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Abstract—Ensemble methods for clustering take a collection
of input partitions, produced for the same data set, and generate
an ensemble partition that tries to preserve the information
carried in this collective. Acceptance of the resulting partition(s)
by decision makers can be a problem, due to the inherent
complexity of ensemble techniques, and the associated lack of
intuition on how a consensus has been derived from the original
set of input partitions. This problem is exacerbated in multi-
objective ensemble techniques, which generate a set of non-
dominated consensus partitions. In this context, the selection of
a final candidate clustering may require additional insight into
the relationships between non-dominated output partitions.

In this manuscript, we describe the first prototype of a novel
visualization tool, CVis, which has been developed as a general
tool to provide insight into the relationship between any set
of partitions of a given data set. We proceed to demonstrate
the specific use of this tool in understanding the relationship
between the sets of input, the sets of outputs, and the input-
output relationships for the multi-objective ensemble technique
MOCLE. We discuss how the interlinked analysis of such sets of
partitions can shed light onto the functioning, and the strengths
and limitations of a particular ensemble technique. In particular,
the tool facilitates the visual analysis of the level of support
identified for individual consensus clusters, which is helpful in
explaining final solutions to a decision maker.

I. INTRODUCTION

Ensemble techniques for clustering [1], [2] are a well-
established tool to boost the performance of a weak in-
dividual clustering algorithm such as k-means, and, more
generally, to identify a consensus clustering from any given
set of complementary input partitions. In determining the most
promising consentient candidate partition, traditional ensemble
techniques typically discard original dissimilarity information
between data items and, instead, reformulate the clustering
problem in terms of the information carried by the collection
of input partitions alone.

Ensemble techniques differ in the level at which consensus
is identified (which may be e.g. at the level of individual
data points or individual clusters), as well as the specific
mechanisms used for the identification and / or quantification
of consensus, and the construction of consensus partitions.
Typically though, mathematically advanced concepts (such as

hypergraphs [3]) are employed in the process of ensemble
construction. In consequence, the relationship between an
ensemble partition and the original input partitions can be
difficult to understand, which can limit the extent to which
a consensus partition is acceptable to domain experts and
interpretable by them.

Visualization tools play a fundamental role in allowing
domain experts to understand the implications and basis of a
given clustering solution, and have longed played an important
role in the analysis of biological data. Examples of prominent
visualization approaches used in bioinformatics are the use of
dendrograms to highlight hierarchical relationships between
entities, and the use of heat maps to emphasize and highlight
similarities of entities across a given feature space [4]. These
established approaches typically focus on the analysis and
insight regarding the structure of a single clustering solution
in view of the underlying dissimilarity / feature space. In
the context of ensemble techniques, it is an understanding
of the relationships between different clustering solutions that
becomes of particular importance, but current visualization
tools are poorly equipped to provide such insight. Here,
we describe the first prototype of a novel visualization tool
CVis that is being developed with the aim of addressing
this particular gap in the academic literature and of making
a practical contribution to the set of tools available for the
analysis of clustering solutions and, specifically, ensemble
clustering.

A. Multi-objective ensemble clustering

We demonstrate the strengths of CVis in the context of the
multi-objective ensemble technique MOCLE [5]. Starting from
a set of input (base) partitions, MOCLE uses a multi-objective
evolutionary algorithm to optimize a set of two clustering cri-
teria. The variation operator used during the search is a cross-
over mechanism that applies the Meta-Clustering Algorithm
(developed in [3]) to two candidate partitions at a time. No
mutation operator is used.

MOCLE differs from traditional ensemble techniques in two
distinct ways:

978-1-4673-8988-4/17/$31.00 c©2017 IEEE



(i) It can be seen as a special type of ensemble technique.
Like other ensemble techniques it uses information from
the input partitions to constrain the search for possible
consensus partitions. However, MOCLE additionally inte-
grates information about the original dissimilarity matrix
between data items (rather than to replace this e.g. by
the co-association matrix derived from the set of input
partitions), and uses this to guide the search and take
ultimate decisions on partition quality. This means that
cluster boundaries identified but insufficiently represented
in the original set of input partitions may still be rewarded
and retained.

(ii) MOCLE guides the search process using a pair of two
complementary clustering objectives, in order to pro-
vide a more comprehensive formulation of the clustering
problem than can be achieved using a single clustering
criterion [6], [7]. In consequence, MOCLE typically does
not identify a single optimal solution but returns a set of
ensemble solutions that are mutually non-dominated, for
each choice of cluster number.

Both of the above properties contribute to the importance
of suitable visualization techniques when analysing the results
returned by MOCLE. As a result of (i), the ensemble solutions
may vary in the level of support they receive from the original
input partitions. As a result of (ii), users of MOCLE are
dealing with sets of partitions at both the input and output stage
of the algorithm. Additional insight regarding reliability and
support can be derived from understanding the relationships
between and within these sets, and visualization can contribute
to achieving this.

B. Aims and structure of this paper

In this paper, we provide a first description of the principles
behind CVis. We use a number of experiments on microarray
data to highlight the value of the approach in understanding the
relationships within sets of clustering solutions. In particular,
we run MOCLE and a more traditional ensemble technique
for a variety of input partitions. We proceed to demonstrate
how visualization helps highlight the composition of input
sets, and helps shed insight onto the impact composition of
the inputs has on the output partitions generated by different
techniques. Specifically, the remainder of this paper is struc-
tured as follows: A brief overview of CVis is provided in
Section 2. Section 3 summarizes the experimental setup used
in this paper, including a description of the test set employed
(gene expression data), the generation of input partitions, the
parameterization of ensemble methods, and the index used
to evaluate clustering quality. Section 4 provides results for
our analysis and Section 5 summarizes our conclusions and
highlight opportunities for future development of CVis.

II. CLUSTERS’ VISUALIZER – CVIS

CVis (Clusters Visualizer) is an interactive visualization tool
designed for the integrated visualization of different types
of clustering collections (e.g. strict hierarchies or otherwise
related partitions, as well as unrelated partitions).

The key aim of CVis is to facilitate the identification of
clusters that re-occur within different partitions, and to ask
questions about the frequency and nature of the occurence of
such clusters. Concrete questions in the context of ensemble
clustering may take the following form: For a cluster present
in a given ensemble solution,

• was this cluster present in the original set of input
partitions?

• which of the generating methods / algorithms suggested
this particular cluster?

• how frequently did this cluster occur in the set of input
partitions?

• is this cluster present in multiple of the ensemble solu-
tions?

To answer these types of questions, CVis takes as its input
a collection of partitions of a data set. These partitions are
visualized in the form of a table with rows representing
individual clusters and columns representing blocks of objects.
A block of objects is defined as a group of entities that are
grouped in the same cluster in all of the partitions that are
being visualized (hence, a block may be a singleton, i.e. a
single entity). Key to the CVis visualization approach is the
feature that the clusters of a given partition are represented
independently. In this way, a cluster can be detached from its
original partition and shown together with clusters contributed
from other partitions, or it may individually be filtered out if it
matches a certain criteria. This supports the user in answering
the cluster-specific questions that are highly relevant in this
setting (see above).

A. Interactivity

Several interaction mechanisms further support the user in
exploring the relations among the clusters contained in the
collection. Possible interactions that are currently supported
include the following:

• To observe how the same group of objects are organized
differently in different partitions, by grouping the rows
according to the presence of objects in a given block.

• To remove the redundancy present in the collection of
partitions by filtering out identical clusters.

• To hide clusters irrelevant to a particular analysis by
filtering out clusters with sizes in a given interval.

• To provide an overview of the clusters constituting the
individual partitions, by ordering the rows by partition
labels (pLabel).

• To explore the relations of the clusters according to their
sizes, by ordering them by this feature (cSize).

B. Scalability

The size of a column representing a block of objects in the
visualization is proportional to the number of objects in the
block. The organization of the objects in such blocks helps in
summarizing the information which facilitates interpretation
but also reduces the sensitivity of the approach to the size
of the data set. As a result of this grouping, the suitability
of our visualization for large data sets depends primarily on



the size of the display device being used and the number of
blocks, which is decided by the level of granularity of the
input partitions and the level of agreement between them. It
does not depend on the size of the data set per se.

Each partition on CVis is represented by a different color,
with each cluster shown in a different row. The number of
colors available impose a restriction on the number of parti-
tions that can be visualized, but this restriction is comparable
to restrictions in many other current tools. Differently from
other cluster visualization tools, CVis does not display / colour
clusters relative to a reference partition.

C. Current prototype

In order to provide the reader with a visual impression of
the design of the current prototype of CVis, Figures 1 (a-
c) provide snapshots of the visualization of the two known,
valid partitions of the data set Golub (i.e. the two and three
cluster solution for this data set). The same data can be
explored interactively by the reader at http://lasid.sor.ufscar.
br/visualization/cVis/cVis-TP-golub.html.

(a) Clusters of the same partition close together (rows
ordered by pLabel)

(b) Only distinct clusters selected and rows ordered by
size of clusters (cSize)

(c) Details of the nine objects belonging to block b2

Fig. 1. Snapshots of different orderings / selections in the current CVis
prototype.

In this current design of CVis, the blocks of objects are
labeled as bi in the table header, with i corresponding to the
number of the block. The column cLabel is the cluster label
in the corresponding partition, the column pLabel reports the
labels of the partitions, ID provides a unique identifier for
each cluster, which is composed of the cluster label and the
partition label, and cSize gives the cluster size. Complementary
information regarding the size of and the objects contained
within a given block is shown as a tooltip when the user put the
mouse over the corresponding header in the table (Figure 1c).

III. EXPERIMENTAL DESIGN

In the experiments included in this paper, we focus on
demonstrating the insight a tool like CVis can provide in the
context of ensemble clustering – specifically in understanding
the relationships between the input partitions and the final
ensemble solution(s).

A. Data Set

For the purposes of this study, we employed a gene ex-
pression data set that is manageable in size, is widely known
and has frequently been employed to illustrate the application
of clustering techniques in the context of bioinformatics.
Specifically, we make use of the acute leukemia microarray
data, which contains data from 72 patients [8], and records
gene expression across a set of 3571 genes. Two main classi-
fications of these patients are known and can be considered as
known “correct” cluster structures, and clustering algorithms
have been successfully supporting these classifications [8].
The first classification corresponds to a two-cluster struc-
ture (golubReal-2classes) that differentiates between the acute
leukemia AML (Acute Myeloid Leukemia) and ALL (Acute
Lymphoblastic Leukemia) types. The structure with three
clusters (golubReal-3classes) defines a refinement of the ALL
class into the Tcell (T-lineage ALL) and Bcell (B-lineage
ALL) lineages.

B. Collections of Partitions

Three different collections of input partitions were used, to
illustrate the sensitivity of ensemble techniques to this input
and to highlight the role the CVis can play in identifying such
sensitivities.

All input partitions were produced using the algorithms
k-means (KM) and average-link (AL) [9], available in the
software Cluster 3.01 1. In both cases, we produced partitions
with k ∈ [2, 8]. For KM, we ran the algorithm 30 times for
each value of k and selected the partition with the lowest
squared error as the partition to be used for the corresponding
k. For AL, we generated the hierarchy and cut it in order to
produce one partition for each value of k.

Using these partitions, we produced the following three sets
of input collections:

• BP-KM-k2-8, which uses the KM partitions only, thus
representing a spread of different, non-hierarchical cluster
structures;

• BP-AL-k2-8, which uses the output from AL only, thus
providing a collection of hierarchical solutions;

• BP-KM-AL-k2-8, which combines the above two sets.

C. Ensemble techniques

Two different ensemble techniques are employed to high-
light differences in sensitivity to the composition of the
input set. Specifically, we use the multi-objective evolutionary
ensemble technique MOCLE, as well as the meta-clustering
algorithm MCLA.

MOCLE can be executed online at http://lasid.sor.ufscar.
br/mocleproject, and the Matlab/Octave code of MCLA is
available at http://strehl.com/soft.html. For both techniques we
produced solutions in the interval k ∈ [2, 8] (equivalent to
the range of clusters used for the input partitions). In the
case of MCLA, the only parameter required is the number

1http://bonsai.ims.u-tokyo.ac.jp/mdehoon/software/cluster/software.htm
[10]

http://lasid.sor.ufscar.br/visualization/cVis/cVis-TP-golub.html
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http://lasid.sor.ufscar.br/mocleproject
http://lasid.sor.ufscar.br/mocleproject
http://strehl.com/soft.html
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of clusters k. For a given choice of k, MCLA will return
a partition with at most k clusters. Hence, to produce a
collection of partitions, we run MCLA once for each value
of k. In the case of MOCLE, we run the algorithm with
the parameters summarized in Table I. Here, the Nearest
Neighbours parameter determines the number of neighbours
considered in the calculation of MOCLE’s second clustering
objective (Connectivity [7]). This is set to 5% of objects, which
translates to four neighbours in the case of the Golub data. All
other parameters are self-explanatory.

Parameter Value
Crossover MCLA
Crossover Probability 1.0
Minimum k 2
Maximum k 8
Number of Generations 100
Nearest Neighbours (%) 5

TABLE I
MOCLE’S PARAMETERS

Although both ensemble methods are non-deterministic,
our analysis here is for single runs of the algorithms only
(one for each k in the case of MCLA), as we are interested
in understanding the relationships among the partitions they
produced instead of evaluating / comparing their performance.
Comparisons between different ensemble techniques can be
found elsewhere in the literature [11], [3].

D. Evaluation of clustering quality

An established external validation index is used to determine
the agreement between a given clustering solution and the two
distinct (two and three-class) “true partitions” of the Golub
data (TP k = 2 and TP k = 3). The method selected here
is the Adjusted Rand Index (ARI), as this is the method of
choice for the comparison of clustering solutions with different
numbers of clusters [12]. The Adjusted Rand Index takes as its
input a candidate clustering and the correct reference partition.
It produces values in the interval [0, 1] with a value of 1
indicating a perfect match between the two partitions.

IV. RESULTS

The overall results obtained in our experiments are summa-
rized in Tables II to IV, which show the best (maximum ARI)
solutions contained within both the input collections and the
associated output sets of the ensemble methods, broken up by
input set. These results emphasize the sensitivity of MCLA to
the choice of input set, which arises from its disregard of dis-
similarity data. As expected, the use of data-driven objectives
in MOCLE can compensate for weaknesses in a particular
input set and it therefore shows a more robust performance
across inputs. On the other hand, it should be noted that, for
MOCLE, the space of possible ensemble partitions is strictly
constrained by the cluster boundaries identified in the input
set, i.e. no new candidate cluster boundaries can currently be
determined by MOCLE’s variation operators.

Using these results, we revisit some of the points of interest
that were previously highlighted in Section II, and provide

Partition Set TP k ARI
BP-KM-k2-8 k = 2 2 0.943999
BP-KM-k2-8 k = 3 2 0.682689
MOCLE k = 2 2 0.943999
MOCLE k = 3 2 0.682689
MCLA k = 2 3 0.441769
MCLA k = 3 3 0.472003

TABLE II
CHARACTERISTICS OF THE PARTITIONS USING BP-KM-K2-8 AS INPUT

Partition Set TP k ARI
BP-AL-k2-8 k = 2 6 0.876025
BP-AL-k2-8 k = 3 8 0.798051
MOCLE k = 2 6 0.876025
MOCLE k = 3 8 0.798051
MCLA k = 2 3 0.875978
MCLA k = 3 5 0.816329

TABLE III
CHARACTERISTICS OF THE PARTITIONS USING BP-AL-K2-8 AS INPUT

Partition Set TP k ARI
BP-KM-AL-k2-8 k = 2 2 0.943999
BP-KM-AL-k2-8 k = 3 8 0.798051
MOCLE k = 2 6 0.876025
MOCLE k = 3 8 0.798051
MCLA k = 2 2 0.837557
MCLA k = 3 2 0.654128

TABLE IV
CHARACTERISTICS OF THE PARTITIONS USING BP-KM-AL-K2-8 AS

INPUT

concrete examples for the type of analysis that can be con-
ducted using CVis. Note that these illustrative examples have
been selected to highlight the specific strengths of our visual-
ization approach, but we do not suggest that the capabilities of
CVis are limited exclusively to the type of analysis described
here.

Figure 2a provides a momentary snapshot of the
analysis of MOCLE’s results on the first collection
of input partitions. A full interactive analysis can be
conducted through http://lasid.sor.ufscar.br/visualization/cVis/
cVis-BP-KM-k2-8---MOCLE-L4-MCLA-run1---TP.html.
The set of KM input solutions contains a highly accurate
solution, generated for k = 2. MOCLE is able to identify
this partition, despite its underrepresentation in the original
input set. An analysis using CVis clearly highlights the
origin of MOCLE’s performance in this single input solution.
Furthermore, the visualization confirms that the information
is fully retained within a single MOCLE solution only.
Specifically, the snapshot included here displays one of the
two clusters contained within the best MOCLE solution,
in the first row. The second row highlights the origin of
this cluster in the KM input solution. Finally, the third row
confirms the excellent fit to one of the original classes in the
Golub data. Where available, class information of this type
may optionally be introduced into the analysis to support
immediate inferences on cluster quality.

Figure 2b shows an extract of the analysis for

http://lasid.sor.ufscar.br/visualization/cVis/cVis-BP-KM-k2-8---MOCLE-L4-MCLA-run1---TP.html
http://lasid.sor.ufscar.br/visualization/cVis/cVis-BP-KM-k2-8---MOCLE-L4-MCLA-run1---TP.html


(a) MOCLE results on the first set of input partitions. Sorting by cluster size (cSize).

(b) MCLA results on the first set of input partitions. Sorting by consistency across object group 1 (b1).

(c) MCLA results on the third set of input partitions. Sorting by consistency across object group 23 (b23).

(d) MOCLE results on the third set of input partitions. Sorting by consistency across object group 30 (b30).

Fig. 2. Snapshots of different orderings / selections for combined input and output collections of MCLA and MOCLE, on different input partitions.

MCLA’s results on the same collection of input
partitions. A full interactive analysis can be conducted
through http://lasid.sor.ufscar.br/visualization/cVis/
cVis-BP-KM-k2-8---MCLA-run1---TP.html. The tendency

of KM (with high cluster numbers) to generate clusters
that further segment the original, spatially sparated clusters
is clearly apparent in the visualization. Shown here are
the suggested KM divisions of one of the true clusters (as

http://lasid.sor.ufscar.br/visualization/cVis/cVis-BP-KM-k2-8---MCLA-run1---TP.html
http://lasid.sor.ufscar.br/visualization/cVis/cVis-BP-KM-k2-8---MCLA-run1---TP.html


highlighted in the second row) for the KM k = 2 to k = 5
solutions. While the k = 2 solution (first row) is the highly
accurate solution discussed above, this valuable information
is diluted by the other KM solutions. The noisy nature of
the input set causes problems for MCLA, and results in
the generation of poor solutions that sub-divide the original
clusters. In the figure, this becomes evident in terms of the
discrepancies between the five MCLA solutions, as well as
their lack of alignment with the true clustering solution.

Results on the second input set are comparable
across methods and are not discussed further
due to space limitations. Interactive results are
available at http://lasid.sor.ufscar.br/visualization/cVis/
cVis-BP-AL-k2-8---MOCLE-L4-MCLA-run1---TP.html
and http://lasid.sor.ufscar.br/visualization/cVis/
cVis-BP-AL-k2-8---MCLA-run1---TP.html.

Figure 2c provides a snapshot of the analysis
for MCLA’s results on the third collection of input
partitions. A full interactive analysis can be conducted
through http://lasid.sor.ufscar.br/visualization/cVis/
cVis-BP-KM-AL-k2-8---MCLA-run1---TP.html. Using
CVis, it becomes clear that MCLA mostly manages to handle
the increase in noise caused by the addition of KM partitions
to the AL inputs. Specifically, the AL partitions appear to
carry sufficient information to support the identification of
those cluster boundaries that occur in the partitions from both
algorithms. In consequence, MCLA obtains a good solution
for k = 2, and ordering by specific cluster boundaries of
that partition (see Figure 2c) demonstrates that the specific
support of these clusters arises from a combination of AL
and KM partitions. MCLA’s performance at identifying
the true k = 3 partition is poorer. This is because the
useful information carried by the AL partitions is diluted by
the information carried by the KM solutions. Specifically,
KM solutions disagree internally and there is no obvious
agreement between the KM and AL solutions regarding the
location of the additional cluster boundary.

Figure 2d shows part of the analysis for MOCLE’s results
on the same (third) input set. A full interactive analysis can be
conducted through http://lasid.sor.ufscar.br/visualization/cVis/
cVis-BP-KM-AL-k2-8---MOCLE-L4-MCLA-run1---TP.
html. Interestingly, the number of object groups shown here
is significantly smaller than in Figure 2c, reflecting the fact
that MOCLE is strictly constrained by the cluster boundaries
present in the input set. Like MCLA, MOCLE cannot take
advantage of the union of two different types of input
partitions. In particular, correspondence of final solutions
to the true k = 2 partition is worse than it is for the first
input data set (using KM partitions only), indicating that
MOCLE is now unsuccessful in identifying the accurate (but
under-represented) KM solution contained in this set. The
visualization using CVis highlights that MOCLE’s solutions
do not manage to merge the singleton objects b30 to b32,
which are part of the same class and are correctly identified
by the k = 2 KM solution. The fact that the promising
KM solution is not retained in the final population points to

a failure of the clustering criteria to correctly differentiate
between the quality of these partitions, for this particular data
set.

V. CONCLUSION AND FUTURE WORK

We have provided a first description of the visualization
method CVis, which aims to improve insight into the relation-
ships within sets of clustering solutions. This is of particular
value in the context of ensemble techniques, which generate
a set of ensemble clusterings from an input set of clustering
solutions. We highlight specific strengths of CVis using the
example of a gene expression data set.

State-of-the-art visualization tools draw their power from
interactivity and there remain a number of ways in which
interactivity in CVis can be improved further. CVis already
provides a variety of mechanisms through which clusters can
be sorted, but it does not yet allow for sorting by type
of clustering method or cluster number (this can only be
achieved implicitly by sorting through partition name). Sorting
according to a ground truth or match to a highlighted cluster
would also be helpful features.
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