop counts from zero until index is
≥count-expression, incrementing by 1

start-expression, count-expression
loop counts from start-expression until index is
≥count-expression, incrementing by 1

start-expression, count-expression, step-expression
loop counts from start-expression until index is
≥count-expression, incrementing by
step-expression (or ≤count-expression if
step-expression < 0)

If Statement
if-then form
if (expression) then-body

Evaluate expression and execute then-body if it is
true (≠0).

if-then-else form
if (expression) then-body else else-body

Evaluate expression and execute then-body if it is
true (≠0), otherwise execute else-body.

Switch Statement
switch (expression) {

case const-case-expression1: case-body1
case const-case-expression2: case-body2
case const-case-expression3: case-body3
case const-case-expression4: case-body4
…
else: else-body

}

Evaluate the switch expression and compare the result
to each of the constant case expressions. If there is a
match then execute the corresponding case-body.
Otherwise execute the else-body (if there is an else-
body). All comparisons are done in the integer domain:
all values are rounded down.

Transform/Clone Statement
See online documentation

Simple vs. Compound Body
Any body element in a loop, if, transform, or switch
statement can either be a simple body or a compound
body. Rule and path bodies must be compound.

simple body
A simple body is just a single element, where an element
is a shape replacement, a path operation or command, or
a loop/if/transform/switch statement.
 loop i = 10 [x 1]
 loop i+1 [y 1]
 CIRCLE []
 finally
 SQUARE []
The inner loop body and finally body are simple. The
outer loop body is also simple.

compound body
A compound body is a list of arbitrarily many elements
contained in a pair of curly brackets.
 loop i = 10 [x 1]
 loop i+1 [y 1] {
 SQUARE []
 CIRCLE [b 1]
 }
The inner loop body is compound and the outer loop
body is simple.

Variable Definition
A variable definition has the form

var-name = expression
where expression can a numeric expression, a shape
adjustment, or a shape specification. There are global variables
and local variables, depending on where the definition lies.

definition

Variable

Between rules and paths

Global Local

Inside a rule or path body
or a compound body.

scope To end of cfdg file To end of enclosing body

evaluation Once, at the start Each time body is
executed

Non-zero fill

CF::EvenOdd fill

Expressions
Random range operators:

x .. y or x … y returns a random number within the
semi-closed range [x,y). The range operator is either
formed from two ASCII period characters or one Unicode
ellipsis.

x +- y or x ± y returns a random number in the
semi-closed range of [x-y,x+y). The 2nd random range
operator is either formed from the ASCII pair +- or by a
single Unicode plus-minus symbol.

Other Unicode symbols:
≤ less than or equal to, equivalent to ASCII <=
≥ greater than or equal to, equivalent to ASCII >=
≠ not equal to, equivalent to ASCII <>
∞ infinity
π 3.1415926535

Integer functions:
floor(x) - rounds x to the next lower integer
factorial(x) - x!
sg(x) - returns 0 if x=0 or 1 if x≠0
isNatural(x) - returns 1 if x is a legal natural number, and
integer in the interval [0,CF::MaxNatural]
div(x, y) - x ÷ y in the integer domain
divides(x, y) - return 1 if y divides x or 0 otherwise.

Binary functions:
bitnot(x) - binary inverse of x
bitor(x, y) - binary OR of x and y
bitand(x, y) - binary AND of x and y
bitxor(x, y) - binary exclusive-OR of x and y
bitleft(x, y) - binary left shift of x by y bits
bitright(x, y) - binary right shift of x by y bits

The binary functions convert their operands to 52-bit,
unsigned binary numbers before performing the binary
operation. Results are masked by 0xfffffffffffff

Miscellaneous functions:
infinity() - ∞
infinity(x) - ∞ if x≥0 or -∞ if x<0
min(x0, x1, x2, …) - evaluates arguments and returns the
smallest one
max(x0, x1, x2, …) - evaluates arguments and returns the
largest one

Random functions:
rand_static(): Static random number in the interval [0,1),

uniform distribution
rand_static(x): Static random number in the interval [0,x) (if

x > 0) or [x,0) (if x < 0), uniform distribution
rand_static(x, y): Static random number in the interval [x,y)

(if y > x) or [y,x) (if x > y), uniform distribution
rand()/rand(x)/rand(x,y): Random number, same intervals

as rand_static(). Returns a different random number on
each invocation.

rand::normal(mean, stddev): Generates random numbers
according to the Normal (or Gaussian) random number
distribution.

rand::lognormal(mean, stddev): Generates random
numbers according to the Log-Normal random number
distribution.

rand::exponential(rate): Generates random non-negative
floating-point values x, distributed according to and
exponential probability density function.

rand::gamma(alpha_shape, beta_scale): Generates
random numbers according to the gamma random
number distribution.

rand::weibull(alpha_shape, beta_scale): Generates
random numbers according to the weibull random number
distribution.

rand::extremeV(location, scale): Generates random
numbers according to the extreme value random number
distribution.

rand::chisquared(degree_freedom): Generates random
numbers according to the chi squared random number
distribution.

rand::cauchy(location, scale): Generates random numbers
according to the Cauchy random number distribution.

rand::fisherF(m_degree_freedom, n_degree_freedom):
Generates random numbers according to Fisher's F-
distribution.

rand::studentT(degree_freedom): Generates random
numbers according to Student's T-distribution

randint()/randint(x)/randint(x, y): Random integer same
intervals as rand_static(). Returns a different random
integer on each invocation.

randint::bernoulli(probability): Generates random boolean
value with a specified probability of being true.

randint::binomial(trials, probability): Generates random
non-negative integer values i, distributed according to a
binomial distribution.

Random functions (continued):
randint::negbinomial(trial_failures, probability):

Generates random non-negative integer values i,
distributed according to a negative binomial
distribution.

randint::geometric(probability): Generates random
non-negative integer values i, that represents the
number of yes/no trials which are necessary to obtain
a single success.

randint::poisson(mean): Generates random non-
negative integer values i, distributed according to a
Poisson distribution.

randint::discrete(weight_0, weight_1, … , weight_n):
Generates random integer in the range [0,n], where
each value i appears with a probability according to
weight_i.

The rand_static() functions are converted into a random
number when the cfdg file is compiled. So the value is
constant for the entire run, but it is different for each
variation and for each instance of rand_static() in the cfdg
file. The other random functions return a different random
value each time they are called.

Special function:
select(n, expr0, expr1, expr2, expr3, …) - evaluates n

and then evaluates and returns expr0 if n < 1, expr1 if
1 ≤ n < 2, expr2 if 2 ≤ n < 3, etc. Must have at least
two arguments. The expr0, expr1, expr2, etc. need
not be numeric expressions, they can all be vectors,
naturals, shape adjustments, or shape specifications.
They must all be the same type.

if(cond, expr_true, expr_false) - evaluates cond and
then evaluates and returns expr_true if cond ≠ 0 or
expr_false if cond = 0. This is just syntactic sugar] for
the select() function.

let(var1=expr1; var2=expr2; … ; expression) -
evaluates each of the argument expressions, expr1,
expr2, etc., and binds them to the variables var1,
var2, etc. Then expression is evaluated n the context
of the bound variables and returns this value. NB: the
variable bindings are separated by semicolons, not
commas. The scope of each variable is the variable
bindings that follow it as well as the last expression
(expr2 can reference var1, expr3 can reference var1
and var2, etc.)

