Presentation of

Sim~Diasca

Simulation of Discrete Systems of All Scales

Friday, April 7, 2023

g Contact: Olivier Boudeville

(olivier.boudeville @edf.fr)

More information:

http://www.sim-diasca.com

L
o

AN

AU)

¢
Major French Utility ? : :EDF

7
»ah ‘. / “”

i T s

N 8
AL

(R \...

http://www.sim-diasca.com/
https://github.com/Olivier-Boudeville-EDF/Sim-Diasca

Presentation outline:
Introducing Sim-Diasca

a kM w0 N PE

7.

All Sim-Diasca in one slide
Requirements & technical answer
Algorithmic choices

Technical design & features

What is Sim-Diasca?
Functional Service & Key Points

Software Architecture
Future work
Conclusion

Appendices

~ S €eDF

Sim~Diasca

D
Simulation of Discrete Systems of All Scales

Sim-Diasca is a concurrent (parallel and distributed) generic discrete-time
simulation engine aiming at maximum scalability (millions of complex model
instances in interaction).

» Generic, domain-agnostic: can be applied to a wide range of large-scale discrete
simulation targets, from ecosystems to vast IT infrastructures

« Typically suitable for simulations in the field of Complex Systems
(whereas most of the tools for that are sequential and can hardly scale)

« Sim-Diasca (simulation engine) + models + simulation case(s) = a simulator

* Fully implemented in a functional language, Erlang (http://erlang.org)

« Supported platforms: GNU/Linux (from single laptops to full-blown HPC clusters)
» Used by EDF and third parties, maintained by EDF R&D

* Released since 2010 by EDF R&D as free software (LGPL licence)

Free as in Freedom : : €DF

Functional Requirements:

kinds of models

a Simulation use cases require to be able to:

Replay at will any given trajectory of the target
system

Correlate directly a change into the simulation
results to a change into the inputs

Explore all possible trajectories of the system,
moreover in a fair, representative way

s Need to be able to simulate very large
systems, potentially involving dozens of
millions of interacting actors

a Multiple usages anticipated | _ _
(simulator/emulator/digital-twin) . Batch or Interactive mode of operation

a Need for correctness in the evaluation of aII

N

Technical Answer:

a Respect of causality
| a Support for stochastic models

a Total reproducibility

a Support of a certain form of “ergodicity”,
l.e. a guarantee that:

All possible outcomes according to the
models can actually occur in the simulations

And that their probability of showing up in
the simulations is close to the one that can
be deduced from the models

a Ability to scale up significantly:
At the algorithmic level: maximal
parallelization of the evaluation of models

At the level of computing resources:
harness multicores, SMP, clusters and othe
High Performance Computing solutions

Sim-Diasca main algorithmic choices

The nodal point is how the simulation time is managed:

Simple, yet
For systems not scalable
inherently time-

discrete or that
can be sampled

«real time »

« time-stepped » e Y

-)

T

« faster than
the clock »

« event-driven »

Often useful with
differential equations
associated to the
laws of physics

Requires look-ahead,
deadlock detection &
avoidance mechanisms

Requires complex
distributed rollbacks

® Choices for the Sim-Diasca mode of operation are shown within red ellipses.

Sim-Diasca technical design & features

® As an answer to the requirements, a simulation engine:
@ Based on discrete events: the elements of the target system (model instances, a.k.a. actors) exchange messages and
update their state accordingly
Synchronous (« time-slicing », « time-stepped »):
A fundamental simulation frequency is defined (by default, 50Hz)
In interactive mode, the engine adjusts its time steps (ticks) to the real (wall-clock) time

In batch mode, the engine processes its ticks at maximum speed, and jumps automatically over periods without any
possible activity of actors (quite similarly to asynchronous approaches)

Intensely concurrent:
Distributed simulation: a single simulation can spread over a set of computing hosts (e.g. HPC cluste;[And only the }

and Parallel, i.e. taking advantage, for each computing host, of all cores of all processors relevant ones

The algorithm allows, at each scheduled logical moment, to evaluate all model instances in parallel!

Scalability-wise, at the end of 2010, the threshold of 1 million instances of rather complex models could be reached
Granting a large freedom and expressivity to models:

Modelling: object-oriented approach, whence implementation directly derives, based on a concurrent high-level
functional language (Erlang)

Flexible and powerful scheduling policies for actors (fully passive, periodical, or driving their own behaviour arbitrarily)

Stochastic support: any number of stochastic variables per actor, respecting built-in or model-defined probability density
functions

Very few constraints apply to models (e.g. no pre-established fan-in/fan-out, no look-ahead needed); no causality-
induced time biases (as many logical moments - « diascas » - as needed will be created in a tick to sort out causality)

Providing all needed features to build easily a simulator:

Engine features: automatic and parallel deployment (code and data), management of results, load-balancing, integration
to most platforms (e.g. clusters), distributed trace system, tuning for scalability, etc.

Model features: automatic message reordering, stochastic support, probe support (autonomous and database-based)

® Central point: the massive parallelism is achieved without prejudice to the targeted
simulation properties .
’:,QEDF

Functional Services:

1: Read configuration information

Sim-Diasca scheduling: example of a logical dispatching

!

Sim-Diasca
Lser

&=
AR

P €

Root
TimeManager

. Actor (model instance)
o Probe (basic or virtual)

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

-

TimeManager

¢
~ S €eDF

2: Deploy simulation on hosts

Functional Services: |(no prior install needed)

Sim-Diasca scheduling: example of a logical dispatching

Simulation Case

;
Sim-Diasca
Lser

Root
TimeManager

. Actor (model instance)
o Probe (basic or virtual)

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

-

TimeManager

~ S €eDF

Functional Services:

3: Process simulation case

Sim-Diasca scheduling: example of a logical dispatching

=

Sim-Diasca
Lser

AR

P €

Root
TimeManager

. Actor (model instance)
o Probe (basic or virtual)

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

-

TimeManager

¢
~ S €eDF

Functional Services:

model instances

4: Place and create initial

Sim-Diasca scheduling: example of a logical dispatching

!

Sim-Diasca
Lser

k}

Simulation Case
Root

TimeManager

. Actor (model instance)
o Probe (basic or virtual)

TimeManager
TimeManager
.
| T ey

TimeManager

TimeManager

TimeManager

-

TimeManager

¢
~ S €eDF

Functional Services:

5: Schedule model instances

Sim-Diasca scheduling: example of a logical dispatching

Sim-Diasca
Lser

¥ /]

| ="

I"‘I'"IEMEI"‘IEEEF

r o

Simulation Case

Root
TimeManager

or (model instance)
o Probe (bas virtual)

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

TimeManaer

Functional Services:

6: Offer additional services

(e.g. distributed trace system, stochastic
support, performance tracker, data-exchanger)

!.

Sim-Diasca
user

| Simulation Case

6o

TimeManager

Sim-Diasca scheduling: example of a logical dispatching

TimeManager

. Actor (model instance)
e Probe (basic or virtual)

TimeManager

TimeManager

TirmeManager

TimeManager

TimeManager

-

TimeManager

¢
~ S €eDF

7: Generate simulation data

Functional Services: | ime series)

Sim-Diasca scheduling: example of a logical dispatching

3 Simulation Case
Sim-Diasca
Lser

. Actor (model instance)
o Probe (basic or virtual)

Root
TimeManager

TimeManager
TimeManager TimeManager
TimeManager
TimeManager TimeManager

TimeManager I

¢
~ S €eDF

Functional Services:

8: Select, generate and
retrieve results (e.g. plots)

Sim-Diasca scheduling: example of a logical dispatching

!

Sim-Diasca
Lser

=7

Simulation Case

Root
TimeManager

. Actor (model instance)
o Probe (basic or virtual)

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

-

TimeManager

¢
~ S €eDF

Functional Services: |(post-processing skipped) |

Sim-Diasca scheduling: example of a logical dispatching

!

Sim-Diasca
Lser

TimeManager

r o

Simulation Case

6o

Root
TimeManager

. Actor (model instance)
o Probe (basic or virtual)

TimeManager

TimeManager

TimeManager

TimeManager

TimeManager

-

TimeManager

¢
~ S €eDF

Sim-Diasca Key Points

s The engine must enforce notably following simulation properties:
= Respect of causality
= Total reproducibility
= Some form of ergodicity

s The challenge is to obtain these properties in spite of massive parallelism
and distribution

s To do so, inter-actor messages have to be appropriately reordered
(transparently done by the engine)

s We target maximum scalability: potentially millions of instances of rather
complex models can be evaluated in parallel

s Another technical challenge is to simplify as much as possible the model
development:
= Bridge the gap between model formalisations and actual
simulation code (UML sequence diagrams, flow maps,
state machines, dataflows): mixing programming styles
(Object-Oriented and Functional ones)
= Provide stochastic support

= Shelter models from parallelism: write each of them in a
simple, purely sequential way (and support a few bindings)

= Provide an higher-level language with appropriate constructs

so that domain experts have a better chance of understanding
and developing actual models

More precise functional
and technical
requirements are
detailed in annex 2.

Simulation properties
discussed in annex 5.

Simulation class and
algorithmic aspects are

better explained
respectively in annex 3
and annex 6.

Overall modelling and
simulation approach
described in annex 7.

Refer to the Sim-Diasca
Technical manual for
further information.

Sim-Diasca scheduling: example of a possible physical dispatching

Computer #1

Computer #2

CPU #1

Core #2

Core #1

Core #4

[|
Q

Core #1

=]
® @

» Most simulation services are at least partially distributed

* Dependencies on latency and bandwidth have been minimized (e.g. placement hint,
advanced scheduling, hierarchical aggregation)

» High Performance Clusters supported, other platforms have been investigated
(Tilera manycore cards, Bluegene/Q supercomputers)

¢
~ < €DF

ﬁ‘q

Y

CLEVER Application Models

€DF

L—

ENERGY

~

4
% University of | | Task Processing Communications Network Other
Model Model Topology Model Components
CLEVER Support Layer (Core)
Queuing Extensible Actor Auto- Auto- Message-Passing
S — Model Model Variables Probes Model
?} /
PASSIVSYSTEMS
4 N
/ Deployment Load Simulation Time Random \
it Manager Balancer Manager Manager
S
= £ - -)
TG Sim-Diasca =
S 9 =
20 -]
*E, Performance Actor Data Logging and Result >
& Tracker Models Probes Manager =
=
¢ N\ /
U =l W,
WOOPER
Y) U J
Erlang Development and Runtime Environment ¢
L A & JeDF

« After having been developed initially for the French case, used in the CLEVER UK project, in
the RELEASE european project, in the EDF City Plaftorm for the MUG Project (not counting
the external, non-EDF uses):
* Possible follow-ups for:

* The British supplier case and/or for OFGEM (regulator), i.e. a « CLEVER 2.0 »

* The French counterpart supplier and/or DNO (distribution operator)

« Smart grids (bridge towards equational models in continuous time, based on FMUSs) and « future internet »
related projects

» Projects about scalability/reliability: some other Complex Systems of interest

(outside of the strict energy field, like urban planning, operational use of blockchains and DLT, intricated
large-scale planning verification, digital twin of information systems)

* On the technical side:

« Plenty of improvements could be considered (e.g. half-word emulator, more metaprogramming, hibernation,
native compilation, Rust binding)

« Larger-scale computing resources and k-crash resilient engine

* On the theoretical/academic side:

« Scalability, reliability and performances to be investigated at this level too (e.g. with Coq?)
* Towards hybrid simulations, mixing discrete time and continuous time with ODES?
* More generally: rising interest in functional programming for the scientific field

(e.g. EDF-CEA-INRIA 2012 Summer School)

* Even if coming from an industrial background, some opportunities of publications

® Sim-Diasca: a fully functional simulation engine, already used in academic works
and industry-related projects

® Very few scalable engines of that kind exist (most are sequential by design)
® For a better understanding of how Sim-Diasca works, read the next appendices

® Fully generic: use it to simulate your own target system!

® Various paradigms supported: multi-agent simulation, dataflow evaluation; an
additional one could be the support of at least some models in continuous time
(hybrid mode of operation)

® Sim-Diasca has been released as free software (LGPL) by EDF R&D since 2010

® Main requirements are fulfilled, steady progresses expected to come

Towards a parallel, distributed, metaprogrammed Sim-Diasca running very
large-scale hybrid simulations on larger HPC infrastructures?

~ < €DF

Appendices

« Annex 1. Simulation properties
1.1: Preserving causality
1.2: Ensuring total reproducibility
1.3: Obtaining ergodicity

* Annex 2: Mode of operation

* Annex 3: Anatomy of a Virtual Experiment
* Annex 4: Dataflow support

* Annex 5: Software-level considerations

* Annex 6: A Focus on WOOPER

* Annex 7: Overall modelling and simulation
approach

* Annex 8. Examples of outputs

¢
~ S €eDF

By default, there is no total order of events over a distributed system (as no global time
can exist). If no specific order is enforced, no consistency can be guaranteed:

Actor #1: rocket launcher C&US&“W ISSUES

[
M1
Actor #2: tank M1 Simulation
time
M2
Actor #3: observer >

v ot firod Inconsistency here: from the point of view of the
X t fire i
- Acior message -foc observer (actor #3), the effects (tank explosion)
M2: tank exploded | | precede the causes (a rocket is fired).

Causality is natively respected in Sim-Diasca thanks to a time-stepped approach:

® To each cause corresponds necessarily an inter-actor message sent by actor A to actor B at
tick T (the physical time in the simulation), diasca D (a logical moment within a tick)

® This message is processed (to determine its consequences) by actor B at tick T, diasca D+1

So, by design, as diascas do not overlap, causes indeed precede effects.

But causal chains induce only partial ordering of events.
What about concurrent events, i.e. events not linked by a causal relationship? ¥~apF
AN

ibility i - ?
Actor £1: rocket launcher Reproducibility issues: A or B

[
M1 M1
Actor #2: tank A B Simulation
3 M3

time -
M
Actor #3: observer >
M1: rocket is fired

—h- Actor message
M3: observer spots the tank

No a priori order exists between two concurrent events.
(« M1 then M3 »is not any truer than « M3 then M1 »)

® The order that is to be re-created will necessarily be arbitrary.

Relying on the actual, technical order of receivings would make simulations depend on their
execution context, and they would not reproducible.

® The order that is to be re-created will have to fully abstract out any technical context.

With Sim-Diasca, each actor is reproducibly seeded and starts a diasca by automatically reordering
the messages it received on the previous diasca, based only on:

® areproducible identifier of the sending actor
" a hash value of the content of the message having been sent
This arbitrary reproducible order is generic and fully compatible with parallelism & stochastic models.

Objectives:
A. Ensure at each diasca, for each actor,

»

that:

for n messages received on the last
diasca, all n! possible sequences Sk
can occur

And that P (Sk)=1/n! fork e [1,n]]

. Ensure that running a given simulation

case with a given root initial random
seed will fully determine the simulation
outcome, for a given set of parallel
and/or distributed resources involved

Sim-Diasca approach, at the level of each

»

actor, in parallel:

The sequence of n past messages is
first arbitrarily reordered for
reproducibility, as shown previously

Then, thanks to a distributed and
uniform random generator, we select
(reproducibly) one of the n! possible
permutations, and process it in-order

Both objectives are then met:
ergodicity (A) and reproducibility (B)

Ergodicity issues

M3
M1 M2 Sequence 52
Simulation

Diasca D time
sl ACtOT MeSSage

Let's suppose that, during a given diasca D, an actor is to receive 3 messages from other actors.
Here 3! = 6 different message sequences may be considered:

- 81: the actor receives and processes M1 then M2 then M3

- 82: the actor receives and processes M1 then M3 then M2

[--]

- 86: the actor receives and processes M3 then M2 then M1
By design all these 6 sequences should have an equal probability of showing up.

Probabilities of Based on the natural
technical order of

message arrival

With reproducible
context-free
reordering

With reproducible
context-free reordering
followed by an uniform

permutation

message
sequences, as
seen from the
receiving actor

Main objective: massive parallelism while still preserving the expected simulation properties.
Should you have 35 million model instances, you are here able to evaluate all of them in parallel.

Sorting out causality through ticks and diascas
, Note: this diagram shows how Sim-
Tick T Tick T+k
Diasca, whose simulation time is a
_ Diasca0 | Diascal | Diasca2 | Diasca0 (Tick, Diasca) pair, would evaluate
TimeManager - il B T B . .
wncl A 4 e the causality example in annex 1.1.
Actor #1 ,*'fl /,/ 'uIItGP fl,*' | top 1. . . .
tprmpfated | o | E— Following topics are not illustrated here:
Actor #2 Il | /| [o _)
AN | g « distributed mode of operation with
Actor #3 b.«“cne - |- hierarchical time managers
I svoriancos enaviou ot acor * actor-level reordering of messages
|:> Processing of messages received during the previous diasca ° aCtual I|fe-CyC|e management
————— Scheduling-related message .
B> Actor message * stochastic management
a—ck._ Acknowledgment of an actor message

® Simulation ticks are evaluated sequentially (one after the other, based on a uniform synchronous
simulation time; yet only the necessary ones), each of their diascas evaluating its actors fully in parallel

® At diasca D=0, all actors (model instances) having planned a spontaneous behaviour execute it; at
D>0, those having received inter-actor message(s) at D-1 reorder and process them

® Besides parallelism, two main goals to be achieved transparently by the engine:

® To obtain a consensus on the correct soonest termination of each tick and diasca, thanks to a necessary and
sufficient exchange of synchronisation messages (involving actors and time managers)

® To reorder automatically received messages so that the targeted properties (causality, reproducibility, ergodicity,
etc.) are preserved

Main Elements Involved in a Virtual Experiment |Y\

The Simulated World is the unien of
the Target System and of its Context]

Inner information, Metrics of interest,

possibly stemming Output Data and main purpose
from calibration They account for of the simulation
Input Data / Simulator / the Target System
Prob iy Results
Model Paranﬁers 3 Domain-Specific Models
/ * \') Traces
Scenario Parameters Scenarios Optional Adaptation Layer
P P i \ Providing any Domain-Specific
* Building Blocks (DSL) of use
They account for Textual, disaggregated,
Initial State the context of Simulation Engine timestamped view of the
Simulated World

\ the Target System /
[
If data-based

Simulation Case

/I Ex: reproducible/ergodic mode, simulation frequency, starting t:ﬁe
"‘i Ex: 1f defined programmatlcalllﬁ Key

’AI Ex: timed-based, event baselﬁ Code Domain
\l Ex: per topic, per elemenlﬁ Data Domain

A may act upon B:

\l Ex: depleyment settings, enabled serv:Lct% A ——3 B

| Simulation Properties

\ Initial State

| Termination Criteria

| Result Specification

F I S, S Y

| Technical Settings

(refer to our mini-ontology for more detailed descriptions, and
to mock-simulators/soda-test/src for a runnable example thereof)

¢
*~ S €DF

Unit Activation Policies:
My Unit
@ Activate on new ready
A dataflow @ Activate when all ready

processing unit ~
Custom activation policy

A scale
indication

A dataflow object

An input port
My input port Name of an input port

An output port
My output port Name of an output port

An input port iteration

>
D]

A multiplicity of iterated ports

An output port iteration
[1..3] Another multiplicity

_—

P

S: 'My semantics'

U: kW.h

T: string

C:[{between,{2.0,8.0}}]

A channel

A bus made of
n channels

Semantics (if any)
of the channel

Unit of a channel

Type of a channel

Sim-Diasca natively powers multi-agent simulations.

Among the specialisations that can be built on it, one
deals with the parallel execution of dataflows, i.e.
graphs of computations whose evaluation is driven by
the availability of inputs.

Constraints applying
to a channel

|[Dataflow corresponding to the Urban-Example simulation case

Structure of the
Target System

[computations Operated on the Target System |

[Management of the update of the Urban Dataflow |

Three types of
Dataflow Objects
describing the

Defined for this case: | J# f i
“two Objact Managers

Twro types of - one Unit Manager

Dataflow Units

describing the

operations to - e - e e - -
perferm on the

state of the city H | U

state of the city

Dataflow View

3.2 Inbound
channel
creations

3.3 Outbound
channel
creations

Demal

3.1 Household-related
Unit creations

An Example of Dataflow
Automatic Update

2.1 Building-related
Unit creations

‘Second Household 1 1 B

Transportation

e AT
I channel at g
" e creations 2.3 Cutbound
S channel

creations

Created in the course
of the simulation

These dataflows can be cyclic and highly dynamic: during a time-step, any number of blocks,
ports and channels can be created or destructed, based on object managers and unit managers,
which exchange changesets:

8 types of world events may affect Describing and applying dataflow changes using world events

the blocks of a dataflow

Between hhjectl& pnitIManagers

A world event (ex: P) may induce other ones (ex: Q)

(Q shall be applied no sooner than the application of P has completed)

Creation Event

Destruction Event

This leads to the definition
of changetrees, such as:

Association Event @

Binary Association Event @ @

Disassociation Event @ @

Managing the processing to operate on that state

Connection Event And then to the definition of changesets (series of changetrees, evaluated in parallel), such as:

©® & 10

Disconnection Event

QO IEBGOE GO

Update Event : ______ ""_*"ir-"""?"/-‘_z_ _{

Language bindings have been defined (in Python; Java considered), so that processing units
may be developed in other languages and/or embed third-party pre-existing models.

A workbench has been designed to simplify such integrations.

¢
~ < €DF

Through a bottom-up specialisation, obtaining in turn:

6. a complex :! 71 .erl, 9 .hrl, 27 klines
. _C *
system simulator Mock-Simulators 1.0.* ()
146 .erl, 41 .hrl, 106 klines
> a concurrent Sim-Diasca 2.4.5 () %J
simulation engine

4. with advanced

24 .erl, 11 .hrl, 16 klines
Traces 1.0.* ()

distributed traces

:! 57 .erl, 22 .hrl, 26 klines

ISASAS ASAS

3. an object- WOOPER 2.0.* ()
oriented MAS
235 .erl, 45 .hrl, 145 klines
2. higher-level, Myriad 1.0.* () T
richer primitives
1. a functional, { Erlang VM (25.3 or higher, SMP)]
concurrent MAS ~ Grand total:

(Multi-Agent System)

| 533 .erl, 128 .hrl, 320 klines

e

GNU/Linux x86-64 (e.g. Arch Linux)

(38% of code, 31%
comments, 31% blank lines)

¢
~ S €eDF

http://myriad.esperide.org/
http://wooper.esperide.org/
http://traces.esperide.org/
http://sim-diasca.com/
http://sim-diasca.com/

® A free-software lightweight OOP layer on top of the language

(now OTP-compliant thanks to rebar3, for applications/releases, and available as an Hex package)

. . o Thus provides an object-oriented,
’ OfﬂC'aI WEbSIte. distributed multi-agent system:

(sole dependency: Myriad see) but such features alone are not
sufficient to obtain a simulation!
Vs

® Provides multiple inheritance, polymorphism, encapsulation, state
management and life-cycle management with minimal
development/runtime overhead

® You can define classes, create instances, call methods (oneway or
reguests) on them, and delete them

® A class definition includes: a list of the direct superclasses
([class_Mammal, class_Viviparous]), at least one constructor, pOSSiny a
destructor, and member and static methods (e.9. declareBirthday/1)

~ < €DF

http://erlang.org/
http://wooper.esperide.org/
http://myriad.esperide.org/

@doc Cat-based example. Those are the ones that work best.
Guaranteed to be implemented by a cat.
module(class Cat).

-define(class description,
"Class modelling any kind of cat, and there are many.").

% Determines what are the direct mother classes of this class (if any):
-define(superclasses, [class Mammal, class ViviparousBeing]).

-define(class attributes, [
{ whisker_color, whisker color(), none,
"50 shades of whiskers" } 1).

% Allows to define WOOPER base variables and methods for that class
-include("wooper.hri").

% Import common types without module prefix:
-include("ecosystem types.hrl"}.
% Shorthands:
-type ustring() :: text utils:ustring().
% @doc Constructs a cat instance.
-spec construct(wooper:state(), age(), gender(), fur color(),
whisker color()) -> wooper:state()

construct(State, Age, Gender, FurColor, WhiskerColor) -=

% First the direct mother classes:

MammalState = class Mammal:construct(State, Age, Gender, FurColor),

ViviparousMammalState = class ViviparousBeing:construct({ MammalState),

% Then the class-specific attributes:
setAttribute(ViviparousMammalState, whisker color, WhiskerColor).

-spec destruct(wooper:state()) -> wooper:state()
destruct(State) -»

io:format("Deleting cat ~w! (overridden destructor)~n", [self() 1),

State.

% @doc No guarantee on biological fidelity.
-spec getTeatCount(wooper:state()) -> const request return(teat count()).
getTeatCount(State) ->

viooper:const return result(6).

% @doc Cats are supposed carnivorous though.
-spec canEat(wooper:state(), food()) -> const reguest return{ boolean()).
canEat(State, soup) ->

viooper:const return result(true);

canEat(State, chocolate) ->
throw({ harmful food detected, chocolate });

canEat(State, crogquette) ->
wooper:const return result(true);

canEat(State, meat) ->
wooper:const return result(true);

cantEat(State, OtherFood) ->
wooper:const return result(false).

% @doc Returns the whisker color of this cat.
-spec getWhiskerColor(wooper:state()) -> const request return(color()).
getWhiskerColor(State)->
io:format({ "getWhiskerColor/l request called by ~w.~n", [?getSender()]),
wooper:const return result(?getAttr(whisker color)).

% @doc Regquests this cat to terminate, based on specified halting procedure.
-spec terminate(wooper:state(), 'crash')} -= const oneway return()
terminate(State, crash) ->

basic utils:crash()},

wooper:const return().

-spec toString(wooper:state()) -= const request return(ustring()).
toString(State) ->
Description = text utils:format("cat instance with whiskers of color ~p.",
[?getAttr(whisker color)]),
wooper:const return result(Description).

% Static section.

% @doc Returns the mean life expectancy of a cat, in years.
-spec get mean life expectancy() -= static return(age()).
get mean life expectancy() ->

wooper:return static(18).

at:new linki(

areBirthday,

ethge, [], self{) },

wooper_result, 6 } -= ok

canEat, , self() },

per_result, true } -= ok

or=sand,

WhiskerC

¢
*~ S €DF

® A WOOPER class is an (Erlang) module (e.g. class Cat), a WOOPER (active) instance is

an (Erlang) process, an instance identifier is a PID, method calls are messages, a state is a
set of attributes, an attribute is a key/value pair ({atom () , term() })

®» A WOOPER instance is:
s created thanks to (timed) (remote) (synchronous)new(link) calls

m a process looping over its state, waiting for incoming method calls, mapping them to the
corresponding functions in appropriate modules (inheritance), returning possibly a result

® It keeps a private associative table to hold its state (attribute name -> value)

WOOPER Corresponding Erlang mapping
concept

| class definition | module

| instance | process

| instance reference | process identifier (PID)

new operators WOOPER-provided functions, making use of user-defined construct/n functions (a.k.a. the

constructors)

| delete operators | WOOPER-provided functions, unless user-specified (a.k.a. the destructor)

| method definition | module function that respects some conventions

| method invocation | sending of an appropriate inter-process message

| method look-up | class-specific virtual table taking into account inheritance transparently
| instance state | instance-specific datastructure, kept by the instance-specific WOOPER tail-recursive infinite loop
| instance attributes | key/value pairs stored in the instance state

class (static) exported module function

method

Annex 7. Overall modelling and simulation approach
(example from the CLEVER project)

Massive roll out of smart meters in Great-Britain
A challenge raising questions
Volume of data transfers | Associated costs | Scalability of the system

What is the most appropriate smart metering architecture?

~_<

DEFINE a Set of Experiments \
Covering all questions raised by a smart metering systems roll-out

DEVELOP and VALIDATE
Simulation engine & tools

DESCRIBE CHARACTERISE
Business processes Architecture options

for Smart Metering from System structure,

meter reading to advanced telecom solutions

Simulator, models,
computing resources,
formal descriptions

DSM including future needs

(4)
RUN the Set of Experiments
To get raw results: curves, probe indicators
ANALYSE Results
To interpret data and formulate clearly understandable conclusions

\ CLEVERQ ¢
& JeDF

Annex 8: Examples of Sim-Diasca results & outputs (1/3

Simulation of meters communicating with a concentrator through PLC G1

(French case, 2008)

Topological view of mesh "My rural mesh PLC network state’

Duration i

48

Durations of nessage sendings over the PLC network,
depending on the credit distance between interlocutors,

pPirect comnunication {delta credit is @}
Delta credit is
Delta credit is
Delta credit is
Delta credit is
Delta credit is
Delta credit is

BER- R TN N

Delta credit is

|
1l
1l
[

158 208 258 308 358 488

5ize of the applicative message to be sent, in bytes

458 hil: o]

Annex 8: Examples of Sim-Diasca results & outputs (2/3)

Simulation results obtained through the CLEVER simulator: evaluating outcomes and
performances depending on the functional and technical architecture of various smart
metering systems (British case, 2009-2011)

Middleware—1 ucll messaging Traffic Count

250000 T T T T
uclli—t141 sent traffic count
ucll—tl4l received traffic count
ucll—t141 discarded traffic count
icll—ti14€ sent traffic count
ucli--ti146 received traffic count
: : : mcll—t146 discarded traffic count
] 200000 milit - e i N wcll—t147 sent traffic count .
+ : : : uclli+tl14” received traffic count
= : : : Lc11—t147 discarded traffic count
el : : : 1c11-t148 sent traffic count
+ ucll+tl148 received traffic count
5 bc11-t148 discarded traffic count
Q ac
S 150000 MMM -]
o 150000 ucli+t] Concentrator- 1 uce3 i Ccount.
— mcll—t1y 13
o c
[ucli—t]
= ci1—tiyg ; é
2 100000 I wr : :
| Outage event
o] : : :
[in} B : H
g : 14 [
— : : :
— 1, g"! T | I : 1
2 T W W'l : :
=] SO000 il - : :
| R 1
o ' i i &
¢ 200 400 BO0 800 1
Simulation Time
8

a L SRS SO

Backe
16866 20088 L Ll SH6mE L]

a
Sinulation Time (ticks)

uwees

Simulation results obtained, on the left, through the RELEASE European project (large scale
City-example case, here the road network of the smallest scale); on the right, internal mock-up
Sustainable Cities case, devised for platform integration.

Tl el Rl i Ty

Road network (for scale ‘tiny’)

Emeters

0000000000000 000000C

File loaded: 34

Tools_Bookmarks

s Peme/boudeuiiProjects/Sim Dusscarssurcestocal-donearam diaaca 22 1

sustainable_criel. | fle_test taces

3 entries, format: Ceylan trace fles, size: 303,06 KB date: Mon Dec 2

ration wil run n batch mode.
ustion i be totaly reproduchle, u:

Thr wter | Level Wessage Welldoch Time | Eméter Loceben | Categoruation
04D T EmEHIFO Tiace spyemiis casked trace lwame s T T e e e—
<020n TusUncNF Shartm tet sstanale, ctesJosdea Vo Su te. I 60ASL ket by Tk
0470> ComPhortiF Intiseng shogn manager, mh ok O phign deectaries FAIAIE0] rtanabie, e by EracbenUncatagerind
OATEr CwmPhgemiE) Phan maneps stated int e shaen fund St ches)
e s sutanase e
o Hent o ol 4 s
<0470 CornPharniFd ¥ anan PSR S —
Mansanr
sesor cosomamre ey

“0930n ComDmpRED o, cntmstr 2033 16083
e

<0480> CormDapmINED
g {

2030221 160831

<0480 ConOwbiF) e

[ST —,

[prS——
PR —

e i oudirg

e
susonbiechus b Erecuten Uncatoguind
Fkanadinchas o nacibon Uncatagarimd
[T v ——

0488 ComDupinra
e |

v successhdy robnlk nan 16032

outeyErecuten Uncategnaed

<3083 61CCormDR IO Depleymart spurt e onrde
ot on " X A

96 sonds to a Fundamental fraquancy

(Mo searchi (1 antry selected

ructure.init’

Select Edit Vie

= (IS

/home/boudevilProj| « [41

140000
120000
Pulau_Meskol Neighbol
Fulau_Meskol_Precinct_
_ 100000
Pulau_Pesek_kechil_Ne || =
Pulau_Pesek_Kechil_Pre
Pulau_Pesek_Neighborl 60000
Pulau_Pesek_Precinct_|
Fulau_Sakra_Neighborl o
Pulau ra_Precinct_E
Pulau_Seraya_Neighbot || 3
40000
Pulau_Seraya_Precinct_
Pulau_Tekong_Neighbo
20000

Pulau_Tekong_Precinct,
Pulau_Tekong_Town_Ele
Pulau_Ubin_Neighborhc
Pulau_Ubin_Precinct El

Sentosa_Neighbarhooc
Sentosa_Precinct_Elect
Sentosa_Town_Electrici

singapore_City_Electric

Sort by name

read fr fi tr with a tim
tim

ng_From_File

kie

Merthly per-naighberhocd slacticity consumed and produced n town Pulau Ubin

(1600 x 800) 25,482 bytes 1:~16 | 2 M &

2.8 MB, 54 files (24,9 K, 1)

