
Presentation of

Major French Utility

Contact: Olivier Boudeville

(olivier.boudeville@edf.fr)

More information:

• http://www.sim-diasca.com

• https://github.com/Olivier-Boudeville-

EDF/Sim-Diasca

Friday, April 7, 2023

http://www.sim-diasca.com/
https://github.com/Olivier-Boudeville-EDF/Sim-Diasca

Presentation outline:

introducing Sim-Diasca

1. All Sim-Diasca in one slide

2. Requirements & technical answer

3. Algorithmic choices

4. Technical design & features

5. What is Sim-Diasca?

Functional Service & Key Points

Software Architecture

6. Future work

7. Conclusion

8. Appendices

Sim-Diasca is a concurrent (parallel and distributed) generic discrete-time

simulation engine aiming at maximum scalability (millions of complex model

instances in interaction).

• Generic, domain-agnostic: can be applied to a wide range of large-scale discrete

simulation targets, from ecosystems to vast IT infrastructures

• Typically suitable for simulations in the field of Complex Systems

(whereas most of the tools for that are sequential and can hardly scale)

• Sim-Diasca (simulation engine) + models + simulation case(s)  a simulator

Generic Domain

specific

Domain

specific

• Fully implemented in a functional language, Erlang (http://erlang.org)

• Supported platforms: GNU/Linux (from single laptops to full-blown HPC clusters)

• Used by EDF and third parties, maintained by EDF R&D

• Released since 2010 by EDF R&D as free software (LGPL licence)

Sim-Diasca requirements & technical answer

Functional Requirements:

Multiple usages anticipated

(simulator/emulator/digital-twin)

Need for correctness in the evaluation of all

kinds of models

Simulation use cases require to be able to:

Replay at will any given trajectory of the target

system

Correlate directly a change into the simulation

results to a change into the inputs

Explore all possible trajectories of the system,

moreover in a fair, representative way

Need to be able to simulate very large

systems, potentially involving dozens of

millions of interacting actors

Technical Answer:

Batch or Interactive mode of operation

Respect of causality

Support for stochastic models

Total reproducibility

Support of a certain form of “ergodicity”,
i.e. a guarantee that:

All possible outcomes according to the
models can actually occur in the simulations

And that their probability of showing up in
the simulations is close to the one that can
be deduced from the models

Ability to scale up significantly:

At the algorithmic level: maximal
parallelization of the evaluation of models

At the level of computing resources:
harness multicores, SMP, clusters and other
High Performance Computing solutions

Sim-Diasca main algorithmic choices

Continuous

Discrete

Sequential

Evaluation

Parallel

Evaluation

Synchronous

Asynchronous

Conservative

Optimistic

Interactive

Batch
Modelling

of virtual

time

« time-stepped »

« event-driven »

Requires look-ahead,

deadlock detection &

avoidance mechanisms

Requires complex

distributed rollbacks

« faster than

the clock »

« real time »

Choices for the Sim-Diasca mode of operation are shown within red ellipses.

The nodal point is how the simulation time is managed:

Simple, yet

not scalable
For systems

inherently time-

discrete or that

can be sampled

Often useful with

differential equations

associated to the

laws of physics

Sim-Diasca technical design & features

As an answer to the requirements, a simulation engine:
Based on discrete events: the elements of the target system (model instances, a.k.a. actors) exchange messages and
update their state accordingly

Synchronous (« time-slicing », « time-stepped »):

A fundamental simulation frequency is defined (by default, 50Hz)

In interactive mode, the engine adjusts its time steps (ticks) to the real (wall-clock) time

In batch mode, the engine processes its ticks at maximum speed, and jumps automatically over periods without any
possible activity of actors (quite similarly to asynchronous approaches)

Intensely concurrent:

Distributed simulation: a single simulation can spread over a set of computing hosts (e.g. HPC cluster)

and Parallel, i.e. taking advantage, for each computing host, of all cores of all processors

The algorithm allows, at each scheduled logical moment, to evaluate all model instances in parallel!

Scalability-wise, at the end of 2010, the threshold of 1 million instances of rather complex models could be reached

Granting a large freedom and expressivity to models:

Modelling: object-oriented approach, whence implementation directly derives, based on a concurrent high-level
functional language (Erlang)

Flexible and powerful scheduling policies for actors (fully passive, periodical, or driving their own behaviour arbitrarily)

Stochastic support: any number of stochastic variables per actor, respecting built-in or model-defined probability density
functions

Very few constraints apply to models (e.g. no pre-established fan-in/fan-out, no look-ahead needed); no causality-
induced time biases (as many logical moments - « diascas » - as needed will be created in a tick to sort out causality)

Providing all needed features to build easily a simulator:

Engine features: automatic and parallel deployment (code and data), management of results, load-balancing, integration
to most platforms (e.g. clusters), distributed trace system, tuning for scalability, etc.

Model features: automatic message reordering, stochastic support, probe support (autonomous and database-based)

Central point: the massive parallelism is achieved without prejudice to the targeted
simulation properties

And only the
relevant ones

Functional Services: 1: Read configuration information

Functional Services:
2: Deploy simulation on hosts

(no prior install needed)

Functional Services: 3: Process simulation case

Functional Services:
4: Place and create initial

model instances

Functional Services: 5: Schedule model instances

Functional Services:
6: Offer additional services

(e.g. distributed trace system, stochastic
support, performance tracker, data-exchanger)

Functional Services:
7: Generate simulation data

(e.g. time series)

Functional Services:
8: Select, generate and

retrieve results (e.g. plots)

Functional Services: (post-processing skipped)

Sim-Diasca Key Points

The engine must enforce notably following simulation properties:

Respect of causality

Total reproducibility

Some form of ergodicity

The challenge is to obtain these properties in spite of massive parallelism
and distribution

To do so, inter-actor messages have to be appropriately reordered
(transparently done by the engine)

We target maximum scalability: potentially millions of instances of rather
complex models can be evaluated in parallel

Another technical challenge is to simplify as much as possible the model
development:

Bridge the gap between model formalisations and actual
simulation code (UML sequence diagrams, flow maps,
state machines, dataflows): mixing programming styles
(Object-Oriented and Functional ones)

Provide stochastic support

Shelter models from parallelism: write each of them in a
simple, purely sequential way (and support a few bindings)

Provide an higher-level language with appropriate constructs
so that domain experts have a better chance of understanding
and developing actual models

More precise functional

and technical

requirements are

detailed in annex 2.

Simulation properties

discussed in annex 5.

Simulation class and

algorithmic aspects are

better explained

respectively in annex 3

and annex 6.

Overall modelling and

simulation approach

described in annex 7.

Refer to the Sim-Diasca

Technical manual for

further information.

Sim-Diasca Technical Architecture in Practice

• Most simulation services are at least partially distributed

• Dependencies on latency and bandwidth have been minimized (e.g. placement hint,

advanced scheduling, hierarchical aggregation)

• High Performance Clusters supported, other platforms have been investigated

(Tilera manycore cards, Bluegene/Q supercomputers)

Example of a technical architecture based on

Sim-Diasca: the CLEVER simulator

CLEVER Application Models

D
is

tr
ib

u
te

d
 T

ra
c

e

S
y
s

te
m

M
y
ri

a
d

 U
ti

li
ti

e
s

Result

Manager

Performance

Tracker

Random

Manager

Extensible Actor

Model

Auto-

Variables

Auto-

Probes

Communications

Model

Queuing

Model

Simulation Time

Manager

Deployment

Manager

Task Processing

Model

Actor

Models

Load

Balancer

Data Logging and

Probes

Network

Topology Model

Message-Passing

Model

Other

Components

Telecom and

Processing

Specialization

Layer

Generic

Engine

Sim-Diasca

WOOPER

Erlang Development and Runtime Environment

CLEVER Support Layer (Core)

Sim-Diasca: past, current and next steps
• After having been developed initially for the French case, used in the CLEVER UK project, in

the RELEASE european project, in the EDF City Plaftorm for the MUG Project (not counting

the external, non-EDF uses):

• Possible follow-ups for:

• The British supplier case and/or for OFGEM (regulator), i.e. a « CLEVER 2.0 »

• The French counterpart supplier and/or DNO (distribution operator)

• Smart grids (bridge towards equational models in continuous time, based on FMUs) and « future internet »

related projects

• Projects about scalability/reliability: some other Complex Systems of interest

(outside of the strict energy field, like urban planning, operational use of blockchains and DLT, intricated

large-scale planning verification, digital twin of information systems)

• On the technical side:

• Plenty of improvements could be considered (e.g. half-word emulator, more metaprogramming, hibernation,

native compilation, Rust binding)

• Larger-scale computing resources and k-crash resilient engine

• On the theoretical/academic side:

• Scalability, reliability and performances to be investigated at this level too (e.g. with Coq?)

• Towards hybrid simulations, mixing discrete time and continuous time with ODEs?

• More generally: rising interest in functional programming for the scientific field

(e.g. EDF-CEA-INRIA 2012 Summer School)

• Even if coming from an industrial background, some opportunities of publications

Ending word

Sim-Diasca: a fully functional simulation engine, already used in academic works
and industry-related projects

Very few scalable engines of that kind exist (most are sequential by design)

For a better understanding of how Sim-Diasca works, read the next appendices

Fully generic: use it to simulate your own target system!

Various paradigms supported: multi-agent simulation, dataflow evaluation; an
additional one could be the support of at least some models in continuous time
(hybrid mode of operation)

Sim-Diasca has been released as free software (LGPL) by EDF R&D since 2010

Main requirements are fulfilled, steady progresses expected to come

Towards a parallel, distributed, metaprogrammed Sim-Diasca running very
large-scale hybrid simulations on larger HPC infrastructures?

Appendices

• Annex 1: Simulation properties

1.1: Preserving causality

1.2: Ensuring total reproducibility

1.3: Obtaining ergodicity

• Annex 2: Mode of operation

• Annex 3: Anatomy of a Virtual Experiment

• Annex 4: Dataflow support

• Annex 5: Software-level considerations

• Annex 6: A Focus on WOOPER

• Annex 7: Overall modelling and simulation

approach

• Annex 8: Examples of outputs

Annex 1.1: Obtaining targeted simulation properties:

restoring causality

By default, there is no total order of events over a distributed system (as no global time

can exist). If no specific order is enforced, no consistency can be guaranteed:

Causality is natively respected in Sim-Diasca thanks to a time-stepped approach:

To each cause corresponds necessarily an inter-actor message sent by actor A to actor B at
tick T (the physical time in the simulation), diasca D (a logical moment within a tick)

This message is processed (to determine its consequences) by actor B at tick T, diasca D+1

So, by design, as diascas do not overlap, causes indeed precede effects.

But causal chains induce only partial ordering of events.

What about concurrent events, i.e. events not linked by a causal relationship?

Annex 1.2: Obtaining targeted simulation properties:

allowing for total reproducibility

No a priori order exists between two concurrent events.

(« M1 then M3 » is not any truer than « M3 then M1 »)

The order that is to be re-created will necessarily be arbitrary.

Relying on the actual, technical order of receivings would make simulations depend on their
execution context, and they would not reproducible.

The order that is to be re-created will have to fully abstract out any technical context.

With Sim-Diasca, each actor is reproducibly seeded and starts a diasca by automatically reordering
the messages it received on the previous diasca, based only on:

▪ a reproducible identifier of the sending actor

▪ a hash value of the content of the message having been sent

This arbitrary reproducible order is generic and fully compatible with parallelism & stochastic models.

Annex 1.3: Obtaining targeted simulation properties:

allowing for ergodicity

Objectives:

A. Ensure at each diasca, for each actor,

that:

for n messages received on the last

diasca, all n! possible sequences Sk

can occur

And that P(Sk)=1/n! for k  [1,n!]

B. Ensure that running a given simulation

case with a given root initial random

seed will fully determine the simulation

outcome, for a given set of parallel

and/or distributed resources involved

Sim-Diasca approach, at the level of each

actor, in parallel:

The sequence of n past messages is

first arbitrarily reordered for

reproducibility, as shown previously

Then, thanks to a distributed and

uniform random generator, we select

(reproducibly) one of the n! possible

permutations, and process it in-order

Both objectives are then met:

ergodicity (A) and reproducibility (B)

Annex 2: Sim-Diasca mode of operation

Note: this diagram shows how Sim-

Diasca, whose simulation time is a
(Tick,Diasca)pair, would evaluate

the causality example in annex 1.1.

Following topics are not illustrated here:

• distributed mode of operation with

hierarchical time managers

• actor-level reordering of messages

• actual life-cycle management

• stochastic management

Simulation ticks are evaluated sequentially (one after the other, based on a uniform synchronous
simulation time; yet only the necessary ones), each of their diascas evaluating its actors fully in parallel

At diasca D=0, all actors (model instances) having planned a spontaneous behaviour execute it; at
D>0, those having received inter-actor message(s) at D-1 reorder and process them

Besides parallelism, two main goals to be achieved transparently by the engine:

▪ To obtain a consensus on the correct soonest termination of each tick and diasca, thanks to a necessary and
sufficient exchange of synchronisation messages (involving actors and time managers)

▪ To reorder automatically received messages so that the targeted properties (causality, reproducibility, ergodicity,
etc.) are preserved

Main objective: massive parallelism while still preserving the expected simulation properties.

Should you have 35 million model instances, you are here able to evaluate all of them in parallel.

Annex 3: Anatomy of a Virtual Experiment

(refer to our mini-ontology for more detailed descriptions, and
to mock-simulators/soda-test/src for a runnable example thereof)

Annex 4: Dataflow support (1/2)

Sim-Diasca natively powers multi-agent simulations.

Among the specialisations that can be built on it, one

deals with the parallel execution of dataflows, i.e.

graphs of computations whose evaluation is driven by

the availability of inputs.

Annex 4: Dataflow support (2/2)

These dataflows can be cyclic and highly dynamic: during a time-step, any number of blocks,

ports and channels can be created or destructed, based on object managers and unit managers,

which exchange changesets:

Language bindings have been defined (in Python; Java considered), so that processing units

may be developed in other languages and/or embed third-party pre-existing models.

A workbench has been designed to simplify such integrations.

Annex 5: Software-level considerations

A more technical zoom on the open source software stack

Erlang VM (25.3 or higher, SMP)

GNU/Linux x86-64 (e.g. Arch Linux)

Myriad 1.0.* (http://myriad.esperide.org)

WOOPER 2.0.* (http://wooper.esperide.org)

Traces 1.0.* (http://traces.esperide.org)

Sim-Diasca 2.4.5 (http://sim-diasca.com)

235 .erl, 45 .hrl, 145 klines

57 .erl, 22 .hrl, 26 klines

24 .erl, 11 .hrl, 16 klines

146 .erl, 41 .hrl, 106 klines

Mock-Simulators 1.0.* (http://sim-diasca.com)
71 .erl, 9 .hrl, 27 klines

Grand total:

533 .erl, 128 .hrl, 320 klines

(38% of code, 31%

comments, 31% blank lines)

1. a functional,

concurrent MAS

(Multi-Agent System)

Through a bottom-up specialisation, obtaining in turn:

2. higher-level,

richer primitives

3. an object-

oriented MAS

4. with advanced

distributed traces

5. a concurrent

simulation engine

6. a complex

system simulator

http://myriad.esperide.org/
http://wooper.esperide.org/
http://traces.esperide.org/
http://sim-diasca.com/
http://sim-diasca.com/

Annex 6: A Focus on WOOPER (1/4):

Wrapper for Object-Oriented Programming in Erlang

A free-software lightweight OOP layer on top of the Erlang language
(now OTP-compliant thanks to rebar3, for applications/releases, and available as an Hex package)

Official website: http://wooper.esperide.org

(sole dependency: Myriad, see http://myriad.esperide.org)

Provides multiple inheritance, polymorphism, encapsulation, state

management and life-cycle management with minimal

development/runtime overhead

You can define classes, create instances, call methods (oneway or

requests) on them, and delete them

A class definition includes: a list of the direct superclasses

([class_Mammal,class_Viviparous]), at least one constructor, possibly a

destructor, and member and static methods (e.g. declareBirthday/1)

Thus provides an object-oriented,

distributed multi-agent system;

but such features alone are not

sufficient to obtain a simulation!

http://erlang.org/
http://wooper.esperide.org/
http://myriad.esperide.org/

Annex 6: A Focus on WOOPER (2/4): implementing a class

Annex 6: A Focus on WOOPER (3/4):

interacting with instances

Annex 6: A Focus on WOOPER (4/4):

Inner workings & Erlang mapping

A WOOPER class is an (Erlang) module (e.g. class_Cat), a WOOPER (active) instance is

an (Erlang) process, an instance identifier is a PID, method calls are messages, a state is a
set of attributes, an attribute is a key/value pair ({atom(),term()})

A WOOPER instance is:

created thanks to(timed_)(remote_)(synchronous_)new(_link) calls

a process looping over its state, waiting for incoming method calls, mapping them to the

corresponding functions in appropriate modules (inheritance), returning possibly a result

It keeps a private associative table to hold its state (attribute_name -> value)

Each class has an associative table for method lookups (method_name -> module_name)

Methods are functions:

whose first parameter is the current instance state (automatically specified by WOOPER)

whose other parameters are the ones provided by the call

using setAttribute/getAttribute etc. to update the state of this instance

returning an updated state, and, for requests, also sending back a result to the caller

Annex 7: Overall modelling and simulation approach

(example from the CLEVER project)

Massive roll out of smart meters in Great-Britain

A challenge raising questions
Volume of data transfers | Associated costs | Scalability of the system

What is the most appropriate smart metering architecture?

DESCRIBE
Business processes

for Smart Metering from
meter reading to advanced
DSM including future needs

DEVELOP and VALIDATE
Simulation engine & tools

Simulator, models,
computing resources,
formal descriptions

CHARACTERISE
Architecture options

System structure,
telecom solutions

RUN the Set of Experiments
To get raw results: curves, probe indicators

ANALYSE Results
To interpret data and formulate clearly understandable conclusions

DEFINE a Set of Experiments
Covering all questions raised by a smart metering systems roll-out

Annex 8: Examples of Sim-Diasca results & outputs (1/3)

Simulation of meters communicating with a concentrator through PLC G1

(French case, 2008)

Simulation results obtained through the CLEVER simulator: evaluating outcomes and

performances depending on the functional and technical architecture of various smart

metering systems (British case, 2009-2011)

Annex 8: Examples of Sim-Diasca results & outputs (2/3)

Simulation results obtained, on the left, through the RELEASE European project (large scale

City-example case, here the road network of the smallest scale); on the right, internal mock-up

Sustainable Cities case, devised for platform integration.

Road network (for scale ‘tiny’)

Console Tracker

Result Browser

Trace

Browser

Annex 8: Examples of Sim-Diasca results & outputs (3/3)

