
Configuration Reference
Paul Bryan, Mark Craig, Jamie Nelson, Joanne Henry

Table of Contents
Preface. 2

Who Should Use this Reference . 2

Reserved Routes . 2

Reserved Field Names. 2

Field Value Conventions . 2

About Common REST . 3

Formatting Conventions. 18

Accessing Documentation Online . 19

Joining the Open Identity Platform Community . 19

Getting Support and the Contacting Open Identity Platform Community . 19

Required Configuration . 20

GatewayHttpApplication — configure OpenIG. 20

Heap Objects — configure and initialize objects, with dependency injection 22

Configuration Settings — configure objects . 24

Handlers . 26

Chain — dispatch the request to ordered list of filters and finally a handler. 26

ClientHandler — submit requests to remote servers . 27

DesKeyGenHandler — generate a DES key . 31

DispatchHandler — dispatch to one of a list of handlers . 32

MonitorEndpointHandler — return basic audit statistics in JSON format . 33

Route — Configuration for handling a specified request. 35

Router — Route processing to distinct configurations . 39

SamlFederationHandler — play the role of SAML 2.0 Service Provider. 40

ScriptableHandler — handle a request by using a script. 44

SequenceHandler — process request through sequence of handlers. 48

StaticResponseHandler — create static response to a request . 49

Filters. 52

AssignmentFilter — conditionally assign values to expressions . 52

ConditionEnforcementFilter — verify a condition to continue the chain of execution 54

CookieFilter — manage, suppress, relay cookies . 55

CryptoHeaderFilter — encrypt, decrypt headers . 56

EntityExtractFilter — extract pattern from message entity . 57

FileAttributesFilter — retrieve record from a file . 60

HeaderFilter — remove and add headers . 62

HttpBasicAuthFilter — perform HTTP Basic authentication. 64

LocationHeaderFilter — rewrites Location headers. 65

OAuth2ClientFilter — Authenticate an end user with OAuth 2.0 delegated authorization 66

OAuth2ResourceServerFilter — validate a request containing an OAuth 2.0 access token. 73

PasswordReplayFilter — replay credentials with a single filter. 76

PolicyEnforcementFilter — enforce policy decisions from OpenAM . 80

ScriptableFilter — process requests and responses by using a script. 85

SqlAttributesFilter — execute SQL query . 90

StaticRequestFilter — create new request . 91

SwitchFilter — divert requests to another handler. 93

TokenTransformationFilter — transform a token issued by OpenAM to another type 95

UmaFilter — protect access as an UMA resource server . 98

Decorators . 100

AuditDecorator — trigger notification of audit events for Filters and Handlers 102

BaseUriDecorator — override scheme, host, and port of request URI . 105

CaptureDecorator — capture request and response messages . 106

TimerDecorator — record times to process Filters and Handlers . 111

Logging Framework. 116

ConsoleLogSink — log to standard error . 116

FileLogSink — log to a file . 117

Slf4jLogSink — delegate log writing to SLF4J . 118

Audit Framework . 121

AuditService — enable common audit service for a route . 121

CsvAuditEventHandler — log audit events to CSV format files . 123

JdbcAuditEventHandler — log audit events to relational database . 131

SyslogAuditEventHandler — log audit events to the system log . 137

ElasticsearchAuditEventHandler — log audit events in the Elasticsearch search and analytics

engine . 142

Throttling Filters and Policies . 146

ThrottlingFilter — limit the rate of requests . 146

MappedThrottlingPolicy — map throttling rates to groups of requests. 149

ScriptableThrottlingPolicy — script to map throttling rates . 152

DefaultRateThrottlingPolicy — default policy for throttling rate . 155

Miscellaneous Heap Objects . 157

ClientRegistration — Hold OAuth 2.0 client registration information . 157

JwtSession — store sessions in encrypted JWT cookies . 160

KeyManager — configure a Java Secure Socket Extension KeyManager. 163

KeyStore — configure a Java KeyStore . 164

Issuer — Describe an Authorization Server or OpenID Provider . 166

ScheduledExecutorService — schedule the execution of tasks . 169

TemporaryStorage — cache streamed content. 171

TrustManager — configure a Java Secure Socket Extension TrustManager 172

TrustAllManager — a TrustManager that blindly trusts all servers . 173

UmaService — represent an UMA resource server configuration . 174

Expressions . 178

Expressions — expression configuration parameter values. 178

Functions — built-in functions to call within expressions . 181

Patterns — regular expression patterns . 191

Requests, Responses, and Contexts . 192

Attributes — context for arbitrary information. 192

Client — HTTP client context information. 192

Contexts — HTTP request contexts . 193

Request — HTTP request . 194

Response — HTTP response . 195

Session — HTTP session context . 196

Status — HTTP response status . 196

URI — Uniform Resource Identifier . 197

Router — HTTP request routing context information . 198

Appendix A: Release Levels and Interface Stability. 200

Appendix B: Release Levels and Interface Stability. 201

Product Release Levels . 201

Open Identity Platform Product Interface Stability . 201

Reference documentation for OpenIG. OpenIG provides a high-

performance reverse proxy server with specialized session management and

credential replay functionality.

1

Preface
This reference covers OpenIG configuration.

Who Should Use this Reference
This reference is for OpenIG designers, developers, and administrators.

For API specifications, see the appropriate Javadoc.

Reserved Routes
OpenIG reserves all paths starting with /openig for administrative use.

Resources exposed under /openig are only accessible to local client applications.

Reserved Field Names
OpenIG reserves all configuration field names that contain only alphanumeric characters.

If you must define your own field names, for example, in custom decorators, use names with dots,
., or dashes, -. Examples include my-decorator and com.example.myDecorator.

Field Value Conventions
OpenIG configuration uses JSON notation.

This reference uses the following terms when referring to values of configuration object fields:

array

JSON array.

boolean

Either true or false.

configuration expression

Expression for which no context is available.

A configuration expression, described in Expressions(5) is independent of the request, response,
and contexts, so do not use expressions that reference their properties. You can, however, use
${env['variable']}, ${system['property']}, and all the built-in functions listed in Functions(5).

duration

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

2

https://doc.openidentityplatform.org/openig/apidocs/index.html
http://json.org
http://json.org
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

expression

See Expressions(5).

lvalue-expression

Expression yielding an object whose value is to be set.

number

JSON number.

object

JSON object where the content depends on the object’s type.

pattern

A regular expression according to the rules for the Java Pattern class.

pattern-template

Template for referencing capturing groups in a pattern by using $n, where n is the index number
of the capturing group starting from zero.

For example, if the pattern is "\w+\s*=\s*(\w)+", the pattern-template is "$1", and the text to
match is "key = value", the pattern-template yields "value".

reference

Either references an object configured in the heap by the object’s name or uses a local, inline
configuration object where the name is optional.

string

JSON string.

About Common REST
For many REST APIs that are not defined by external standards, ForgeRock products provide
common ways to access web resources and collections of resources. This section covers what is

3

http://json.org
http://json.org
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://json.org

common across products. Adapt the examples to your types of resources and to your deployment.

Common REST Resources

Servers generally return JSON-format resources, though resource formats can depend on the
implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the
resource URIs. For example, if a server has a user collection under /users, then you can access a
user at /users/user-id. The ID is also the value of the _id field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource’s _rev field.
Revisions make it possible to figure out whether to apply changes without resource locking and
without distributed transactions.

Common REST Verbs

The common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ.
For details and HTTP-based examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see Create.

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see Read.

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, see Update.

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see Delete.

Patch

Modify part of an existing resource.

4

This verb maps to HTTP PATCH.

For details, see Patch.

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, see Action.

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see Query.

Common REST Parameters

Common REST reserved query string parameter names start with an underscore, _.

Reserved query string parameters include, but are not limited to, the following names:

_action

_fields

_mimeType

_pageSize

_pagedResultsCookie

_pagedResultsOffset

_prettyPrint

_queryExpression

_queryFilter

_queryId

_sortKeys

_totalPagedResultsPolicy

NOTE
Some parameter values are not safe for URLs, so URL-encode parameter values as
necessary.

Continue reading for details about how to use each parameter.

Common REST Extension Points

The action verb is the main vehicle for extensions. For example, to create a new user with HTTP

5

POST rather than HTTP PUT, you might use /users?_action=create. A server can define additional
actions. For example, /tasks/1?_action=cancel.

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers.
Stored queries can call for additional parameters. The parameters are also passed in the query
string. Which parameters are valid depends on the stored query.

Create

There are two ways to create a resource, either with an HTTP POST or with an HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter
_action=create and the JSON resource as a payload. Accept a JSON response. The server creates the
identifier if not specified:

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for the
resource in the URL path, and the JSON resource as a payload. Use the If-None-Match: * header.
Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

The _id and content of the resource depend on the server implementation. The server is not
required to use the _id that the client provides. The server response to the create request indicates
the resource location as the value of the Location header.

If you include the If-None-Match header, its value must be . In this case, the request creates the
object if it does not exist, and fails if the object does exist. If you include the If-None-
Match header with any value other than, the server returns an HTTP 400 Bad Request error. For
example, creating an object with If-None-Match: revision returns a bad request error. If you do not
include If-None-Match: *, the request creates the object if it does not exist, and updates the object if
it does exist. .Parameters

You can use the following parameters:

6

_prettyPrint=true

Format the body of the response.

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Read

To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier
(_id) and accept a JSON response:

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

_mimeType=mime-type

Some resources have fields whose values are multi-media resources such as a profile photo for
example.

By specifying both a single field and also the mime-type for the response content, you can read a
single field value that is a multi-media resource.

In this case, the content type of the field value returned matches the mime-type that you specify,
and the body of the response is the multi-media resource.

The Accept header is not used in this case. For example, Accept: image/png does not work. Use the
_mimeType query string parameter instead.

Update

To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) for the
resource with the JSON resource as a payload. Use the If-Match: _rev header to check that you are
actually updating the version you modified. Use If-Match: * if the version does not matter. Accept a

7

JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

When updating a resource, include all the attributes to be retained. Omitting an attribute in the
resource amounts to deleting the attribute unless it is not under the control of your application.
Attributes not under the control of your application include private and read-only attributes. In
addition, virtual attributes and relationship references might not be under the control of your
application. .Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Delete

To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and
accept a JSON response:

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

8

Patch

To patch a resource, send an HTTP PATCH request with the following parameters:

• operation

• field

• value

• from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If
successful, you’ll see a JSON response similar to:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

• single-valued, such as an object, string, boolean, or number.

• list semantics array, where the elements are ordered, and duplicates are allowed.

• set semantics array, where the elements are not ordered, and duplicates are not allowed.

Open Identity Platform PATCH supports several different operations. The following sections show
each of these operations, along with options for the field and value:

Patch Operation: Add

The add operation ensures that the target field contains the value provided, creating parent fields as
necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the
target. Examples of a single-valued field include: object, string, boolean, or number. An add
operation has different results on two standard types of arrays:

• List semantic arrays: you can run any of these add operations on that type of array:

◦ If you add an array of values, the PATCH operation appends it to the existing list of values.

◦ If you add a single value, specify an ordinal element in the target array, or use the {-} special
index to add that value to the end of the list.

• Set semantic arrays: The list of values included in a patch are merged with the existing set of
values. Any duplicates within the array are removed.

As an example, start with the following list semantic array resource:

9

{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by
the - at the end of the fruits array.

{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:

{
 "fruits" : ["orange", "apple", "pineapple"]
}

Patch Operation: Copy

The copy operation takes one or more existing values from the source field. It then adds those same
values on the target field. Once the values are known, it is equivalent to performing an add
operation on the target.

The following copy operation takes the value from the source named /hot/potato, and then runs a
replace operation on the target value, /hot/tamale.

[
 {
 "operation" : "copy",
 "field" : "/hot/potato",
 "value" : "/hot/tamale"
 }
]

If the source and value are configured as arrays, the result depends on whether the array has list
semantics or set semantics, as described in Patch Operation: Add.

Patch Operation: Increment

The increment operation changes the value or values of the target field by the amount you specify.
The value that you include must be one number, and may be positive or negative. The value of the
target field must accept numbers. The following increment operation adds 1000 to the target value of
/user/payment.

10

[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Since the value of the increment is a single number, arrays do not apply.

Patch Operation: Move

The move operation removes existing values on the source field. It then adds those same values on
the target field. It is equivalent to performing a remove operation on the source, followed by an add
operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source named /hot/potato,
followed by a replace operation on the target value, /hot/tamale.

[
 {
 "operation" : "move",
 "field" : "/hot/potato",
 "value" : "/hot/tamale"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set
semantic array on both the source and the target. For details, see the criteria described in Patch
Operation: Add.

Patch Operation: Remove

The remove operation ensures that the target field no longer contains the value provided. If the
remove operation does not include a value, the operation removes the field. The following remove
deletes the value of the phoneNumber, along with the field.

[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber, those values are stored as an array. A remove operation
has different results on two standard types of arrays:

11

• List semantic arrays: A remove operation deletes the specified element in the array. For
example, the following operation removes the first phone number, based on its array index
(zero-based):

[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

• Set semantic arrays: The list of values included in a patch are removed from the existing array.

Patch Operation: Replace

The replace operation removes any existing value(s) of the targeted field, and replaces them with
the provided value(s). It is essentially equivalent to a remove followed by a add operation. If the
arrays are used, the criteria is based on Patch Operation: Add. However, indexed updates are not
allowed, even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then
adds the new value of +1 408 555 9999.

[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works in the same fashion as a PATCH remove
operation. The following example demonstrates how the effect of both operations. Start with the
following resource:

{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

Apply the following operations on that resource:

[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""

12

 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of
that resource, based on its array index, (fruits/0), with the following result:

[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

The second PATCH operation, a replace, is applied on the second member (fruits/1) of the
intermediate resource, with the following result:

[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

Patch Operation: Transform

The transform operation changes the value of a field based on a script or some other data
transformation command. The following transform operation takes the value from the field named
/objects, and applies the something.js script as shown:

[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 },
]

13

Patch Operation Limitations

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library
you use supports HTTP PATCH before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP
method. Instead, the method HttpURLConnection.setRequestMethod("PATCH") throws
ProtocolException. .Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Action

Actions are a means of extending common REST APIs and are defined by the resource provider, so
the actions you can use depend on the implementation.

The standard action indicated by _action=create is described in Create. .Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field…]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Query

To query a resource collection (or resource container if you prefer to think of it that way), perform
an HTTP GET and accept a JSON response, including at least a _queryExpression, _queryFilter, or
_queryId parameter. These parameters cannot be used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

14

The server returns the result as a JSON object including a "results" array and other fields related to
the query string parameters that you specify. .Parameters

You can use the following parameters:

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must
URL-escape the filter expression.

The string representation is summarized as follows. Continue reading for additional
explanation:

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

Note that white space, double quotes ("), parentheses, and exclamation characters need URL
encoding in HTTP query strings.

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions use json-pointer comparator json-value, where the comparator is
one of the following:

eq (equals)

co (contains)

sw (starts with)

lt (less than)

le (less than or equal to)

gt (greater than)

15

ge (greater than or equal to)

For presence, use json-pointer pr to match resources where the JSON pointer is present.

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and, or, and ! (not), with parentheses, (expression), to group
expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend on the
implementation.

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search
results. The server returns the cookie in the JSON response as the value of pagedResultsCookie.

In the request _pageSize must also be set and non-zero. You receive the cookie value from the
provider on the first request, and then supply the cookie value in subsequent requests until the
server returns a null cookie, meaning that the final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter.
The _pagedResultsCookie parameter is not guaranteed to work when used with the
_queryExpression and _queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to
be used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to
return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to
be used together.

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or
_pageResultsOffset to page through the results.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults", in
accordance with the totalPagedResultsPolicy, and provides the value as part of the response.
The "totalPagedResults" is either an estimate of the total number of paged results
(_totalPagedResultsPolicy=ESTIMATE), or the exact total result count
(_totalPagedResultsPolicy=EXACT). If no count policy is specified in the query, or if
_totalPagedResultsPolicy=NONE, result counting is disabled, and the server returns value of -1 for
"totalPagedResults".

16

_sortKeys=[-]field[,[-]field…]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order,
or in - (descending) order.

The _sortKeys parameter is not supported for predefined queries (_queryId).

_prettyPrint=true

Format the body of the response.

_fields=field[,field…]

Return only the specified fields in each element of the "results" array in the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

HTTP Status Codes

When working with a common REST API over HTTP, client applications should expect at least the
following HTTP status codes. Not all servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the
revision value of the resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

17

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version
that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can
happen when resources expire for example.

412 Precondition Failed

The resource’s current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for
example.

Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS X operating
environments. If distinctions are necessary between operating environments, examples are labeled
with the operating environment name in parentheses. To avoid repetition file system directory
names are often given only in UNIX format as in /path/to/server , even if the text applies to
C:\path\to\server as well. Absolute path names usually begin with the placeholder /path/to/ . This
path might translate to /opt/ , C:\Program Files\ , or somewhere else on your system. Command-
line, terminal sessions are formatted as follows:

$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output even though
formatting parameters are not shown in the command. Program listings are formatted as follows:

18

class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

Accessing Documentation Online
Open Identity Platform Community publishes comprehensive documentation online:

• The Open Identity Platform Community Documentation offers a large and increasing number of
up-to-date, practical articles that help you deploy and manage Open Identity Platform software.

• Open Identity Platform product documentation, such as this document, aims to be technically
accurate and complete with respect to the software documented. It is visible to everyone and
covers all product features and examples of how to use them.

Joining the Open Identity Platform Community
Visit the community resource center where you can find information about each project, download
nightly builds, browse the resource catalog, ask and answer questions on the forums, find
community events near you, and of course get the source code as well.

Getting Support and the Contacting Open Identity
Platform Community
Open Identity Platform Community Approved Vendors provide support services, professional
services, trainings, and partner services to assist you in setting up and maintaining your
deployments.

19

https://doc.openidentityplatform.org/
https://github.com/OpenIdentityPlatform
https://github.com/OpenIdentityPlatform/.github/wiki/Approved-Vendor-List

Required Configuration
You must specify at least the entry point for incoming requests, the OpenIG Servlet, and the heap
objects that configure and initialize objects, with dependency injection.

GatewayHttpApplication — configure OpenIG

Description

The GatewayHttpApplication is the entry point for all incoming requests. It is responsible for
initializing a heap of objects, described in Heap Objects(5), and providing the main Handler that
receives all the incoming requests. The configuration is loaded from a JSON-encoded configuration
file, expected by default at $HOME/.openig/config/config.json. The GatewayHttpApplication creates
the following objects by default:

• An AuditDecorator that you can use to trigger notification for audit events. The default
AuditDecorator is named audit. For details, see AuditDecorator(5).

• A BaseUriDecorator that you can use to override the scheme, host, and port of the existing
request URI. The default BaseUriDecorator is named baseURI. For details, see
BaseUriDecorator(5).

• A CaptureDecorator that you can use to capture requests and response messages. The default
CaptureDecorator is named capture. For details, see CaptureDecorator(5).

• A TimerDecorator that you can use to record time spent within Filters and Handlers. The
default TimerDecorator is named timer. For details, see TimerDecorator(5).

The GatewayHttpApplication declares default configurations in the heap for the following objects:

• A ClientHandler named ClientHandler for communicating with protected applications. For
details, see ClientHandler(5).

• A ClientHandler named ForgeRockClientHandler for sending a Common Audit transaction ID
when communicating with protected applications. The default object wraps the ClientHandler.

The GatewayHttpApplication also looks for an object named Session in the heap. If it finds such an
object, it uses that object as the default session producer. For example, to store session information
in an HTTP cookie on the user-agent, you can define a JwtSession named Session in config.json. If
you do that, however, stored session information must fit the constraints for storage in a JWT and
in a cookie, as described in JwtSession(5). If no such object is found, session is based on the Servlet
HttpSession that is handled by the container where OpenIG runs.

Usage

{
 "handler": Handler reference or inline Handler declaration,
 "heap": [configuration object, ...],
 "logSink": LogSink reference,
 "temporaryStorage": TemporaryStorage reference

20

}

Properties

"handler": Handler reference, required

Dispatch all requests to this handler.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

See also Handlers.

"heap": array of configuration objects, optional

The heap object configuration, described in Heap Objects(5).

You can omit an empty array. If you only have one object in the heap, you can inline it as the
handler value.

"logSink": LogSink reference, optional

Send log messages to this LogSink.

Provide either the name of a LogSink object defined in the heap, or an inline LogSink
configuration object.

Default: use the heap object named LogSink. Otherwise use an internally-created
ConsoleLogSink object that is named LogSink and that uses default settings for a ConsoleLogSink
object.

"temporaryStorage": TemporaryStorage reference, optional

Cache content during processing based on this TemporaryStorage configuration.

Provide either the name of a TemporaryStorage object defined in the heap, or an inline
TemporaryStorage configuration object.

Default: use the heap object named TemporaryStorage. Otherwise use an internally-created
TemporaryStorage object that is named TemporaryStorage and that uses default settings for a
TemporaryStorage object.

See also TemporaryStorage(5).

Javadoc

org.forgerock.openig.http.GatewayHttpApplication

21

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/http/GatewayHttpApplication.html

Heap Objects — configure and initialize objects, with
dependency injection

Description

A heap is a collection of associated objects, initialized from declarative configuration artifacts. All
configurable objects in OpenIG are heap objects. Heap objects are created and initialized by
associated heaplets, which retrieve any objects an object depends on from the heap. The heap
configuration is included as an object in the GatewayHttpApplication configuration, as described in
GatewayHttpApplication(5).

Usage

[
 {
 "name": string,
 "type": string,
 "config": {
 object-specific configuration
 }
 },
 ...
]

Properties

"name": string, required except for inline objects

The unique name to give the heap object in the heap. This name is used to resolve the heap
object, for example, when another heap object names a heap object dependency.

"type": string, required

The class name of the object to be created. To determine the type name, see the object’s
documentation in this reference.

"config": object, required

The configuration that is specific to the heap object being created.

If all the fields are optional and the configuration uses only default settings, you can omit the
config field instead of including an empty config object as the field value.

Automatically Created Objects

OpenIG automatically creates some configuration objects that it needs for its own use. An
automatically created object can be overridden by creating a heap object with the same name.
Automatically created objects include the following:

22

"ApiProtectionFilter"

The default filter used to protect administrative APIs on reserved routes. Reserved routes are
described in Reserved Routes.

Default: a filter that allows access only from the loopback address.

To override this filter, declare a different filter with the same name in the top-level heap found
in config.json.

"LogSink"

The default object to use for writing all audit and performance logging.

Default: A ConsoleLogSink object named "LogSink" with the default configuration is added to the
top-level heap.

Routes can use this object without explicitly defining it. To override this object, create a LogSink
heap object with the same name.

See also ConsoleLogSink(5).

"TemporaryStorage"

The default object to use for managing temporary buffers.

Default: a TemporaryStorage object named "TemporaryStorage" with the default configuration is
added to the top-level heap.

Routes can use this object without explicitly defining it. To override this object, create a
TemporaryStorage heap object with the same name.

See also TemporaryStorage(5).

Implicit Properties

Every heap object has a set of implicit properties, which can be overridden on an object-by-object
basis:

"logSink": string

Specifies the heap object that should be used for audit and performance logging.

Default: LogSink.

"temporaryStorage": string

Specifies the heap object that should be used for temporary buffer storage.

Default: TemporaryStorage.

23

Configuration Settings — configure objects

Description

Filters, handlers, and other objects whose configuration settings are defined by strings, integers, or
booleans, can alternatively be defined by expressions that match the expected type.

Expressions can retrieve the values for configuration settings from system properties or
environment variables. When OpenIG starts up or when a route is reloaded, the expressions are
evaluated. If you change the value of a system property or environment variable and then restart
OpenIG or reload the route, the configuration settings are updated with the new values.

If a configuration setting is required and the expression returns null, an error occurs when OpenIG
starts up or when the route is reloaded. If the configuration setting is optional, there is no error.

In the following example, "numberOfRequests" is defined by an expression that recovers the system
property "requestsPerSecond" and transforms it into an integer. Similarly, "monitor" is defined by an
expression that recovers the environment variable "ENABLE_MONITORING" and transforms it into a
boolean:

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${request.headers['UserId'][0]}",
 "rate": {
 "numberOfRequests": "${integer(system['requestsPerSecond'])}",
 "duration": "10 seconds"
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "monitor" : "${boolean(env['ENABLE_MONITORING'])}",
 "condition": "${matches(request.uri.path, '^/throttle-simple')}"
}

If "requestsPerSecond"=150 and "ENABLE_MONITORING"=false, after the expressions are evaluated
OpenIG views the example route as follows:

{
 "handler": {

24

 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${request.headers['UserId'][0]}",
 "rate": {
 "numberOfRequests": 150,
 "duration": "10 seconds"
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "monitor" : false,
 "condition": "${matches(request.uri.path, '^/throttle-simple')}"
}

For information about expressions, see Expressions(5).

25

Handlers
Handler objects process an HTTP request by producing an associated response.

Chain — dispatch the request to ordered list of filters
and finally a handler

Description

A chain is responsible for dispatching a request to an ordered list of filters, and finally a handler.

Usage

{
 "name": string,
 "type": "Chain",
 "config": {
 "filters": [Filter reference, ...],
 "handler": Handler reference
 }
}

Properties

"filters": array of Filter references, required

An array of names of Filter objects defined in the heap, and inline Filter configuration objects.

The chain dispatches the request to these filters in the order they appear in the array.

See also Filters.

"handler": Handler reference, required

Either the name of a Handler object defined in the heap, or an inline Handler configuration
object.

The chain dispatches to this handler once the request has traversed all of the specified filters.

See also Handlers.

Example

{
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": ["LoginFilter"],

26

 "handler": "ClientHandler"
 }
}

Javadoc

org.forgerock.openig.filter.Chain

ClientHandler — submit requests to remote servers

Description

Submits requests to remote servers.

Usage

{
 "name": string,
 "type": "ClientHandler",
 "config": {
 "connections": number,
 "disableReuseConnection": boolean,
 "disableRetries": boolean,
 "hostnameVerifier": string,
 "soTimeout": duration string,
 "connectionTimeout": duration string,
 "numberOfWorkers": number,
 "sslCipherSuites": array,
 "sslContextAlgorithm": string,
 "sslEnabledProtocols": array,
 "keyManager": KeyManager reference(s),
 "trustManager": TrustManager reference(s),
 }
}

Properties

"connections": number, optional

The maximum number of connections in the HTTP client connection pool.

Default: 64

"connectionTimeout": duration string, optional

Amount of time to wait to establish a connection, expressed as a duration

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

27

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/Chain.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

Default: 10 seconds

"disableRetries": boolean, optional

Whether to disable automatic retries for failed requests.

Default: false

"disableReuseConnection": boolean, optional

Whether to disable connection reuse.

Default: false

"hostnameVerifier": string, optional

How to handle hostname verification for outgoing SSL connections.

Set this to one of the following values:

• ALLOW_ALL: turn off verification.

• STRICT: match the hostname either as the value of the the first CN, or any of the subject-alt
names.

A wildcard can occur in the CN, and in any of the subject-alt names. Wildcards match one
domain level, so *.example.com matches www.example.com but not some.host.example.com.

Default: ALLOW_ALL

"numberOfWorkers": number, optional

The number of worker threads dedicated to processing outgoing requests.

Increasing the value of this attribute can be useful in deployments where a high number of
simultaneous connections remain open, waiting for protected applications to respond.

28

Default: One thread per CPU available to the JVM.

"keyManager": KeyManager reference(s), optional

The key manager(s) that handle(s) this client’s keys and certificates.

The value of this field can be a single reference, or an array of references.

Provide either the name(s) of KeyManager object(s) defined in the heap, or specify the
configuration object(s) inline.

You can specify either a single KeyManager, as in "keyManager": "MyKeyManager", or an array of
KeyManagers, as in "keyManager": ["FirstKeyManager", "SecondKeyManager"].

If you do not configure a key manager, then the client cannot present a certificate, and so cannot
play the client role in mutual authentication.

See also KeyManager(5).

"soTimeout": duration string, optional

Socket timeout, after which stalled connections are destroyed, expressed as a duration

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

Default: 10 seconds

"sslCipherSuites": array of strings, optional

Array of cipher suite names, used to restrict the cipher suites allowed when negotiating
transport layer security for an HTTPS connection.

For details about the available cipher suite names, see the documentation for the Java virtual
machine (JVM) used by the container where you run OpenIG. For Oracle Java, see the list of JSSE
Cipher Suite Names.

29

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#ciphersuites
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#ciphersuites

Default: Allow any cipher suite supported by the JVM.

"sslContextAlgorithm": string, optional

The SSLContext algorithm name, as listed in the table of SSLContext Algorithms for the Java
Virtual Machine used by the container where OpenIG runs.

Default: TLS

"sslEnabledProtocols": array of strings, optional

Array of protocol names, used to restrict the protocols allowed when negotiating transport layer
security for an HTTPS connection.

For details about the available protocol names, see the documentation for the Java virtual
machine (JVM) used by the container where you run OpenIG. For Oracle Java, see the list of
Additional JSSE Standard Names.

Default: Allow any protocol supported by the JVM.

"trustManager": TrustManager reference(s), optional

The trust managers that handle(s) peers' public key certificates.

The value of this field can be a single reference, or an array of references.

Provide either the name(s) of TrustManager object(s) defined in the heap, or specify the
configuration object(s) inline.

You can specify either a single TrustManager, as in "trustManager": "MyTrustManager", or an
array of KeyManagers, as in "trustManager": ["FirstTrustManager", "SecondTrustManager"].

If you do not configure a trust manager, then the client uses only the default Java truststore. The
default Java truststore depends on the Java environment. For example,
$JAVA_HOME/lib/security/cacerts.

See also TrustManager(5).

Example

The following object configures a ClientHandler named Client, with non-default security settings:

{
 "name": "Client",
 "type": "ClientHandler",
 "config": {
 "hostnameVerifier": "STRICT",
 "sslContextAlgorithm": "TLSv1.2",
 "keyManager": {
 "type": "KeyManager",
 "config": {
 "keystore": {
 "type": "KeyStore",

30

http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#SSLContext
http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#jssenames

 "config": {
 "url": "file://${env['HOME']}/keystore.jks",
 "password": "${system['keypass']}"
 }
 },
 "password": "${system['keypass']}"
 }
 },
 "trustManager": {
 "type": "TrustManager",
 "config": {
 "keystore": {
 "type": "KeyStore",
 "config": {
 "url": "file://${env['HOME']}/truststore.jks",
 "password": "${system['trustpass']}"
 }
 }
 }
 }
 }
}

Javadoc

org.forgerock.openig.handler.ClientHandler

DesKeyGenHandler — generate a DES key

Description

Generates a DES key for use with OpenAM as described in Configuring Password Capture in the
Gateway Guide.

Usage

{
 "name": string,
 "type": "DesKeyGenHandler"
}

Javadoc

org.forgerock.openig.handler.DesKeyGenHandler

31

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/handler/ClientHandler.html
../gateway-guide/chap-password-capture-replay-tutorial.pdf#password-capture-configuration
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/handler/DesKeyGenHandler.html

DispatchHandler — dispatch to one of a list of
handlers

Description

Dispatches to one of a list of handlers. When a request is handled, each handler’s condition is
evaluated. If a condition expression yields true, then the request is dispatched to the associated
handler with no further processing.

Usage

{
 "name": string,
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": expression,
 "handler": Handler reference,
 "baseURI": string,
 }, ...
]
 }
}

Properties

"bindings": array of objects, required

A list of bindings of conditions and associated handlers to dispatch to.

"condition": expression, optional

Condition to evaluate to determine if associated handler should be dispatched to. If omitted,
then dispatch is unconditional.

See also Expressions(5).

"handler": Handler reference, required

Dispatch to this handler if the associated condition yields true.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

See also Handlers.

"baseURI": string, optional

Overrides the existing request URI, making requests relative to a new base URI. Only scheme,
host and port are used in the supplied URI.

32

Default: leave URI untouched.

Example

The following sample is from a SAML 2.0 federation configuration. If the incoming URI starts with
/saml, then OpenIG dispatches to a SamlFederationHandler. If the user name is not set in the session
context, then the user has not authenticated with the SAML 2.0 Identity Provider, so OpenIG
dispatches to a SPInitiatedSSORedirectHandler to initiate SAML 2.0 SSO from the Service Provider,
which is OpenIG. All other requests go through a LoginChain handler:

{
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${matches(request.uri.path, '^/saml')}",
 "handler": "SamlFederationHandler"
 },
 {
 "condition": "${empty session.username}",
 "handler": "SPInitiatedSSORedirectHandler",
 "baseURI": "http://www.example.com:8081"
 },
 {
 "handler": "LoginChain",
 "baseURI": "http://www.example.com:8081"
 }
]
 }
}

Javadoc

org.forgerock.openig.handler.DispatchHandler

MonitorEndpointHandler — return basic audit
statistics in JSON format

Description

This handler collates basic audit statistics, returning them in JSON format.

Interface Stability: Deprecated (For details, see Open Identity Platform Product Interface Stability.)

You decorate the objects to audit by adding your own audit tags. The handler updates the count of

33

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/handler/DispatchHandler.html

messages in progress, completed, and internal errors for each audit event, initializing the counts at
OpenIG startup time. When accessed, it returns the sums organized by object under audit using the
tags that you defined.

Usage

{
 "name": string,
 "type": "MonitorEndpointHandler"
}

Example

The following sample route adds a monitor endpoint at /monitor:

{
 "handler": {
 "type": "MonitorEndpointHandler"
 },
 "condition": "${request.method == 'GET'
 and request.uri.path == '/monitor'}"
 "audit": "Monitor route"
}

After adding audit tags to a number of other routes, the JSON returned from the monitor endpoint
shows statistics since OpenIG started. The following example is formatted for legibility:

{
 "ForgeRock.com route": {
 "in progress": 0,
 "completed": 6,
 "internal errors": 0
 },
 "ForgeRock.org route": {
 "in progress": 0,
 "completed": 15,
 "internal errors": 0
 },
 "Monitor route": {
 "in progress": 1,
 "completed": 1,
 "internal errors": 0
 },
 "Static login route": {
 "in progress": 0,
 "completed": 12,
 "internal errors": 0

34

 },
 "HTTP Basic route": {
 "in progress": 0,
 "completed": 21,
 "internal errors": 3
 }
}

Javadoc

org.forgerock.openig.audit.monitor.MonitorEndpointHandler

Route — Configuration for handling a specified
request

Description

In OpenIG, a route is represented by a separate JSON configuration file and that handles a request,
described in Request(5), and context, described in Contexts(5), when a specified condition is met.

A top-level Router, as described in Router(5), is responsible for reloading the route configuration.
Use a Router to call route handlers, rather than calling a route directly as the handler of the top-
level configuration. By default the Router rereads the configurations periodically, so that
configuration changes to routes apply without restarting OpenIG.

Each separate route has its own Heap of configuration objects. The route’s Heap inherits from its
parent Heap, which is the global heap for top-level routes, so the route configuration can reference
configuration objects specified in the top-level Router configuration file.

For examples of route configurations see Configuring Routes in the Gateway Guide.

Usage

{
 "handler": Handler reference or inline Handler declaration,
 "heap": [configuration object, ...],
 "condition": expression,
 "monitor": boolean expression OR object,
 "name": string,
 "session": Session reference
}

Properties

35

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/audit/monitor/MonitorEndpointHandler.html
../gateway-guide/chap-routing.pdf#chap-routing

"handler": Handler reference, required

For this route, dispatch the request to this handler.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

See also Handlers.

"heap": array of configuration objects, optional

Heap object configuration for objects local to this route.

Objects referenced but not defined here are inherited from the parent.

You can omit an empty array. If you only have one object in the heap, you can inline it as the
handler value.

See also Heap Objects(5).

"condition": expression, optional

Whether the route accepts to handle the request.

Default: If the condition is not set, or is null, then this route accepts any request.

All paths starting with /openig are reserved for administrative use by OpenIG. Expressions such
as the following never match externally configured routes: ${matches(request.uri.path,
'^/openig/my/path')}. In effect, such routes are ignored.

See also Expressions(5).

"monitor": boolean expression OR object, optional

This property lets you specify whether to maintain statistics about the route, an optionally to
specify the percentiles in the distribution for which to record response times.

Use a boolean or boolean expression to activate monitoring with the default percentiles
configuration. When the boolean expression resolves to true, statistics for the route are exposed
over REST as described in "The REST API for Monitoring".

Default: false (with percentiles 0.999, 0.9999, and 0.99999)

Use an object instead of a boolean to specify percentiles:

{
 "monitor": {
 "enabled": boolean expression OR boolean,
 "percentiles": array of numbers
 }
}

The configuration object fields include the following:

36

"enabled": boolean expression, required

Whether to maintain statistics about the route, as described above.

"percentiles": array of decimal numbers, optional

The percentiles in the distribution for which to maintain response time statistics. If you
specify percentiles, only those percentiles are used. The default percentile settings no longer
apply.

Each value in the array is a decimal representation of a percentage. For example, 0.999
represents 99.9%.

The statistic maintained for a percentile is the response time in milliseconds after which
percentile of responses were sent. For example, the statistic for 0.999 corresponds to the
response time in milliseconds after which 99.9% of responses were sent. The statistic for 0.5
corresponds to the response time in milliseconds after which half of all responses were sent.

Default: [0.999, 0.9999, 0.99999]

"name": string, optional

Name for the route, used by the Router to order the routes.

Default: Route configuration file name

"session": Session reference, optional

Session storage implementation used by this route, such as a JwtSession as described in
JwtSession(5).

Provide either the name of a session storage object defined in the heap, or an inline session
storage configuration object.

Default: do not change the session storage implementation for session.

The REST API for Monitoring

When the route has "monitor": "${true}", monitoring statistics are exposed at a registered
endpoint. OpenIG logs the paths to registered endpoints when the log level is INFO or finer. Look for
messages such as the following in the log:

Monitoring endpoint available at
 '/openig/api/system/objects/router-handler/routes/00-monitor/monitoring'

To access the endpoint over HTTP or HTTPS, prefix the path with the OpenIG scheme, host, and port
to obtain a full URL, such as http://localhost:8080/openig/api/system/objects/router-
handler/routes/00-monitor/monitoring.

The monitoring REST API supports only read (HTTP GET). For a detailed introduction to common
REST APIs, see About Common REST.

In the present implementation, OpenIG does not have mechanisms for resetting or for persisting

37

monitoring statistics. When you set "monitor": true on the route, or when you start the OpenIG
container, monitoring statistics are collected. When the OpenIG container stops, monitoring
statistics are discarded.

A JSON monitoring resource with the default percentiles has the following form. Field values are
described in comments:

{
 "requests": {
 "total": number, // Total requests
 "active": number // Requests being processed
 },
 "responses": {
 "total": number, // Total responses
 "info": number, // Informational responses (1xx)
 "success": number, // Successful responses (2xx)
 "redirect": number, // Redirection responses (3xx)
 "clientError": number, // Client error responses (4xx)
 "serverError": number, // Server error responses (5xx)
 "other": number, // Responses with status code >= 600
 "errors": number, // An exception was thrown.
 "null": number // Responses not handled by OpenIG
 },
 "throughput": { // Responses per second
 "mean": number, // Mean (average) since monitoring started
 "lastMinute": number, // One-minute moving average rate
 "last5Minutes": number, // Five-minute moving average rate
 "last15Minutes": number // 15-minute moving average rate
 },
 "responseTime": { // Response times in milliseconds
 "mean": number, // Mean (average) response time
 "median": number, // Median response time
 "standardDeviation": number, // Std. dev. for response time
 "total": number, // Cumulative resp. processing time
 "percentiles": { // Response times in ms after which:
 "0.999": number, // 99.9% of responses were sent
 "0.9999": number, // 99.99% of responses were sent
 "0.99999": number // 99.999% of responses were sent
 }
 }
}

TIP

When reading percentiles, use map notation. The keys start with a digit, and so are not
suitable for use with dot notation, as shown in the following example:

threeNines = responseTime.percentiles['0.999'] // Correct
threeNines = responseTime.percentiles.0.999 // Wrong: syntax error

38

The JSON resource is written from a live object. As a result, field values can appear as inconsistent.
For example, the sum of responses and in-flight requests might be different from the count of all
requests. Counters can change as the JSON representation of the object is written.

Router — Route processing to distinct configurations

Description

A Router is a handler that routes request processing to separate configuration files. Each separate
configuration file then defines a Route, as described in Route(5).

The Router reloads configuration files for Routes from the specified directory at the specified scan
interval.

Usage

{
 "name": "Router",
 "type": "Router",
 "config": {
 "defaultHandler": Handler reference,
 "directory": expression,
 "scanInterval": integer
 }
}

An alternative value for type is RouterHandler.

Properties

"defaultHandler": Handler reference, optional

Default handler for this Router.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

The router routes the request to the first route whose condition expression is satisfied. If no
route condition matches, then the request is routed to the default handler if one is configured.

Default: if no default route is set either here or in the route configurations, then OpenIG aborts
the request with an internal error.

See also Handlers.

"directory": expression, optional

Base directory from which to load configuration files for routes.

39

Default: default base directory for route configuration files. For details, see Installing OpenIG in
the Gateway Guide.

IMPORTANT
If you define a new Router in the default base directory, then you must set
the directory property to a different directory from the default base
directory in order to avoid a circular reference to the new Router.

See also Expressions(5).

"scanInterval": integer, optional

Interval in seconds after which OpenIG scans the specified directory for changes to
configuration files.

Default: 10 (seconds)

To prevent OpenIG from reloading Route configurations after you except at startup, set the scan
interval to -1.

Javadoc

org.forgerock.openig.handler.router.RouterHandler

SamlFederationHandler — play the role of SAML 2.0
Service Provider

Description

A handler to play the role of SAML 2.0 Service Provider (SP).

NOTE

This handler does not support filtering. Specifically, do not use this as the handler
for a Chain, which can include filters.

More generally, do not use this handler when its use depends on something in the
response. The response can be handled independently of OpenIG, and can be null
when control returns to OpenIG. For example, do not use this handler in a
SequenceHandler where the postcondition depends on the response.

Usage

{
 "name": string,
 "type": "SamlFederationHandler",
 "config": {
 "assertionMapping": object,
 "redirectURI": string,
 "assertionConsumerEndpoint": string,

40

../gateway-guide/chap-install.pdf#install
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/handler/router/RouterHandler.html

 "authnContext": string,
 "authnContextDelimiter": string,
 "logoutURI": string,
 "sessionIndexMapping": string,
 "singleLogoutEndpoint": string,
 "singleLogoutEndpointSoap": string,
 "SPinitiatedSLOEndpoint": string,
 "SPinitiatedSSOEndpoint": string,
 "subjectMapping": string
 }
}

Properties

"assertionMapping": object, required

The assertionMapping defines how to transform attributes from the incoming assertion to
attribute value pairs in OpenIG.

Each entry in the assertionMapping object has the form localName: incomingName, where
incomingName is used to fetch the value from the incoming assertion, and localName is the
name of the attribute set in the session. Avoid using dot characters (.) in the localName, as the .
character also serves as a query separator in expressions.

The following shows an example of an assertionMapping object:

{
 "username": "mail",
 "password": "mailPassword"
}

If the incoming assertion contains the statement:

mail = george@example.com

mailPassword = costanza

Then the following values are set in the session:

username = george@example.com

password = costanza

For this to work, you must edit the <Attribute name="attributeMap"> element in the SP extended

41

metadata file, $HOME/.openig/SAML/sp-extended.xml, so that it matches the assertion mapping
configured in the SAML 2.0 Identity Provider (IDP) metadata.

When protecting multiple service providers, use unique localName settings. Otherwise different
handlers can overwrite each others' data.

"redirectURI": string, required

Set this to the page that the filter used to HTTP POST a login form recognizes as the login page
for the protected application.

This is how OpenIG and the Federation component work together to provide SSO. When OpenIG
detects the login page of the protected application, it redirects to the Federation component.
Once the Federation handler validates the SAML exchanges with the IDP, and sets the required
session attributes, it redirects back to the login page of the protected application. This allows the
filter used to HTTP POST a login form to finish the job by creating a login form to post to the
application based on the credentials retrieved from the session attributes.

"assertionConsumerEndpoint": string, optional

Default: fedletapplication (same as the Fedlet)

If you modify this attribute you must change the metadata to match.

"authnContext": string, optional

Name of the session field to hold the value of the authentication context. Avoid using dot
characters (.) in the field name, as the . character also serves as a query separator in
expressions.

Use this setting when protecting multiple service providers, as the different configurations must
not map their data into the same fields of session. Otherwise different handlers can overwrite
each others' data.

As an example, if you set "authnContext": "myAuthnContext", then OpenIG sets
session.myAuthnContext to the authentication context specified in the assertion. When the
authentication context is password over protected transport, then this results in the session
containing "myAuthnContext":
"urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport".

Default: map to session.authnContext

"authnContextDelimiter": string, optional

The authentication context delimiter used when there are multiple authentication contexts in
the assertion.

Default: |

"logoutURI": string, optional

Set this to the URI to visit after the user is logged out of the protected application.

You only need to set this if the application uses the single logout feature of the Identity Provider.

42

"sessionIndexMapping": string, optional

Name of the session field to hold the value of the session index. Avoid using dot characters (.) in
the field name, as the . character also serves as a query separator in expressions.

Use this setting when protecting multiple service providers, as the different configurations must
not map their data into the same fields of session. Otherwise different handlers can overwrite
each others' data.

As an example, if you set "sessionIndexMapping": "mySessionIndex", then OpenIG sets
session.mySessionIndex to the session index specified in the assertion. This results in the session
containing something like "mySessionIndex": "s24ccbbffe2bfd761c32d42e1b7a9f60ea618f9801".

Default: map to session.sessionIndex

"singleLogoutEndpoint": string, optional

Default: fedletSLORedirect (same as the Fedlet)

If you modify this attribute you must change the metadata to match.

"singleLogoutEndpointSoap": string, optional

Default: fedletSloSoap (same as the Fedlet)

If you modify this attribute you must change the metadata to match.

"SPinitiatedSLOEndpoint": string, optional

Default: SPInitiatedSLO

If you modify this attribute you must change the metadata to match.

"SPinitiatedSSOEndpoint": string, optional

Default: SPInitiatedSSO

If you modify this attribute you must change the metadata to match.

"subjectMapping": string, optional

Name of the session field to hold the value of the subject name. Avoid using dot characters (.) in
the field name, as the . character also serves as a query separator in expressions.

Use this setting when protecting multiple service providers, as the different configurations must
not map their data into the same fields of session. Otherwise different handlers can overwrite
each others' data.

As an example, if you set "subjectMapping": "mySubjectName", then OpenIG sets
session.mySubjectName to the subject name specified in the assertion. If the subject name is an
opaque identifier, then this results in the session containing something like "mySubjectName":
"vtOk+APj1s9Rr4yCka6V9pGUuzuL".

Default: map to session.subjectName

43

Example

The following sample configuration is corresponds to a scenario where OpenIG receives a SAML 2.0
assertion from the IDP, and then logs the user in to the protected application using the username
and password from the assertion:

{
 "name": "SamlFederationHandler",
 "type": "SamlFederationHandler",
 "config": {
 "assertionMapping": {
 "username": "mail",
 "password": "mailPassword"
 },
 "redirectURI": "/login",
 "logoutURI": "/logout"
 }
}

Javadoc

org.forgerock.openig.handler.saml.SamlFederationHandler

ScriptableHandler — handle a request by using a
script

Description

Handles a request by using a script.

The script must return either a Promise<Response or a Response.

IMPORTANT

When you are writing scripts or Java extensions, never use a Promise
blocking method, such as get(), getOrThrow(), or
getOrThrowUninterruptibly(), to obtain the response.

A promise represents the result of an asynchronous operation. Therefore,
using a blocking method to wait for the result can cause deadlocks and/or
race issues.

Classes

The following classes are imported automatically for Groovy scripts:

• org.forgerock.http.Client

44

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/handler/saml/SamlFederationHandler.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/util/promise/Promise.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/protocol/Response.html

• org.forgerock.http.Filter

• org.forgerock.http.Handler

• org.forgerock.http.filter.throttling.ThrottlingRate

• org.forgerock.http.util.Uris

• org.forgerock.util.AsyncFunction

• org.forgerock.util.Function

• org.forgerock.util.promise.NeverThrowsException

• org.forgerock.util.promise.Promise

• org.forgerock.services.context.Context

• org.forgerock.http.protocol.*

Objects

The script has access to the following global objects:

Any parameters passed as args

You can use the configuration to pass parameters to the script by specifying an args object.

Take care when naming keys in the args object. Attempts to reuse the name of another global
object cause the script to fail and OpenIG to return a response with HTTP status code 500
Internal Server Error.

attributes

The attributes object provides access to a context map of arbitrary attributes, which is a
mechanism for transferring transient state between components when processing a single
request.

Use session for maintaining state between successive requests from the same logical client.

context

The processing context.

This context is the leaf of a chain of contexts. It provides access to other Context types, such as
SessionContext, AttributesContext, and ClientContext, through the
context.asContext(ContextClass.class) method.

request

The HTTP request.

globals

This object is a Map that holds variables that persist across successive invocations.

http

An embedded client for making outbound HTTP requests, which is an org.forgerock.http.Client.

If a "clientHandler" is set in the configuration, then that Handler is used. Otherwise, the default

45

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/services/context/AttributesContext.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/services/context/Context.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/protocol/Request.html
http://groovy.codehaus.org/groovy-jdk/index.html?java/util/Map.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/Client.html

ClientHandler configuration is used.

For details, see Handlers.

ldap

The ldap object provides an embedded LDAP client.

Use this client to perform outbound LDAP requests, such as LDAP authentication.

logger

The logger object provides access to the server log sink.

session

The session object provides access to the session context, which is a mechanism for maintaining
state when processing a successive requests from the same logical client or end-user.

Use attributes for transferring transient state between components when processing a single
request.

Usage

{
 "name": string,
 "type": "ScriptableHandler",
 "config": {
 "type": string,
 "file": expression, // Use either "file"
 "source": string, // or "source", but not both.
 "args": object,
 "clientHandler": Handler reference
 }
}

Properties

"type": string, required

The Internet media type (formerly MIME type) of the script, "application/x-groovy" for Groovy

"file": expression

Path to the file containing the script; mutually exclusive with "source"

Relative paths in the file field are relative to the base location for scripts. The base location
depends on the configuration. For details, see Installing OpenIG in the Gateway Guide.

The base location for Groovy scripts is on the classpath when the scripts are executed. If
therefore some Groovy scripts are not in the default package, but instead have their own
package names, they belong in the directory corresponding to their package name. For example,
a script in package com.example.groovy belongs under openig-

46

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/ldap/LdapClient.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/log/Logger.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/session/SessionContext.html
../gateway-guide/chap-install.pdf#install

base/scripts/groovy/com/example/groovy/.

"source": string

The script as a string; mutually exclusive with "file"

"args": map, optional

Parameters passed from the configuration to the script.

The configuration object is a map whose values can be scalars, arrays, objects and so forth, as in
the following example.

{
 "args": {
 "title": "Coffee time",
 "status": 418,
 "reason": [
 "Not Acceptable",
 "I'm a teapot",
 "Acceptable"
],
 "names": {
 "1": "koffie",
 "2": "kafe",
 "3": "cafe",
 "4": "kafo"
 }
 }
}

The script can then access the args parameters in the same way as other global objects. The
following example sets the response status to I’m a teapot:

response.status = Status.valueOf(418, reason[1])

For details regarding this status code see RFC 7168, Section 2.3.3 418 I’m a Teapot.

Args parameters can reference objects defined in the heap using expressions. For example, the
following excerpt shows the heap that defines SampleFilter:

{
 "heap": [
 {
 "name": "SampleFilter",
 "type": "SampleFilter",
 "config": {
 "name": "X-Greeting",
 "value": "Hello world"
 }

47

https://tools.ietf.org/html/rfc7168#section-2.3.3

 }
]
}

To pass SampleFilter to the script, the following example uses an expression in the args
parameters:

{
 "args": {
 "filter": "${heap['SampleFilter']}"
 }
}

The script can then reference SampleFilter as filter.

For details about the heap, see Heap Objects(5).

"clientHandler", ClientHandler reference, optional

A Handler for making outbound HTTP requests.

Default: Use the default ClientHandler.

For details, see Handlers.

Javadoc

org.forgerock.openig.handler.ScriptableHandler

SequenceHandler — process request through
sequence of handlers

Description

Processes a request through a sequence of handlers. This allows multi-request processing such as
retrieving a form, extracting form content (for example, nonce) and submitting in a subsequent
request. Each handler in the bindings is dispatched to in order; the binding postcondition
determines if the sequence should continue.

Usage

{
 "name": string,
 "type": "SequenceHandler",
 "config": {
 "bindings": [

48

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/handler/ScriptableHandler.html

 {
 "handler": Handler reference,
 "postcondition": expression
 }
]
 }
}

Properties

"bindings": array of objects, required

A list of bindings of handler and postcondition to determine that sequence continues.

"handler": Handler reference, required

Dispatch to this handler.

Either the name of the handler heap object to dispatch to, or an inline Handler configuration
object.

See also Handlers.

"postcondition": expression, optional

Evaluated to determine if the sequence continues.

Default: unconditional.

See also Expressions(5).

Javadoc

org.forgerock.openig.handler.SequenceHandler

StaticResponseHandler — create static response to a
request

Description

Creates a static response to a request.

Usage

{
 "name": string,
 "type": "StaticResponseHandler",
 "config": {
 "status": number,

49

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/handler/SequenceHandler.html

 "reason": string,
 "version": string,
 "headers": {
 name: [expression, ...], ...
 },
 "entity": expression
 }
}

Properties

"status": number, required

The response status code (for example, 200).

"reason": string, optional

The response status reason (for example, "OK").

"version": string, optional

Protocol version. Default: "HTTP/1.1".

"headers": array of objects, optional

Header fields to set in the response. The name specifies the header name, with an associated
array of expressions to evaluate as values.

"entity": expression, optional

The message entity expression to be evaluated and included in the response.

Conforms to the Content-Type header and sets Content-Length.

See also Expressions(5).

Example

{
 "name": "ErrorHandler",
 "type":"StaticResponseHandler",
 "config": {
 "status": 500,
 "reason": "Error",
 "entity": "<html>
 <h2>Epic #FAIL</h2>
 </html>"
 }
}

50

Javadoc

org.forgerock.openig.handler.StaticResponseHandler

51

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/handler/StaticResponseHandler.html

Filters
Filter objects intercept requests and responses during processing.

AssignmentFilter — conditionally assign values to
expressions

Description

Conditionally assigns values to expressions before the request and after the response is handled.

Usage

{
 "name": string,
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [
 {
 "condition": expression,
 "target": lvalue-expression,
 "value": expression
 }, ...
],
 "onResponse": [
 {
 "condition": expression,
 "target": lvalue-expression,
 "value": expression
 }, ...
]
 }
}

Properties

"onRequest": array of objects, optional

Defines a list of assignment bindings to evaluate before the request is handled.

"onResponse": array of objects, optional

Defines a list of assignment bindings to evaluate after the response is handled.

"condition": expression, optional

Expression to evaluate to determine if an assignment should occur. Omitting the condition
makes the assignment unconditional.

52

See also Expressions(5).

"target": lvalue-expression, required

Expression that yields the target object whose value is to be set.

See also Expressions(5).

"value": expression, optional

Expression that yields the value to be set in the target.

See also Expressions(5).

Example

This is an example of how you would capture credentials and store them in the OpenIG session
during a login request. Notice the credentials are captured on the request, but not marked as valid
until the response returns a positive 302. The credentials would then be used to login a user to a
different application:

{
 "name": "PortalLoginCaptureFilter",
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [
 {
 "target": "${session.authUsername}",
 "value": "${request.form['username'][0]}",
 },
 {
 "target": "${session.authPassword}",
 "value": "${request.form['password'][0]}",
 },
 {
 "comment": "Authentication has not yet been confirmed.",
 "target": "${session.authConfirmed}",
 "value": "${false}",
 }
],
 "onResponse": [
 {
 "condition": "${response.status.code == 302}",
 "target": "${session.authConfirmed}",
 "value": "${true}",
 }
]
 }
}

53

Javadoc

org.forgerock.openig.filter.AssignmentFilter

ConditionEnforcementFilter — verify a condition to
continue the chain of execution

Description

Verifies that a specified condition is met. If the condition is met, the request continues to be
executed. Otherwise, the request is referred to a failure handler, or OpenIG returns 403 Forbidden
and the request is stopped.

Usage

{
 "type": "ConditionEnforcementFilter",
 "config": {
 "condition": boolean expression,
 "failureHandler": handler reference
 }
}

Properties

"condition": boolean expression, required

Expression that evaluates to true or false, to determine whether a request should continue to be
executed.

See also Expressions.

"failureHandler": handler reference, optional

Handler to treat the request if the condition expression evaluates as false.

Provide an inline handler configuration object, or the name of a handler object that is defined in
the heap.

See also Handlers.

Default: HTTP 403 Forbidden, the request stops being executed.

Example

The following example tests whether a request contains a session username. If it does, the request
continues to be executed. Otherwise, the request is dispatched to the ConditionFailedHandler failure
handler.

54

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/AssignmentFilter.html

{
 "name": "UsernameEnforcementFilter",
 "type": "ConditionEnforcementFilter",
 "config": {
 "condition": "${not empty (session.username)}",
 "failureHandler": "ConditionFailedHandler"
 }
}

Javadoc

org.forgerock.openig.filter.ConditionEnforcementFilter

CookieFilter — manage, suppress, relay cookies

Description

Manages, suppresses and relays cookies. Managed cookies are intercepted by the cookie filter itself
and stored in the gateway session; managed cookies are not transmitted to the user agent.
Suppressed cookies are removed from both request and response. Relayed cookies are transmitted
freely between user agent and remote server and vice-versa.

If a cookie does not appear in one of the three action parameters, then the default action is
performed, controlled by setting the defaultAction parameter. If unspecified, the default action is to
manage all cookies. In the event a cookie appears in more than one configuration parameter, then
it will be selected in the order of precedence: managed, suppressed, relayed.

Usage

{
 "name": string,
 "type": "CookieFilter",
 "config": {
 "managed": [string, ...],
 "suppressed": [string, ...],
 "relayed": [string, ...],
 "defaultAction": string
 }
}

Properties

"managed": array of strings, optional

A list of the names of cookies to be managed.

55

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/ConditionEnforcementFilter.html

"suppressed": array of strings, optional

A list of the names of cookies to be suppressed.

"relayed": array of strings, optional

A list of the names of cookies to be relayed.

"defaultAction": string, optional

Action to perform for cookies that do not match an action set. Must be one of: "MANAGE", "RELAY",
"SUPPRESS". Default: "MANAGE".

Javadoc

org.forgerock.openig.filter.CookieFilter

CryptoHeaderFilter — encrypt, decrypt headers

Description

Encrypts or decrypts headers in a request or response.

Usage

{
 "name": string,
 "type": "CryptoHeaderFilter",
 "config": {
 "messageType": string,
 "operation": string,
 "key": expression,
 "algorithm": string,
 "keyType": string,
 "headers": [string, ...]
 }
}

Properties

"messageType": string, required

Indicates the type of message whose headers to encrypt or decrypt.

Must be one of: "REQUEST", "RESPONSE".

"operation": string, required

Indicates whether to encrypt or decrypt.

Must be one of: "ENCRYPT", "DECRYPT".

56

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/CookieFilter.html

"key": expression, required

Base64 encoded key value.

See also Expressions(5).

"algorithm": string, optional

Algorithm used for encryption and decryption.

Default: AES/ECB/PKCS5Padding

"keyType": string, optional

Algorithm name for the secret key.

Default: AES

"headers": array of strings, optional

The names of header fields to encrypt or decrypt.

Default: Do not encrypt or decrypt any headers

Example

{
 "name": "DecryptReplayPasswordFilter",
 "type": "CryptoHeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "operation": "DECRYPT",
 "algorithm": "DES/ECB/NoPadding",
 "keyType": "DES",
 "key": "oqdP3DJdE1Q=",
 "headers": [
 "replaypassword"
]
 }
}

Javadoc

org.forgerock.openig.filter.CryptoHeaderFilter

EntityExtractFilter — extract pattern from message
entity

57

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/CryptoHeaderFilter.html

Description

Extracts regular expression patterns from a message entity. The extraction results are stored in a
"target" object. For a given matched pattern, as described in Patterns(5), the value stored in the
object is either the result of applying its associated pattern template (if specified) or the match
result itself otherwise.

Usage

{
 "name": string,
 "type": "EntityExtractFilter",
 "config": {
 "messageType": string,
 "charset": string,
 "target": lvalue-expression,
 "bindings": [
 {
 "key": string,
 "pattern": pattern,
 "template": pattern-template
 }, ...
]
 }
}

Properties

"messageType": string, required

The message type to extract patterns from.

Must be one of: REQUEST, RESPONSE.

"charset": string, optional

Overrides the character set encoding specified in message.

Default: the message encoding is used.

"target": lvalue-expression, required

Expression that yields the target object that contains the extraction results.

The bindings determine what type of object is stored in the target location.

The object stored in the target location is a Map<String, String>. You can then access its content
with ${target.key} or ${target['key']}.

See also Expressions(5).

58

"key": string, required

Name of element in target object to contain an extraction result.

"pattern": pattern, required

The regular expression pattern to find in the entity.

See also Patterns(5).

"template": pattern-template, optional

The template to apply to the pattern and store in the named target element.

Default: store the match result itself.

See also Patterns(5).

Examples

Extracts a nonce from the response, which is typically a login page, and sets its value in the
attributes context to be used by the downstream filter posting the login form. The nonce value
would be accessed using the following expression: ${attributes.extract.wpLoginToken}.

The pattern finds all matches in the HTTP body of the form wpLogintoken value="abc". Setting the
template to $1 assigns the value abc to attributes.extract.wpLoginToken:

{
 "name": "WikiNoncePageExtract",
 "type": "EntityExtractFilter",
 "config": {
 "messageType": "response",
 "target": "${attributes.extract}",
 "bindings": [
 {
 "key": "wpLoginToken",
 "pattern": "wpLoginToken\"\s.*value=\"(.*)\"",
 "template": "$1"
 }
]
 }
}

The following example reads the response looking for the OpenAM login page. When found, it sets
isLoginPage = true to be used in a SwitchFilter to post the login credentials:

{
 "name": "FindLoginPage",
 "type": "EntityExtractFilter",
 "config": {
 "messageType": "response",
 "target": "${attributes.extract}",

59

 "bindings": [
 {
 "key": "isLoginPage",
 "pattern": "OpenAM\s\(Login\)",
 "template": "true"
 }
]
 }
}

Javadoc

org.forgerock.openig.filter.EntityExtractFilter

FileAttributesFilter — retrieve record from a file

Description

Retrieves and exposes a record from a delimiter-separated file. Lookup of the record is performed
using a specified key, whose value is derived from an expression. The resulting record is exposed in
an object whose location is specified by the target expression. If a matching record cannot be
found, then the resulting object is empty.

The retrieval of the record is performed lazily; it does not occur until the first attempt to access a
value in the target. This defers the overhead of file operations and text processing until a value is
first required. This also means that the value expression is not evaluated until the object is first
accessed.

Usage

{
 "name": string,
 "type": "FileAttributesFilter",
 "config": {
 "file": expression,
 "charset": string,
 "separator": string,
 "header": boolean,
 "fields": [string, ...],
 "target": lvalue-expression,
 "key": string,
 "value": expression
 }
}

For an example see Log in With Credentials From a File in the Gateway Guide.

60

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/EntityExtractFilter.html
../gateway-guide/chap-credentials-tutorial.pdf#tutorial-credentials-from-file

Properties

"file": expression, required

The file containing the record to be read.

See also Expressions(5).

"charset": string, optional

The character set in which the file is encoded.

Default: "UTF-8".

"separator": separator identifier string, optional

The separator character, which is one of the following:

COLON

Unix-style colon-separated values, with backslash as the escape character.

COMMA

Comma-separated values, with support for quoted literal strings.

TAB

Tab separated values, with support for quoted literal strings.

+ Default: COMMA

"header": boolean, optional

The setting to treat or not treat the first row of the file as a header row.

When the first row of the file is treated as a header row, the data in that row is disregarded and
cannot be returned by a lookup operation.

Default: true.

"fields": array of strings, optional

A list of keys in the order they appear in a record.

If fields is not set, the keys are assigned automatically by the column numbers of the file.

"target": lvalue-expression, required

Expression that yields the target object to contain the record.

The target object is a Map<String, String>, where the fields are the keys. For example, if the
target is ${attributes.file} and the record has a username field and a password field mentioned in
the fields list, Then you can access the user name as ${attributes.file.username} and the
password as ${attributes.file.password}.

See also Expressions(5).

61

"key": string, required

The key used for the lookup operation.

"value": expression, required

Expression that yields the value to be looked-up within the file.

See also Expressions(5).

Javadoc

org.forgerock.openig.filter.FileAttributesFilter

HeaderFilter — remove and add headers

Description

Removes headers from and adds headers to a message. Headers are added to any existing headers
in the message. To replace, remove the header and add it.

Usage

{
 "name": string,
 "type": "HeaderFilter",
 "config": {
 "messageType": string,
 "remove": [string, ...],
 "add": {
 name: [string, ...], ...
 }
 }
}

Properties

"messageType": string, required

Indicates the type of message to filter headers for. Must be one of: "REQUEST", "RESPONSE".

"remove": array of strings, optional

The names of header fields to remove from the message.

"add": object, optional

Header fields to add to the message. The name specifies the header name, with an associated
array of string values.

62

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/FileAttributesFilter.html

Examples

Replace the host header on the incoming request with myhost.com:

{
 "name": "ReplaceHostFilter",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "remove": ["host"],
 "add": {
 "host": ["myhost.com"]
 }
 }
}

Add a Set-Cookie header in the response:

{
 "name": "SetCookieFilter",
 "type": "HeaderFilter",
 "config": {
 "messageType": "RESPONSE",
 "add": {
 "Set-Cookie": ["mysession=12345"]
 }
 }
}

Add headers custom1 and custom2 to the request:

{
 "name": "SetCustomHeaders",
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "custom1": ["12345", "6789"],
 "custom2": ["abcd"]
 }
 }
}

Javadoc

org.forgerock.openig.filter.HeaderFilter

63

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/HeaderFilter.html

HttpBasicAuthFilter — perform HTTP Basic
authentication

Description

Performs authentication through the HTTP Basic authentication scheme. For more information, see
RFC 2617.

If challenged for authentication via a 401 Unauthorized status code by the server, this filter retries
the request with credentials attached. Once an HTTP authentication challenge is issued from the
remote server, all subsequent requests to that remote server that pass through the filter include the
user credentials.

If authentication fails (including the case of no credentials yielded from expressions), then
processing is diverted to the specified authentication failure handler.

Usage

{
 "name": string,
 "type": "HttpBasicAuthFilter",
 "config": {
 "username": expression,
 "password": expression,
 "failureHandler": Handler reference,
 "cacheHeader": boolean
 }
}

Properties

"username": expression, required

Expression that yields the username to supply during authentication.

See also Expressions(5).

"password": expression, required

Expression that yields the password to supply during authentication.

See also Expressions(5).

"failureHandler": Handler reference, required

Dispatch to this Handler if authentication fails.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

64

http://www.ietf.org/rfc/rfc2617.txt

See also Handlers.

"cacheHeader": boolean, optional

Whether to cache credentials in the session after the first successful authentication, and then
replay those credentials for subsequent authentications in the same session.

With "cacheHeader": false, the filter generates the header for each request. This is useful, for
example, when users change their passwords during a browser session.

Default: true

Example

{
 "name": "TomcatAuthenticator",
 "type": "HttpBasicAuthFilter",
 "config": {
 "username": "tomcat",
 "password": "tomcat",
 "failureHandler": "TomcatAuthFailureHandler",
 "cacheHeader": false
 }
}

Javadoc

org.forgerock.openig.filter.HttpBasicAuthFilter

LocationHeaderFilter — rewrites Location headers

Description

Rewrites Location headers on responses that generate a redirect that would take the user directly to
the application being proxied rather than taking the user through OpenIG.

For example, if OpenIG listens on https://proxy.example.com:443/ and the application it protects
listens on http://www.example.com:8080/, then you can configure this filter to rewrite redirects that
would take the user to locations under http://www.example.com:8080/ to go instead to locations
under https://proxy.example.com:443/.

Usage

{
 "name": string,
 "type": "LocationHeaderFilter",
 "config": {

65

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/HttpBasicAuthFilter.html

 "baseURI": expression
 }
}

An alternative value for type is RedirectFilter.

Properties

"baseURI": expression, optional

The base URI of the OpenIG instance. This is used to rewrite the Location header on the
response.

Default: Redirect to the original URI specified in the request.

See also Expressions(5).

Example

{
 "name": "LocationRewriter",
 "type": "LocationHeaderFilter",
 "config": {
 "baseURI": "https://proxy.example.com:443/"
 }
}

Javadoc

org.forgerock.openig.filter.LocationHeaderFilter

OAuth2ClientFilter — Authenticate an end user with
OAuth 2.0 delegated authorization

Description

An OAuth2ClientFilter is a filter that authenticates an end user using OAuth 2.0 delegated
authorization. The filter can act as an OpenID Connect relying party as well as an OAuth 2.0 client.

The client filter does not include information about identity providers, or information about static
registration with identity providers. For information about an identity provider, see Issuer(5). For
information about registration with an identity provider, see ClientRegistration(5).

In the case where all users share the same identity provider, you can configure the filter as a client
of a single provider by referencing a single client registration name for the filter. You can also
configure the filter to work with multiple providers, taking the user to a login handler page—often

66

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/LocationHeaderFilter.html

full of provider logos, and known as a Nascar page. The name comes from Nascar race cars, some of
which are covered with sponsors' logos—to choose a provider.

What an OAuth2ClientFilter does depends on the incoming request URI. In the following list
clientEndpoint represents the value of the clientEndpoint in the filter configuration:

clientEndpoint/login/?discovery=user-input&goto=url

Using the user-input value, discover and register dynamically with the end user’s OpenID
Provider or with the client registration endpoint as described in RFC 7591.

Upon successful registration, redirect the end user to the provider for authentication and
authorization consent before redirecting the user-agent back to the callback client endpoint.

clientEndpoint/login?registration=registrationName&goto=url

Redirect the end user for authorization with the specified registration, which is the name of a
ClientRegistration configuration as described in ClientRegistration(5).

The provider corresponding to the registration then authenticates the end user and obtains
authorization consent before redirecting the user-agent back to the callback client endpoint.

Ultimately if the entire process is successful, the filter saves the authorization state in the
context and redirects the user-agent to the specified URL.

clientEndpoint/logout?goto=url

Remove the authorization state for the end user and redirect to the specified URL.

clientEndpoint/callback

Handle the callback from the OAuth 2.0 authorization server that occurs as part of the
authorization process.

If the callback is handled successfully, the filter saves the authorization state in the context at the
specified target location and redirects to the URL during login.

Other request URIs

Restore authorization state in the specified target location and call the next filter or handler in
the chain.

Usage

{
 "name": string,
 "type": "OAuth2ClientFilter",
 "config": {
 "clientEndpoint": expression,
 "failureHandler": Handler reference,
 "discoveryHandler": Handler reference,
 "loginHandler": Handler reference,
 "registrations": [ClientRegistration reference(s)],
 "metadata": dynamic registration client metadata object,

67

 "cacheExpiration": duration string,
 "executor": executor,
 "target": expression,
 "defaultLoginGoto": expression,
 "defaultLogoutGoto": expression,
 "requireHttps": boolean,
 "requireLogin": boolean
 }
}

Properties

"clientEndpoint": expression, required

Base URI for the filter.

For example, if you set "clientEndpoint": "/openid", then the service URIs for this filter on your
OpenIG server are /openid/login, /openid/logout, and /openid/callback.

See also Expressions(5).

"failureHandler": Handler reference, required

Provide an inline handler configuration object, or the name of a handler object that is defined in
the heap.

If this handler is invoked, then the target in the context can be populated with information such
as the exception, client registration, and error.

The failure object in the target is a simple map, similar to the following example:

{
 "client_registration": "ClientRegistration name string",
 "error": {
 "realm": "optional string",
 "scope": ["optional required scope string", ...],
 "error": "optional string",
 "error_description": "optional string",
 "error_uri": "optional string"
 },
 "access_token": "string",
 "id_token": "string",
 "token_type": "Bearer",
 "expires_in": "number",
 "scope": ["optional scope string", ...],
 "client_endpoint": "URL string",
 "exception": exception
}

In the failure object, the following fields are not always present. Their presence depends on
when the failure occurs:

68

• "access_token"

• "id_token"

• "token_type"

• "expires_in"

• "scope"

• "client_endpoint"

See also Handlers.

"discoveryHandler": Handler reference, optional

Invoke this HTTP client handler to communicate with the OpenID Provider for OpenID Connect
Discovery.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

Usually set this to the name of a ClientHandler configured in the heap, or a chain that ends in a
ClientHandler.

Default: OpenIG uses the default ClientHandler.

See also Handlers, ClientHandler(5).

"loginHandler": Handler reference, required if there are zero or multiple client registrations,
optional if there is one client registration

Use this Handler when the user must choose an identity provider. When registrations contains
only one client registration, this Handler is optional but is displayed if specified.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

For an example of a login handler where no client registrations are defined, see Preparing
OpenIG for Discovery and Dynamic Registration in the Gateway Guide. The following example
shows a login handler that allows the user to choose from two client registrations: openam and
google:

{
 "name": "NascarPage",
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "entity": "<html><p><a

href='/openid/login?registration=openam&goto=${urlEncodeQueryParameterNameOrValue(c
ontexts.router.originalUri)}'
 >OpenAM Login</p>
 <p><a

69

../gateway-guide/chap-oauth2-client.pdf#oidc-discovery-setup-gateway
../gateway-guide/chap-oauth2-client.pdf#oidc-discovery-setup-gateway

href='/openid/login?registration=google&goto=${contexts.router.originalUri}'
 >Google Login</p>
 </html>"
 }
}

See also Handlers.

"registrations": Array of ClientRegistration references or inline ClientRegistration
declarations, optional

List of client registrations that authenticate OpenIG to the identity providers. The list must
contain all client registrations that are to be used by the client filter.

The value represents a static client registration with an identity provider as described in
ClientRegistration(5).

"metadata": client metadata object, required for dynamic client registration and ignored
otherwise

This object holds client metadata as described in OpenID Connect Dynamic Client Registration
1.0, and optionally a list of scopes. See that document for additional details and a full list of
fields.

This object can also hold client metadata as described in RFC 7591, OAuth 2.0 Dynamic Client
Registration Protocol. See that RFC for additional details.

The following partial list of metadata fields is not exhaustive, but includes metadata that is
useful with OpenAM as OpenID Provider:

"redirect_uris": array of URI strings, required

The array of redirection URIs to use when dynamically registering this client.

"client_name": string, optional

Name of the client to present to the end user.

"scopes": array of strings, optional

Array of scope strings to request of the OpenID Provider.

"cacheExpiration": duration string, optional

Duration for which to cache user-info resources.

OpenIG lazily fetches user info from the OpenID provider. In other words, OpenIG only fetches
the information when a downstream Filter or Handler uses the user info. Caching allows OpenIG
to avoid repeated calls to OpenID providers when reusing the information over a short period.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

70

https://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata
https://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

Default: 20 seconds

Set this to disabled or zero to disable caching. When caching is disabled, user info is still lazily
fetched.

"executor": executor, optional

An executor service to schedule the execution of tasks, such as the eviction of entries in the
OpenID Connect user information cache.

Default: ScheduledExecutorService

See also ScheduledExecutorService(5).

"target": expression, optional

Expression that yields the target object whose value is to be set, such as ${attributes.openid}.

Default: ${attributes.openid}

See also Expressions(5).

"defaultLoginGoto": expression, optional

The URI to redirect to after successful authentication and authorization.

Default: return an empty page.

See also Expressions(5).

"defaultLogoutGoto": expression, optional

The URI to redirect to after successful logout.

Default: return an empty page.

See also Expressions(5).

71

"requireHttps": boolean, optional

Whether to require that requests use the HTTPS scheme.

Default: true.

"requireLogin": boolean, optional

Whether to require authentication for all incoming requests.

Default: true.

Example

The following example configures an OAuth 2.0 client filter. The base client endpoint is /openid. The
filter uses well-known configuration endpoints to obtain configuration information for OpenAM
and for Google as providers. The client credentials are not shown.

When a incoming request is made to /openid/login, this filter takes the user to a NascarPage to
choose an identity provider. It then handles negotiation for authorization with the provider.

If the authorization process completes successfully, then the filter injects the authorization state
data into attributes.openid.

At the end of the interaction, the aim of this configuration is simply to dump the data obtained back
in the response:

{
 "name": "OpenIDConnectClient",
 "type": "OAuth2ClientFilter",
 "config": {
 "target" : "${attributes.openid}",
 "clientEndpoint" : "/openid",
 "loginHandler" : "NascarPage",
 "registrations" : ["openam", "google"],
 "failureHandler" : "Dump",
 "defaultLoginGoto" : "/dump",
 "defaultLogoutGoto" : "/unprotected",
 "requireHttps" : false,
 "requireLogin" : true
 }
}

For details regarding configuration of providers, see Issuer(5) and ClientRegistration(5).

Notice that this configuration is for development and testing purposes only, and is not secure
("requireHttps": false). Make sure you do require HTTPS in production environments.

Javadoc

org.forgerock.openig.filter.oauth2.client.OAuth2ClientFilter

72

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/oauth2/client/OAuth2ClientFilter.html

See Also

Issuer(5), ClientRegistration(5)

The OAuth 2.0 Authorization Framework

OAuth 2.0 Bearer Token Usage

OpenID Connect site, in particular the list of standard OpenID Connect 1.0 scope values

OAuth2ResourceServerFilter — validate a request
containing an OAuth 2.0 access token

Description

An OAuth2ResourceServerFilter is a filter that validates a request containing an OAuth 2.0 access
token. The filter expects an OAuth 2.0 token from the HTTP Authorization header of the request,
such as the following example header, where the OAuth 2.0 access token is 1fc0e143-f248-4e50-
9c13-1d710360cec9:

Authorization: Bearer 1fc0e143-f248-4e50-9c13-1d710360cec9

The filter extracts the access token, and then validates it against the configured tokenInfoEndpoint
URL.

On successful validation, the filter creates a new context for the authorization server response, at
${contexts.oauth2}.

The context is named oauth2 and can be reached at contexts.oauth2 or contexts['oauth2'].

The context contains data such as the access token, which can be reached at
contexts.oauth2.accessToken or contexts['oauth2'].accessToken.

Regarding errors, if the filter configuration and access token together result in an invalid request to
the authorization server, the filter returns an HTTP 400 Bad Request response to the user-agent.

If the access token is missing from the request, the filter returns an HTTP 401 Unauthorized
response to the user-agent:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="OpenIG"

If the access token is not valid, for example, because it has expired, the filter also returns an HTTP
401 Unauthorized response to the user-agent.

If the scopes for the access token do not match the specified required scopes, the filter returns an

73

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750
http://openid.net/connect/
http://openid.net/specs/openid-connect-basic-1_0.html#Scopes

HTTP 403 Forbidden response to the user-agent.

Usage

{
 "name": string,
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "accessTokenResolver": AccessTokenResolver reference,
 "providerHandler": Handler reference,
 "scopes": [expression, ...],
 "tokenInfoEndpoint": URL string,
 "cacheExpiration": duration string,
 "executor": executor,
 "requireHttps": boolean,
 "realm": string
 }
}

An alternative value for type is OAuth2RSFilter.

Properties

"accessTokenResolver": reference, optional

Resolves an access token against an Authorization Server. Currently, supports the
ScriptableAccessTokenResolver to customize the default access token resolution algorithm. The
example below utilizes the token.groovy script to resolve an access token.

{
 "accessTokenResolver": {
 "type": "ScriptableAccessTokenResolver",
 "config": {
 "type": "application/x-groovy",
 "file": "token.groovy"
 }
 }
}

"providerHandler": Handler reference, optional

Invoke this HTTP client handler to send token info requests.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

Default: OpenIG uses the default ClientHandler.

See also Handlers, ClientHandler(5).

74

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/oauth2/ScriptableAccessTokenResolver.html

"scopes": array of expressions, required

The list of required OAuth 2.0 scopes for this protected resource.

See also Expressions(5).

"tokenInfoEndpoint": URL string, required

The URL to the token info endpoint of the OAuth 2.0 authorization server.

"cacheExpiration": duration string, optional

Duration for which to cache OAuth 2.0 access tokens.

Caching allows OpenIG to avoid repeated requests for token info when reusing the information
over a short period.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

Default: 1 minute

Set this to disabled or zero to disable caching. When caching is disabled, each request triggers a
new request to the authorization server to verify the access token.

"executor": executor, optional

An executor service to schedule the execution of tasks, such as the eviction of entries in the
access token cache.

Default: ScheduledExecutorService

See also ScheduledExecutorService(5).

"requireHttps": boolean, optional

Whether to require that requests use the HTTPS scheme.

75

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

Default: true

"realm": string, optional

HTTP authentication realm to include in the WWW-Authenticate response header field when
returning an HTTP 401 Unauthorized status to a user-agent that need to authenticate.

Default: OpenIG

Example

The following example configures an OAuth 2.0 protected resource filter that expects scopes email
and profile (and returns an HTTP 403 Forbidden status if the scopes are not present), and validates
access tokens against the OpenAM token info endpoint. It caches access tokens for up to 2 minutes:

{
 "name": "ProtectedResourceFilter",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "providerHandler": "ClientHandler",
 "scopes": [
 "email",
 "profile"
],
 "tokenInfoEndpoint": "https://openam.example.com:8443/openam/oauth2/tokeninfo
",
 "cacheExpiration": "2 minutes"
 }
}

Javadoc

org.forgerock.openig.filter.oauth2.OAuth2ResourceServerFilterHeaplet

See Also

The OAuth 2.0 Authorization Framework

OAuth 2.0 Bearer Token Usage

PasswordReplayFilter — replay credentials with a
single filter

Description

Replays credentials in a single composite filter for the following cases:

76

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/oauth2/OAuth2ResourceServerFilterHeaplet.html
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750

• When the request is for a login page

• When the response contains a login page

When the response contains a login page, a PasswordReplayFilter can extract values from the
response entity and reuse the values when replaying credentials.

A PasswordReplayFilter does not retry failed authentication attempts.

Usage

{
 "name": string,
 "type": "PasswordReplayFilter",
 "config": {
 "request": request configuration object,
 "loginPage": expression,
 "loginPageContentMarker": pattern,
 "credentials": Filter reference,
 "headerDecryption": crypto configuration object,
 "loginPageExtractions": [extract configuration object, ...]
 }
}

Properties

"request": request configuration object, required

The request that replays the credentials.

The request configuration object has the following fields:

"method": string, required

The HTTP method to be performed on the resource such as GET or POST.

"uri": string, required

The fully qualified URI of the resource to access such as http://www.example.com/login.

"entity": expression, optional

The entity body to include in the request.

This setting is mutually exclusive with the form setting when the method is set to POST.

See also Expressions(5).

"form": object, optional

A form to include in the request.

The param specifies the form parameter name. Its value is an array of expressions to evaluate
as form field values.

77

This setting is mutually exclusive with the entity setting when the method is set to POST.

"headers": object, optional

Header fields to set in the request.

The name specifies the header name. Its value is an array of expressions to evaluate as header
values.

"version": string, optional

The HTTP protocol version.

Default: "HTTP/1.1".

The implementation uses a StaticRequestFilter. The fields are the same as those described in
StaticRequestFilter(5).

"loginPage": expression, required unless loginPageContentMarker is defined

An expression that is true when a login page is requested, false otherwise.

For example, the following expression specifies that an HTTP GET to the path /login is a request
for a login page:

${matches(request.uri.path, '/login') and (request.method == 'GET')}

OpenIG only evaluates the expression for the request, not for the response.

See also Expressions(5).

"loginPageContentMarker": pattern, required unless loginPage is defined

A pattern that matches when a response entity is that of a login page.

See also Patterns(5).

"credentials": Filter reference, optional

Filter that injects credentials, making them available for replay. Consider using a
FileAttributesFilter or a SqlAttributesFilter.

When this is not specified, credentials must be made available to the request by other means.

See also Filters.

"headerDecryption": crypto configuration object, optional

Object to decrypt request headers that contain credentials to replay.

The crypto configuration object has the following fields:

"key": expression, required

Base64 encoded key value.

78

See also Expressions(5).

"algorithm": string, optional

Algorithm used for decryption.

Default: AES/ECB/PKCS5Padding

"keyType": string, optional

Algorithm name for the secret key.

Default: AES

"headers": array of strings, optional

The names of header fields to decrypt.

Default: Do not decrypt any headers.

"loginPageExtractions": extract configuration array, optional

Object to extract values from the login page entity.

The extract configuration array is a series of configuration objects. To extract multiple values,
use multiple extract configuration objects. Each object has the following fields:

"name": string, required

Name of the field where the extracted value is put.

The names are mapped into attributes.extracted.

For example, if the name is nonce, the value can be obtained with the expression
${attributes.extracted.nonce}.

The name isLoginPage is reserved to hold a boolean that indicates whether the response
entity is a login page.

"pattern": pattern, required

The regular expression pattern to find in the entity.

The pattern must contain one capturing group. (If it contains more than one, only the value
matching the first group is placed into attributes.extracted.)

For example, suppose the login page entity contains a nonce required to authenticate, and the
nonce in the page looks like nonce='n-0S6_WzA2Mj'. To extract n-0S6_WzA2Mj, set "pattern": "
nonce='(.*)'".

See also Patterns(5).

Examples

The following example route authenticates requests using static credentials whenever the request
is for /login. This PasswordReplayFilter example does not include any mechanism for

79

remembering when authentication has already been successful. It simply replays the
authentication every time that the request is for /login:

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "request": {
 "method": "POST",
 "uri": "https://www.example.com:8444/login",
 "form": {
 "username": [
 "MY_USERNAME"
],
 "password": [
 "MY_PASSWORD"
]
 }
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 }
}

For additional examples, see Configuration Templates in the Gateway Guide, and the Javadoc for the
PasswordReplayFilter class.

Javadoc

org.forgerock.openig.filter.PasswordReplayFilterHeaplet

PolicyEnforcementFilter — enforce policy decisions
from OpenAM

Description

This filter requests policy decisions from OpenAM, which allows or denies the request based on the
request context, the request URI, and the OpenAM policies.

80

../gateway-guide/chap-gateway-templates.pdf#chap-gateway-templates
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/PasswordReplayFilterHeaplet.html

• If the request is allowed, processing continues.

• If the request is denied, OpenIG returns 403 Forbidden.

• If an error occurs during the process, OpenIG returns 500 Internal Server Error.

This filter allows you to specify the subject by SSO token, JWT, or JWT claims.

This filter can add contextual attributes (accessible through ${attributes}), and some elements
returned by the policy decision, such as attributes and advices.

NOTE

In the OpenAM policy, remember to configure the Resources parameter with the URI
of the protected application.

The request URI from OpenIG must match the Resources parameter defined in the
OpenAM policy. If the URI of the incoming request is changed before it enters the
policy filter (for example, by rebasing or scripting), remember to change the
Resources parameter in OpenAM policy accordingly.

Usage

{
 "name": string,
 "type": "PolicyEnforcementFilter",
 "config": {
 "openamUrl": URI expression,
 "pepUsername": expression,
 "pepPassword": expression,
 "pepRealm": string,
 "ssoTokenSubject": expression,
 "jwtSubject": expression,
 "claimsSubject": map or expression,
 "amHandler": Handler reference,
 "realm": string,
 "ssoTokenHeader": string,
 "application": string,
 "cacheMaxExpiration": duration string,
 "target": lvalue-expression,
 "environment": map or expression,
 "executor": executor
 }
}

Properties

"openamUrl": URI expression, required

The URL to an OpenAM service, such as https://openam.example.com:8443/openam/.

See also Expressions(5).

81

"pepUsername": expression, required

The OpenAM username of the user with permission to request policy decisions.

See also Expressions(5).

"pepPassword": expression, required

The OpenAM password of the user with permission to request policy decisions.

See also Expressions(5).

"pepRealm": string, optional

The realm of the user with permission to request policy decisions.

Default: The value used by realm.

"ssoTokenSubject": expression, required if neither of the following properties are present:
"jwtSubject", "claimsSubject"

An expression evaluating to the OpenAM SSO token ID string for the subject making the request
to the protected resource.

See also Expressions(5).

"jwtSubject": expression, required if neither of the following properties are present:
"ssoTokenSubject", "claimsSubject"

An expression evaluating to the JWT string for the subject making the request to the protected
resource.

To use the raw id_token (base64, not decoded) returned by the OpenID Connect Provider during
authentication, place an OAuth2ClientFilter filter before the PEP filter, and then use
${attributes.openid.id_token} as the expression value.

See also OAuth2ClientFilter(5) and Expressions(5).

"claimsSubject": map or expression, required if neither of the following properties are
present: "jwtSubject", "ssoTokenSubject"

A representation of JWT claims for the subject. The subject must be specified, but the JWT claims
can contain other information such as the token issuer, expiration, and so on.

If this property is a map, the structure must have the format Map<String, Object>. The value is
evaluated as an expression.

"claimsSubject": {
 "sub": "${attributes.subject_identifier}",
 "iss": "openam.example.com"
 }

If this property is an expression, its evaluation must give an object of type Map<String, Object>.

82

"claimsSubject": "${attributes.openid.id_token_claims}"

See also Expressions(5).

"amHandler": Handler reference, optional

The handler to use when requesting policy decisions from OpenAM.

In production, use a ClientHandler that is capable of making an HTTPS connection to OpenAM.

Default: OpenIG uses the ForgeRockClientHandler.

See also Handlers.

"realm": string, optional

The OpenAM realm to use when requesting policy decisions.

Default: / (Top Level Realm)

"ssoTokenHeader": string, optional

The name of the HTTP header to use when supplying the SSO token ID for the user making a
policy decision request.

Default: iPlanetDirectoryPro

"application": string, optional

The OpenAM application to use when requesting policy decisions.

Default: OpenIG does not specify an application when making a policy decision request. As a
result, the application is iPlanetAMWebAgentService, which is the default for OpenAM.

"cacheMaxExpiration": duration string, optional

Maximum duration for which to cache policy decision responses. If the time-to-live value in the
policy decision response is shorter, then OpenIG expires the decision according to the shorter
lifetime.

This setting prevents OpenIG from having to issue a new request for every policy decision,
including even repeated requests by the same subject for the same resource.

NOTE
Cached policy decisions remain in the OpenIG cache even after a user logs out of
OpenAM and the OpenAM session becomes invalid.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

83

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

Default: 1 minute

"target": lvalue-expression, optional

A map in the attributes context where the "attributes" and "advices" map fields from the policy
decision are saved.

Example: ${attributes.policy.attributes} and ${attributes.policy.advices}

Default: ${attributes.policy}

"environment": map or expression, optional

Environment conditions can be defined in an OpenAM policy to set the circumstances under
which the policy applies. For example, environment conditions can specify that the policy
applies only during working hours or only when accessing from a specific IP address.

If this property is a map, the structure must have the format Map<String, List<Object>>.

"environment": {
 "IP": ["${contexts.client.remoteAddress}"]
 }

If this property is an expression, its evaluation must give an object of type Map<String,
List<Object>>.

"environment": "${attributes.my_environment}"

"executor": executor, optional

An executor service to schedule the execution of tasks, such as the eviction of entries in the
policy decision cache.

Default: ScheduledExecutorService

See also ScheduledExecutorService(5).

84

Example

The following example requests a policy decision from OpenAM before allowing a request to
continue. The policyAdmin user is an OpenAM subject with permission to request policy decisions.
The user making the request to the protected resource is identified by an SSO token ID string. The
realm defaults to OpenAM’s top-level realm:

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PolicyEnforcementFilter",
 "config": {
 "openamUrl": "https://openam.example.com:8443/openam/",
 "pepUsername": "policyAdmin",
 "pepPassword": "${env['POLICY_ADMIN_PWD']}",
 "ssoTokenSubject": "${attributes.SSOCurrentUser}",
 "claimsSubject": "${attributes.openid.id_token_claims}",
 "target": "${attributes.currentPolicy}",
 "environment": {
 "IP": ["${contexts.client.remoteAddress}"]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 }
}

Javadoc

org.forgerock.openig.openam.PolicyEnforcementFilter

See Also

Requesting Policy Decisions

ScriptableFilter — process requests and responses by
using a script

Description

Processes requests and responses by using a script.

85

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/openam/PolicyEnforcementFilter.html
https://doc.openidentityplatform.org/openam/dev-guide/chap-client-dev#rest-api-authz-policy-decisions

The script must return either a Promise<Response or a Response.

IMPORTANT

When you are writing scripts or Java extensions, never use a Promise
blocking method, such as get(), getOrThrow(), or
getOrThrowUninterruptibly(), to obtain the response.

A promise represents the result of an asynchronous operation. Therefore,
using a blocking method to wait for the result can cause deadlocks and/or
race issues.

Classes

The following classes are imported automatically for Groovy scripts:

• org.forgerock.http.Client

• org.forgerock.http.Filter

• org.forgerock.http.Handler

• org.forgerock.http.filter.throttling.ThrottlingRate

• org.forgerock.http.util.Uris

• org.forgerock.util.AsyncFunction

• org.forgerock.util.Function

• org.forgerock.util.promise.NeverThrowsException

• org.forgerock.util.promise.Promise

• org.forgerock.services.context.Context

• org.forgerock.http.protocol.*

Objects

The script has access to the following global objects:

Any parameters passed as args

You can use the configuration to pass parameters to the script by specifying an args object.

Take care when naming keys in the args object. If you reuse the name of another global object,
cause the script to fail and OpenIG to return a response with HTTP status code 500 Internal
Server Error.

attributes

The attributes object provides access to a context map of arbitrary attributes, which is a
mechanism for transferring transient state between components when processing a single
request.

Use session for maintaining state between successive requests from the same logical client.

86

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/util/promise/Promise.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/protocol/Response.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/services/context/AttributesContext.html

context

The processing context.

This context is the leaf of a chain of contexts. It provides access to other Context types, such as
SessionContext, AttributesContext, and ClientContext, through the
context.asContext(ContextClass.class) method.

request

The HTTP request.

globals

This object is a Map that holds variables that persist across successive invocations.

http

An embedded client for making outbound HTTP requests, which is an org.forgerock.http.Client.

If a "clientHandler" is set in the configuration, then that Handler is used. Otherwise, the default
ClientHandler configuration is used.

For details, see Handlers.

ldap

The ldap object provides an embedded LDAP client.

Use this client to perform outbound LDAP requests, such as LDAP authentication.

logger

The logger object provides access to the server log sink.

next

The next object refers to the next handler in the filter chain.

session

The session object provides access to the session context, which is a mechanism for maintaining
state when processing a successive requests from the same logical client or end-user.

Use attributes for transferring transient state between components when processing a single
request.

When you have finished processing the request, execute return next.handle(context, request) to
call the next filter or handler in the current chain and return the value from the call. Actions on the
response must be performed in the Promise’s callback methods.

Usage

{
 "name": string,
 "type": "ScriptableFilter",
 "config": {

87

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/services/context/Context.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/protocol/Request.html
http://groovy.codehaus.org/groovy-jdk/index.html?java/util/Map.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/Client.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/ldap/LdapClient.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/log/Logger.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/Handler.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/session/SessionContext.html

 "type": string,
 "file": expression, // Use either "file"
 "source": string, // or "source", but not both.
 "args": object,
 "clientHandler": Handler reference
 }
}

Properties

"type": string, required

The Internet media type (formerly MIME type) of the script, "application/x-groovy" for Groovy

"file": expression

Path to the file containing the script; mutually exclusive with "source"

Relative paths in the file field are relative to the base location for scripts. The base location
depends on the configuration. For details, see Installing OpenIG in the Gateway Guide.

The base location for Groovy scripts is on the classpath when the scripts are executed. If
therefore some Groovy scripts are not in the default package, but instead have their own
package names, they belong in the directory corresponding to their package name. For example,
a script in package com.example.groovy belongs under openig-
base/scripts/groovy/com/example/groovy/.

"source": string

The script as a string; mutually exclusive with "file"

"args": object, optional

Parameters passed from the configuration to the script.

The configuration object is a map whose values can be scalars, arrays, objects and so forth, as in
the following example:

{
 "args": {
 "title": "Coffee time",
 "status": 418,
 "reason": [
 "Not Acceptable",
 "I'm a teapot",
 "Acceptable"
],
 "names": {
 "1": "koffie",
 "2": "kafe",
 "3": "cafe",
 "4": "kafo"
 }

88

../gateway-guide/chap-install.pdf#install

 }
}

The script can then access the args parameters in the same way as other global objects. The
following example sets the response status to I’m a teapot:

response.status = Status.valueOf(418, reason[1])

For details regarding this status code see RFC 7168, Section 2.3.3 418 I’m a Teapot.

Args parameters can reference objects defined in the heap using expressions. For example, the
following excerpt shows the heap that defines SampleFilter:

{
 "heap": [
 {
 "name": "SampleFilter",
 "type": "SampleFilter",
 "config": {
 "name": "X-Greeting",
 "value": "Hello world"
 }
 }
]
}

NOTE
SampleFilter is a customized filter implemented as an extension of OpenIG. For
information about sample filter, see Implementing a Customized Sample Filter in
the Gateway Guide.

To pass SampleFilter to the script, the following example uses an expression in the args
parameters:

{
 "args": {
 "filter": "${heap['SampleFilter']}"
 }
}

The script can then reference SampleFilter as filter.

For details about the heap, see Heap Objects(5).

"clientHandler", ClientHandler reference, optional

A Handler for making outbound HTTP requests.

89

https://tools.ietf.org/html/rfc7168#section-2.3.3
../gateway-guide/chap-extending.pdf#custom-sample-filter

Default: Use the default ClientHandler.

For details, see Handlers.

Javadoc

org.forgerock.openig.filter.ScriptableFilter

SqlAttributesFilter — execute SQL query

Description

Executes a SQL query through a prepared statement and exposes its first result. Parameters in the
prepared statement are derived from expressions. The query result is exposed in an object whose
location is specified by the target expression. If the query yields no result, then the resulting object
is empty.

The execution of the query is performed lazily; it does not occur until the first attempt to access a
value in the target. This defers the overhead of connection pool, network and database query
processing until a value is first required. This also means that the parameters expressions is not
evaluated until the object is first accessed.

Usage

{
 "name": string,
 "type": "SqlAttributesFilter",
 "config": {
 "dataSource": string,
 "preparedStatement": string,
 "parameters": [expression, ...],
 "target": lvalue-expression
 }
}

Properties

"dataSource": string, required

The JNDI name of the factory for connections to the physical data source.

"preparedStatement": string, required

The parameterized SQL query to execute, with ? parameter placeholders.

"parameters": array of expressions, optional

The parameters to evaluate and include in the execution of the prepared statement.

90

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/ScriptableFilter.html

See also Expressions(5).

"target": lvalue-expression, required

Expression that yields the target object that will contain the query results.

See also Expressions(5).

Example

Using the user’s session ID from a cookie, query the database to find the user logged in and set the
profile attributes in the attributes context:

{
 "name": "SqlAttributesFilter",
 "type": "SqlAttributesFilter",
 "config": {
 "target": "${attributes.sql}",
 "dataSource": "java:comp/env/jdbc/mysql",
 "preparedStatement": "SELECT f.value AS 'first', l.value AS
 'last', u.mail AS 'email', GROUP_CONCAT(CAST(r.rid AS CHAR)) AS
 'roles'
 FROM sessions s
 INNER JOIN users u
 ON (u.uid = s.uid AND u.status = 1)
 LEFT OUTER JOIN profile_values f
 ON (f.uid = u.uid AND f.fid = 1)
 LEFT OUTER JOIN profile_values l
 ON (l.uid = u.uid AND l.fid = 2)
 LEFT OUTER JOIN users_roles r
 ON (r.uid = u.uid)
 WHERE (s.sid = ? AND s.uid <> 0) GROUP BY s.sid;",
 "parameters": ["${request.cookies
 [keyMatch(request.cookies,'JSESSION1234')]
 [0].value}"]
 }
 }

Lines are folded for readability in this example. In your JSON, keep the values for
"preparedStatement" and "parameters" on one line.

Javadoc

org.forgerock.openig.filter.SqlAttributesFilter

StaticRequestFilter — create new request

91

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/SqlAttributesFilter.html

Description

Creates a new request, replacing any existing request. The request can include an entity specified in
the entity parameter. Alternatively, the request can include a form, specified in the form parameter,
which is included in an entity encoded in application/x-www-form-urlencoded format if request
method is POST, or otherwise as (additional) query parameters in the URI. The form and entity
parameters cannot be used together when the method is set to POST.

Usage

{
 "name": string,
 "type": "StaticRequestFilter",
 "config": {
 "method": string,
 "uri": string,
 "version": string,
 "headers": {
 name: [expression, ...], ...
 },
 "form": {
 param: [expression, ...], ...
 },
 "entity": expression
 }
}

Properties

"method": string, required

The HTTP method to be performed on the resource (for example, "GET").

"uri": string, required

The fully-qualified URI of the resource to access (for example,
"http://www.example.com/resource.txt").

"version": string, optional

Protocol version. Default: "HTTP/1.1".

"headers": object, optional

Header fields to set in the request.

The name specifies the header name. Its value is an array of expressions to evaluate as header
values.

"form": object, optional

A form to include in the request.

92

The param specifies the form parameter name. Its value is an array of expressions to evaluate as
form field values.

This setting is mutually exclusive with the entity setting when the method is set to POST.

"entity": expression, optional

The entity body to include in the request.

This setting is mutually exclusive with the form setting when the method is set to POST.

See also Expressions(5).

Example

{
 "name": "LoginRequestFilter",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://10.10.0.2:8080/wp-login.php",
 "form": {
 "log": ["george"],
 "pwd": ["bosco"],
 "rememberme": ["forever"],
 "redirect_to": ["http://portal.example.com:8080/wp-admin/"],
 "testcookie": ["1"]
 }
 }
}

Javadoc

org.forgerock.openig.filter.StaticRequestFilter

SwitchFilter — divert requests to another handler

Description

Conditionally diverts requests to another handler. If a condition evaluates to true, then the request
is dispatched to the associated handler with no further processing by the switch filter.

Usage

{
 "name": string,
 "type": "SwitchFilter",

93

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/StaticRequestFilter.html

 "config": {
 "onRequest": [
 {
 "condition": expression,
 "handler": Handler reference,
 },
 ...
],
 "onResponse": [
 {
 "condition": expression,
 "handler": Handler reference,
 },
 ...
]
 }
}

Properties

"onRequest": array of objects, optional

Conditions to test (and handler to dispatch to, if true) before the request is handled.

"onResponse": array of objects, optional

Conditions to test (and handler to dispatch to, if true) after the response is handled.

"condition": expression, optional

Condition to evaluate to determine if the request or response should be dispatched to the
handler.

Default: unconditional dispatch to the handler.

See also Expressions(5).

"handler": Handler reference, required

Dispatch to this handler if the condition yields true.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

See also Handlers.

Example

This example intercepts the response if it is equal to 200 and executes the LoginRequestHandler.
This filter might be used in a login flow where the request for the login page must go through to the
target, but the response should be intercepted in order to send the login form to the application.
This is typical for scenarios where there is a hidden value or cookie returned in the login page,
which must be sent in the login form:

94

{
 "name": "SwitchFilter",
 "type": "SwitchFilter",
 "config": {
 "onResponse": [
 {
 "condition": "${response.status.code == 200}",
 "handler": "LoginRequestHandler"
 }
]
 }
}

Javadoc

org.forgerock.openig.filter.SwitchFilter

TokenTransformationFilter — transform a token
issued by OpenAM to another type

Description

This filter transforms a token issued by OpenAM to another token type.

The current implementation uses the REST Security Token Service (STS) APIs. It supports
transforming an OpenID Connect ID Token (id_token) into a SAML 2.0 assertion where the subject
confirmation method is Bearer, as described in Profiles for the OASIS Security Assertion Markup
Language (SAML) V2.0.

The configuration for this filter references a REST STS instance that must be set up in OpenAM
before this filter can be used. The REST STS instance exposes a pre-configured transformation
under a specific REST endpoint. See the OpenAM documentation for details about setting up a REST
STS instance.

Any errors that occur during the token transformation cause a error response to be returned to the
client and an error message to be logged for the OpenIG administrator.

Usage

{
 "name": "string",
 "type": "TokenTransformationFilter",
 "config": {
 "openamUri": URL string,
 "realm": OpenAM realm name string,

95

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/SwitchFilter.html
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

 "username": "${attributes.username}",
 "password": "${attributes.password}",
 "idToken": "${attributes.id_token}",
 "target": "${attributes.saml_assertions}",
 "instance": "oidc-to-saml",
 "amHandler": Handler reference,
 "ssoTokenHeader": string
 }
}

Properties

"openamUri": URL string, required

The base URL to an OpenAM service, such as https://openam.example.com:8443/openam/.

Authentication and REST STS requests are made to this service.

"realm": string, optional

The OpenAM realm containing both the OpenAM user who can make the REST STS request and
whose credentials are the username and password, and the STS instance described by the
instance field.

Default: / (Top Level Realm)

"username": expression, required

The username for authenticating OpenIG as an OpenAM REST STS client.

See also Expressions(5).

"password": expression, required

The password for authenticating OpenIG as an OpenAM REST STS client.

See also Expressions(5).

"idToken": expression, required

An expression evaluating to OpenID Connect ID token.

The expected value is a string that is the JWT encoded id_token.

See also Expressions(5).

"target": expression, required

An expression evaluating to the location where the SAML 2.0 assertion is injected following
successful transformation.

The value of the SAML 2.0 assertion is a string.

See also Expressions(5).

96

"instance": expression, required

An expression evaluating to name of the REST STS instance.

This expression is evaluated when the route is initialized, so the expression cannot refer to
request or contexts.

See also Expressions(5).

"amHandler": Handler reference, optional

The handler to use for authentication and STS requests to OpenAM.

In production, use a ClientHandler that is capable of making an HTTPS connection to OpenAM.

Default: OpenIG uses the ForgeRockClientHandler.

See also Handlers.

"ssoTokenHeader": string, optional

The name of the HTTP header to use when supplying the SSO token ID for the REST STS client
subject.

Default: iPlanetDirectoryPro

Example

For an example of how to set up and test the token transformation filter, see Transforming OpenID
Connect ID Tokens Into SAML Assertions in the Gateway Guide.

The following example uses the REST STS instance oidc-to-saml to request transformation of an
OpenID Connect ID token into a SAML 2.0 assertion. Both the subject authenticating to access the
REST endpoint, and the REST STS instance are in the realm /sts. The subject credentials for
authentication to OpenAM are provided in the attributes context at sts.username and sts.password.
The ID token to transform is provided in the attributes context at sts.id_token. The resulting SAML
2.0 assertion is injected as a string in the attribute context at sts.saml_assertions:

{
 "type": "TokenTransformationFilter",
 "config": {
 "openamUri": "https://openam.example.com/openam/",
 "realm": "/sts",
 "username": "${attributes.sts.username}",
 "password": "${attributes.sts.password}",
 "idToken": "${attributes.sts.id_token}",
 "target": "${attributes.sts.saml_assertions}",
 "instance": "oidc-to-saml",
 "amHandler": "ClientHandler"
 }
}

97

../gateway-guide/chap-ttf.pdf#chap-ttf
../gateway-guide/chap-ttf.pdf#chap-ttf

Javadoc

org.forgerock.openig.openam.TokenTransformationFilter

UmaFilter — protect access as an UMA resource server

Description

This filter acts as a policy enforcement point, protecting access as a User-Managed Access (UMA)
resource server. Specifically, this filter ensures that a request for protected resources includes a
valid requesting party token with appropriate scopes before allowing the response to flow back to
the requesting party.

Usage

{
 "type": "UmaFilter",
 "config": {
 "protectionApiHandler": Handler reference,
 "umaService": UmaService reference,
 "realm": string
 }
}

Properties

"protectionApiHandler": Handler reference, required

The handler to use when interacting with the UMA authorization server for token introspection
and permission requests, such as a ClientHandler capable of making an HTTPS connection to the
server.

For details, see Handlers.

"umaService": UmaService reference, required

The UmaService to use when protecting resources.

For details, see UmaService(5).

"realm": string, optional

The UMA realm set in the response to a request for a protected resource that does not include a
requesting party token enabling access to the resource.

Default: uma

98

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/openam/TokenTransformationFilter.html

See Also

User-Managed Access (UMA) Profile of OAuth 2.0

org.forgerock.openig.uma.UmaResourceServerFilter

99

https://docs.kantarainitiative.org/uma/rec-uma-core.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/uma/UmaResourceServerFilter.html

Decorators
Decorators are objects that decorate other heap objects, adding the new behavior that the decorator
provides. For example, you can configure a decorator object for capturing requests and responses
to a file and then decorate other objects in the heap to trigger the capture.

To decorate other objects individually, use a local decoration by adding the decorator’s name value
as a top-level field of the object. For example, suppose a capture decorator named capture is
defined in the global configuration, config.json. The decorator is configured to capture the entity
but not the context:

{
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true,
 "_captureContext": true
 }
}

The following ClientHandler configuration would then capture requests including the entity before
they are forwarded to the server:

{
 "name": "ClientHandler",
 "type": "ClientHandler",
 "capture": "request"
}

To decorate the handler for a route, add the decorator as a top-level field of the route. The following
route includes an audit decoration on the handler. This configuration decorates the ClientHandler
only for the current route. It does not decorate other uses of ClientHandler in other routes:

{
 "handler": "ClientHandler",
 "audit": "Default route"
}

The decoration as a top-level field also does not decorate heap objects. To decorate all applicable
objects defined within a Route’s heap, configure globalDecorators as a top-level field of the Route.
The globalDecorators field takes a map of the decorations to apply. For example, the following route
has audit and capture decorations that apply to the Chain, HeaderFilter, and
StaticResponseHandler. In other words, the decorations apply to all objects in this route’s heap:

{

100

 "globalDecorators": {
 "audit": "My static route",
 "capture": "all"
 },
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "RESPONSE",
 "add": [
 {
 "X-Powered-By": [
 "OpenIG"
]
 }
]
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "entity": "Hello World"
 }
 }
 }
 },
 "condition": "${matches(request.uri.path, '^/static')}"
}

Decorations are inherited as follows:

• Local decorations that are part of an object’s declaration are inherited wherever the object is
used.

• The globalDecorations on a route are inherited on child routes.

To prevent loops, decorators themselves cannot be decorated. Instead, decorators apply only to
specific types of objects such as Filters and Handlers.

OpenIG defines some decorators, such as audit, baseURI, capture, and timer. You can use these
without configuring them explicitly. For details, see GatewayHttpApplication(5).

Take care when defining decorator names not to use names that unintentionally clash with field
names for the decorated objects. For all heap objects, avoid decorators named config, name, and
type. For Routes, avoid decorators named auditService, baseURI, condition, globalDecorators, heap,
handler, name, and session. In config.json, also avoid logSink and temporaryStorage. In addition,

101

avoid decorators named comment or comments. The best way to avoid a clash with other field names is
to avoid OpenIG reserved field names, which include all purely alphanumeric field names. Instead
use dots in your decorator names, such as my.decorator.

Decorations can apply more than once. For example, if you set a decoration both on a Route and
also on an object defined within the route, then OpenIG can apply the decoration twice. The
following Route results in the request being captured twice:

{
 "handler": {
 "type": "ClientHandler",
 "capture": "request"
 },
 "capture": "all"
}

OpenIG applies decorations in this order.

1. Local decorations

2. globalDecorations (first those of the parent, then those declared in the current route)

3. Route decorations (those decorating a route’s handler)

Interface Stability: Evolving (For details, see Open Identity Platform Product Interface Stability.)

AuditDecorator — trigger notification of audit events
for Filters and Handlers

Description

Triggers notification of audit events for applicable Filters and Handlers.

Interface Stability: Deprecated (For details, see Open Identity Platform Product Interface Stability.)

OpenIG first notifies an audit system sink. The audit system sink takes responsibility for forwarding
notifications to registered audit event listeners. The listeners take responsibility for dealing with
the audit events. What a listener does is implementation specific, but it could for example publish
the event to an endpoint or to a central system, log the event in a file, or raise an alert.

To help listeners determine what to do with audit events, each audit event holds the following
information about what it represents:

event.data

A reference to the data involved in the event, providing access to the request, response, and
contexts objects.

event.source

The source of the audit event, meaning the name of the object under audit.

102

For details, see org.forgerock.openig.audit.AuditSource.

event.tags

Strings that qualify the event. Entities receiving notifications can use the tags to select audit
events of interest.

Define your own audit tags in order to identify particular events or routes.

OpenIG provides the following built-in tags in org.forgerock.openig.audit.Tag:

• request: This event happens before OpenIG calls the decorated object.

• response: This event happens after the call to the decorated object returns or throws an
exception.

When decorating a Filter, realize that the filter returns after handling the response, even if it
only filters the request and so does nothing to the response but pass it along.

• completed: This event happens when the processing unit under audit has successfully
handled the response. This tag always complements a response tag.

Note that completed says nothing about the client application’s perception of whether the
result of the response was successful. For example, a Handler could successfully pass back an
HTTP 404 Not Found response.

• exception: This event happens when the processing unit under audit handled the request and
response processing with errors. This tag always complements a response tag.

Note that the source object might not have thrown an exception itself, so it is not necessarily
the source of the error.

Also note that exception says nothing about the client application’s perception of whether the
result of the response was a failure. For example, another processing unit could still pass
back a success response to the client application or proxy that engaged the request.

event.timestamp

Timestamp indicating when the event happened, with millisecond precision.

Decorated Object Usage

{
 "name": string,
 "type": string,
 "config": object,
 "audit": string or array of strings
}

"name": string, required except for inline objects

The unique name of the object, just like an object that is not decorated.

103

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/audit/AuditSource.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/audit/Tag.html

"type": string, required

The class name of the decorated object, which must be either a Filter or a Handler.

See also Filters and Handlers.

"config": object, required unless empty

The configuration of the object, just like an object that is not decorated.

"audit": string or array of strings, required

Set the value to the tag(s) used to select audit events of interest.

To activate the audit decoration without setting any user-defined tags, set audit to any other
value, such as "audit": true.

Examples

The following example triggers an audit event on a default route:

{
 "handler": "ClientHandler",
 "audit": "Default route"
}

The following example triggers an audit event only on a particular object:

{
 "name": "My Serious Error Handler",
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "reason": "Error",
 "entity": "<html><p>Epic #FAIL</h2></html>"
 },
 "audit": "Epic failure"
}

To observe audit events, use a registered audit agent such as a MonitorEndpointHandler, which is
described in MonitorEndpointHandler(5).

Javadoc

org.forgerock.openig.audit.decoration.AuditDecorator

104

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/audit/decoration/AuditDecorator.html

BaseUriDecorator — override scheme, host, and port
of request URI

Description

Overrides the scheme, host, and port of the existing request URI, rebasing the URI and so making
requests relative to a new base URI. Rebasing changes only the scheme, host, and port of the
request URI. Rebasing does not affect the path, query string, or fragment.

Decorator Usage

{
 "name": string,
 "type": "BaseUriDecorator"
}

A BaseUriDecorator does not have configurable properties.

OpenIG creates a default BaseUriDecorator named baseURI at startup time in the top-level heap, so
you can use baseURI as the decorator name without adding the decorator declaration explicitly.

Decorated Object Usage

{
 "name": string,
 "type": string,
 "config": object,
 decorator name: string
}

"name": string, required except for inline objects

The unique name of the object, just like an object that is not decorated

"type": string, required

The class name of the decorated object, which must be either a Filter or a Handler.

See also Filters and Handlers.

"config": object, required unless empty

The configuration of the object, just like an object that is not decorated

decorator name: string, required

A string representing the scheme, host, and port of the new base URI. The port is optional when
using the defaults (80 for HTTP, 443 for HTTPS).

OpenIG ignores this setting if the value is not a string.

105

Examples

Add a custom decorator to the heap named myBaseUri:

{
 "name": "myBaseUri",
 "type": "BaseUriDecorator"
}

Set a Router’s base URI to https://www.example.com:8443:

{
 "name": "Router",
 "type": "Router",
 "myBaseUri": "https://www.example.com:8443/"
}

Javadoc

org.forgerock.openig.decoration.baseuri.BaseUriDecorator

CaptureDecorator — capture request and response
messages

Description

Captures request and response messages for further analysis.

Decorator Usage

{
 "name": string,
 "type": "CaptureDecorator",
 "config": {
 "logSink": LogSink reference,
 "captureEntity": boolean,
 "captureContext": boolean
 }
}

The decorator configuration has these properties:

106

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/decoration/baseuri/BaseUriDecorator.html

"logSink": LogSink reference, optional

Capture requests and responses to this LogSink.

Provide either the name of a LogSink object defined in the heap, or an inline LogSink
configuration object.

Default: use the LogSink configured for the decorated object. This makes it possible to keep all
logs in a central location.

"captureEntity": boolean, optional

Whether the message entity should be captured.

The filter omits binary entities, instead writing a [binary entity] marker to the file.

Default: false

"captureContext": boolean, optional

Whether the context should be captured as JSON.

Default: false

Decorated Object Usage

{
 "name": string,
 "type": string,
 "config": object,
 decorator name: capture point(s)
}

"name": string, required except for inline objects

The unique name of the object, just like an object that is not decorated

"type": string, required

The class name of the decorated object, which must be either a Filter or a Handler.

See also Filters and Handlers.

"config": object, required unless empty

The configuration of the object, just like an object that is not decorated

decorator name: capture point(s), optional

The decorator name must match the name of the CaptureDecorator. For example, if the
CaptureDecorator has "name": "capture", then decorator name is capture.

The capture point(s) are either a single string, or an array of strings. The strings are documented
here in lowercase, but are not case-sensitive:

107

"all"

Capture at all available capture points

"request"

Capture the request as it enters the Filter or Handler

"filtered_request"

Capture the request as it leaves the Filter

Only applies to Filters

"response"

Capture the response as it enters the Filter or leaves the Handler

"filtered_response"

Capture the response as it leaves the Filter

Only applies to Filters

Examples

Decorator configured to log the entity:

{
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true
 }
}

Decorator configured not to log the entity:

{
 "name": "capture",
 "type": "CaptureDecorator"
}

Decorator configured to log the context in JSON format, excluding the request and the response:

{
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureContext": true
 }

108

}

To capture requests and responses with the entity before sending the request and before returning
the response, do so as in the following example:

{
 "heap": [
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true
 }
 },
 {
 "name": "ClientHandler",
 "type": "ClientHandler",
 "capture": [
 "request",
 "response"
]
 }
],
 "handler": "ClientHandler"
}

To capture all transformed requests and responses as they leave filters, decorate the Route as in the
following example. This Route uses the default CaptureDecorator:

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "X-RequestHeader": [
 "Capture at filtered_request point",
 "And at filtered_response point"
]
 }
 }
 },
 {
 "type": "HeaderFilter",

109

 "config": {
 "messageType": "RESPONSE",
 "add": {
 "X-ResponseHeader": [
 "Capture at filtered_response point"
]
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "reason": "OK",
 "entity": "<html><p>Hello, World!</p></html>"
 }
 }
 }
 },
 "capture": [
 "filtered_request",
 "filtered_response"
]
}

To capture the context as JSON, excluding the request and response, before sending the request and
before returning the response, do so as in the following example:

{
 "heap": [
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureContext": true
 }
 },
 {
 "name": "ClientHandler",
 "type": "ClientHandler",
 "capture": [
 "request",
 "response"
]
 }
],
 "handler": "ClientHandler"
}

110

Javadoc

org.forgerock.openig.decoration.capture.CaptureDecorator

TimerDecorator — record times to process Filters and
Handlers

Description

Records time in milliseconds to process applicable Filters and Handlers. OpenIG writes the records
to the LogSink configured for the decorated heap object. If no LogSink is defined for the decorated
heap object, then OpenIG writes to the LogSink configured for the heap. Records include the time
elapsed while processing the request and response, and for Filters the elapsed time spent
processing the request and response within the Filter itself.

OpenIG records times at log level STAT.

The TimerDecorator is not applicable to the GatewayHttpApplication, as the
GatewayHttpApplication is not declared in the heap. For details, see GatewayHttpApplication(5).

Decorator Usage

{
 "name": string,
 "type": "TimerDecorator"
}

A TimerDecorator does not have configurable properties.

OpenIG configures a default TimerDecorator named timer. You can use timer as the decorator
name without explicitly declaring a decorator named timer.

Decorated Object Usage

{
 "name": string,
 "type": string,
 "config": object,
 decorator name: boolean
}

"name": string, required except for inline objects

The unique name of the object, just like an object that is not decorated

111

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/decoration/capture/CaptureDecorator.html

"type": string, required

The class name of the decorated object, which must be either a Filter or a Handler.

See also Filters and Handlers.

"config": object, required unless empty

The configuration of the object, just like an object that is not decorated

decorator name: boolean, required

OpenIG looks for the presence of the decorator name field for the TimerDecorator.

To activate the timer, set the value of the decorator name field to true.

To deactivate the TimerDecorator temporarily, set the value to false.

Examples

To record times spent within the client handler, and elapsed time for operations traversing the
client handler, use a configuration such as the following:

{
 "handler": {
 "type": "ClientHandler"
 },
 "timer": true
}

This configuration could result in the following log messages:

TUE DEC 02 17:20:08 CET 2014 (STAT) @Timer[top-level-handler]
Started

TUE DEC 02 17:20:08 CET 2014 (STAT) @Timer[top-level-handler]
Elapsed time: 40 ms

When you decorate a Filter with a TimerDecorator, OpenIG can record two timer messages in the
LogSink: the elapsed time for operations traversing the Filter, and the elapsed time spent within the
Filter.

To record times spent within all Filters and the handler, decorate the Route as in the following
example:

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [

112

 {
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "providerHandler": "ClientHandler",
 "scopes": [
 "mail",
 "employeenumber"
],
 "tokenInfoEndpoint":
"http://openam.example.com:8088/openam/oauth2/tokeninfo",
 "requireHttps": false
 },
 "capture": "filtered_request",
 "timer": true
 },
 {
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [
 {
 "target": "${session.username}",
 "value": "${contexts.oauth2.accessToken.info.mail}"
 },
 {
 "target": "${session.password}",
 "value": "${contexts.oauth2.accessToken.info.employeenumber}"
 }
]
 },
 "timer": true
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081",
 "form": {
 "username": [
 "${session.username}"
],
 "password": [
 "${session.password}"
]
 }
 },
 "timer": true
 }
],
 "handler": "ClientHandler"
 }
 },

113

 "condition": "${matches(request.uri.path, '^/rs')}",
 "timer": true
}

This configuration could result in the following log messages:

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{OAuth2ResourceServerFilter}/handler/config/filters/0]
Started

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{AssignmentFilter}/handler/config/filters/1]
Started

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{StaticRequestFilter}/handler/config/filters/2]
Started

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{StaticRequestFilter}/handler/config/filters/2]
Elapsed time: 119 ms

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{StaticRequestFilter}/handler/config/filters/2]
Elapsed time (within the object): 1 ms

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{AssignmentFilter}/handler/config/filters/1]
Elapsed time: 128 ms

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{AssignmentFilter}/handler/config/filters/1]
Elapsed time (within the object): 7 ms

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{OAuth2ResourceServerFilter}/handler/config/filters/0]
Elapsed time: 211 ms

THU DEC 11 16:06:23 CET 2014 (STAT)
@Timer[{OAuth2ResourceServerFilter}/handler/config/filters/0]
Elapsed time (within the object): 81 ms

You can then deactivate the timer by setting the values to false:

{
 "timer": false
}

114

Javadoc

org.forgerock.openig.decoration.timer.TimerDecorator

115

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/decoration/timer/TimerDecorator.html

Logging Framework
OpenIG uses the objects in this section to log events to the console or to files.

ConsoleLogSink — log to standard error

Description

A log sink that writes log entries to the standard error stream.

Usage

{
 "name": string,
 "type": "ConsoleLogSink",
 "config": {
 "level": string,
 "stream": string
 }
}

Properties

"level": string, optional

The level of log entries.

Must be one of the following settings. These are ordered from most verbose to least verbose:

• ALL (log all messages)

• TRACE (log low-level tracing information)

• DEBUG (log debugging information)

• STAT (log performance measurement statistics)

• CONFIG (log configuration information)

• INFO (log general information)

• WARNING (log potential problems)

• ERROR (log serious failures)

• OFF (log no messages)

Default: INFO.

"stream": string, optional

The standard output to use to display logs in the console.

Must be one of the following settings:

116

• ERR (use standard error: System.err)

• OUT (use standard output: System.out)

• AUTO (select standard error or output depending on the message log level: TRACE, DEBUG,
STAT, CONFIG, INFO print to System.out; WARNING and ERROR print to System.err)

Default: ERR.

Example

{
 "name": "LogSink",
 "comment": "Default sink for logging information.",
 "type": "ConsoleLogSink",
 "config": {
 "level": "DEBUG",
 "stream": "AUTO"
 }
}

Javadoc

org.forgerock.openig.log.ConsoleLogSink

FileLogSink — log to a file

Description

A log sink that writes log entries to a file using the UTF-8 character set.

Usage

{
 "name": string,
 "type": "FileLogSink",
 "config": {
 "file": configuration expression,
 "level": string
 }
}

Properties

"file": configuration expression, required

The path to the log file.

117

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/log/ConsoleLogSink.html

A configuration expression, described in Expressions(5) is independent of the request, response,
and contexts, so do not use expressions that reference their properties. You can, however, use
${env['variable']}, ${system['property']}, and all the built-in functions listed in Functions(5).

"level": string, optional

The level of log entries.

Must be one of the following settings. These are ordered from most verbose to least verbose:

• ALL (log all messages)

• TRACE (log low-level tracing information)

• DEBUG (log debugging information)

• STAT (log performance measurement statistics)

• CONFIG (log configuration information)

• INFO (log general information)

• WARNING (log potential problems)

• ERROR (log serious failures)

• OFF (log no messages)
Default: INFO.

Example

{
 "name": "LogSink",
 "type": "FileLogSink",
 "config": {
 "file": "${system['log'] ? system['log'] : '/tmp/proxy.log'}",
 "level": "DEBUG"
 }
}

Javadoc

org.forgerock.openig.log.FileLogSink

Slf4jLogSink — delegate log writing to SLF4J

Description

A log sink that delegates the writing of logs to SLF4J. OpenIG uses the Logback implementation of
the SLF4J API. Use this log sink to define different logging behavior for routes and third-party
dependencies.

118

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/log/FileLogSink.html

A default configuration for logging is defined in OpenIG. To change the configuration, create a file
$HOME/.openig/config/logback.xml. For a description of the available parameters, see the Logback
website.

Usage

{
 "name": string,
 "type": "Slf4jLogSink",
 "config": {
 "base": string
 }
}

Properties

"base": string, optional

The name for a logger that can be defined in logback.xml. The logger identifies a route or third-
party dependency for which to define different logging behavior.

Logger names follow a hierarchical naming rule. When an object logs a message to Slf4jLogSink,
a descendant logger is created the whose name is a concatenation of the base and the object
name, separated with a .. For example, when an object MyObject logs a message to to an
Slf4jLogSink with base com.example.app, a logger named com.example.app.myobject is created.

The hierarchical naming allows you to configure logback.xml with different logging
characteristics for different components in a route.

Default: Empty string.

Example

In the following example, requests from the client filter, MyObject, create a logger called
com.example.app.myobject.

{
 "name": "MyLogSink",
 "type": "Slf4jLogSink",
 "config": {
 "base": "com.example.app"
 }
},
{
 "name": "MyObject",
 "type": "OAuth2ClientFilter",
 "config": {
 "logSink": "MyLogSink"
 }

119

http://logback.qos.ch/index.html
http://logback.qos.ch/index.html

}

The following logback.xml sets the logging level to DEBUG for requests from the client filter, and to
INFO for other requests with the base com.example.app.

<?xml version="1.0" encoding="UTF-8"?><configuration>

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>
 %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n
 </pattern>
 </encoder>
</appender>

<logger name="com.example.app" level="INFO"/>
<logger name="com.example.app.myobject" level="DEBUG"/>

<root level="DEBUG">
 <appender-ref ref="STDOUT"/>
</root>

</configuration>

For an example configuration, see Separating Logs for Different Routes in the Gateway Guide.

Javadoc

org.forgerock.openig.log.Slf4jLogSink

120

../gateway-guide/chap-logging.pdf#chap-logging-example
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/log/Slf4jLogSink.html

Audit Framework
OpenIG uses the Open Identity Platform common audit framework to log system boundary events
using an implementation that is common across the ForgeRock platform.

AuditService — enable common audit service for a
route

Description

This object serves to configure the audit service for a route. The audit service uses the Open
Identity Platform common audit event framework.

The route is decorated with an auditService field whose value references the configuration, either
inline or from the heap.

Usage

{
 "name": string,
 "type": "AuditService",
 "config": {
 "config": object,
 "event-handlers": array
 }
}

Properties

"config": object, required

This object configures the audit service itself, rather than event handlers. If the configuration
uses only default settings, you can omit the field instead of including an empty object as the field
value.

The configuration object has the following fields:

"handlerForQueries": string, optional

This references the name of the event handler to use when querying audit event messages
over REST.

"availableAuditEventHandlers": array of strings, optional

This lists fully qualified event handler class names for event handlers available to the audit
service.

"filterPolicies": object, optional

These policies indicate what fields and values to include and to exclude from audit event

121

messages.

The filter policies object has these fields:

"field": object, optional

Audit event fields use JSON pointer notation, and are taken from the JSON schema for the
audit event content.

Default: Include all fields.

The field object specifies which fields to include and to exclude:

"excludeIf": array of strings, optional

This holds a list of audit event fields to exclude.

"includeIf": array of strings, optional

This holds a list of audit event fields to include.

"value": object, optional

Default: Include all messages.

The value object specifies field values based on which messages are included and
excluded:

"excludeIf": array of strings, optional

This holds a list of audit event field values.

When a value matches, the message is excluded.

"includeIf": array of strings, optional

This holds a list of audit event field values.

When a value matches, the message is included.

"event-handlers": array of configuration objects, required

This array of audit event handler configuration objects defines the event handlers that deal with
audit events.

Each event handler configuration depends on type of the event handler.

OpenIG supports the following audit event handlers:

• CsvAuditEventHandler(5)

• JdbcAuditEventHandler(5)

• SyslogAuditEventHandler(5)

• ElasticsearchAuditEventHandler(5)

122

Example

The following example configures an audit service to log access event messages in a comma-
separated variable file, named /path/to/audit/logs/access.csv:

{
 "name": "AuditService",
 "type": "AuditService",
 "config": {
 "config": {},
 "event-handlers": [
 {
 "class": "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config": {
 "name": "csv",
 "logDirectory": "/path/to/audit/logs",
 "topics": [
 "access"
]
 }
 }
]
 }
}

The following example route uses the audit service:

{
 "handler": "ClientHandler",
 "auditService": "AuditService"
}

Javadoc

org.forgerock.audit.AuditService

CsvAuditEventHandler — log audit events to CSV
format files

Description

An audit event handler that responds to events by logging messages to files in comma-separated
variable (CSV) format.

The configuration is declared in an audit service configuration. For details, see AuditService(5).

123

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/audit/AuditService.html

Usage

{
 "class": "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config": {
 "name": string,
 "logDirectory": string,
 "topics": array,
 "enabled": boolean,
 "formatting": {
 "quoteChar": single-character string,
 "delimiterChar": single-character string,
 "endOfLineSymbols": string
 },
 "buffering": {
 "enabled": boolean,
 "autoFlush": boolean
 },
 "security": {
 "enabled": boolean,
 "filename": string,
 "password": string,
 "signatureInterval": duration
 },
 "fileRetention": {
 "maxDiskSpaceToUse": number,
 "maxNumberOfHistoryFiles": number,
 "minFreeSpaceRequired": number
 },
 "fileRotation": {
 "rotationEnabled": boolean,
 "maxFileSize": number,
 "rotationFilePrefix": string,
 "rotationFileSuffix": string,
 "rotationInterval": duration,
 "rotationTimes": array
 },
 "rotationRetentionCheckInterval": duration
 }
}

The values in this configuration object can use expressions as long as they resolve to the correct
types for each field. For details about expressions, see Expressions(5).

Configuration

The "config" object has the following properties:

124

"name": string, required

The name of the event handler.

"logDirectory": string, required

The file system directory where log files are written.

"topics": array of strings, required

The topics that this event handler intercepts.

OpenIG handles access events that occur at the system boundary, such as arrival of the initial
request and departure of the final response.

Set this to "topics": ["access"].

"enabled": boolean, optional

Whether this event handler is active.

Default: true.

"formatting": object, optional

Formatting settings for CSV log files.

The formatting object has the following fields:

"quoteChar": single-character string, optional

The character used to quote CSV entries.

Default: ".

"delimiterChar": single-character string, optional

The character used to delimit CSV entries.

Default: ,.

"endOfLineSymbols": string, optional

The character or characters that separate a line.

Default: system-dependent line separator defined for the JVM.

"buffering": object, optional

Buffering settings for writing CSV log files. The default is for messages to be written to the log file
for each event.

The buffering object has the following fields:

"enabled": boolean, optional

Whether log buffering is enabled.

Default: false.

125

"autoFlush": boolean, optional

Whether events are automatically flushed after being written.

Default: true.

"security": object, optional

Security settings for CSV log files. These settings govern tamper-evident logging, whereby
messages are signed. By default tamper-evident logging is not enabled.

The security object has the following fields:

"enabled": boolean, optional

Whether tamper-evident logging is enabled.

Default: false.

Tamper-evident logging depends on a specially prepared keystore. For details, see "Preparing
a Keystore for Tamper-Evident Logs".

"filename": string, required

File system path to the keystore containing the private key for tamper-evident logging.

The keystore must be a keystore of type JCEKS. For details, see "Preparing a Keystore for
Tamper-Evident Logs".

"password": string, required

The password for the keystore for tamper-evident logging.

This password is used for the keystore and for private keys. For details, see "Preparing a
Keystore for Tamper-Evident Logs".

"signatureInterval": duration, required

The time interval after which to insert a signature in the CSV file. This duration must not be
zero, and must not be unlimited.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59
seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

126

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

"fileRetention": object, optional

File retention settings for CSV log files.

The file retention object has the following fields:

"maxDiskSpaceToUse": number, optional

The maximum disk space in bytes the audit logs can occupy. A setting of 0 or less indicates
that the policy is disabled.

Default: 0.

"maxNumberOfHistoryFiles": number, optional

The maximum number of historical log files to retain. A setting of -1 disables pruning of old
history files.

Default: 0.

"minFreeSpaceRequired": number, optional

The minimum free space in bytes that the system must contain for logs to be written. A
setting of 0 or less indicates that the policy is disabled.

Default: 0.

"fileRotation": object, optional

File rotation settings for CSV log files.

The file rotation object has the following fields:

"rotationEnabled": boolean, optional

Whether file rotation is enabled for CSV log files.

Default: false.

"maxFileSize": number, optional

The maximum file size of an audit log file in bytes. A setting of 0 or less indicates that the
policy is disabled.

Default: 0.

"rotationFilePrefix": string, optional

The prefix to add to a log file on rotation.

This has an effect when time-based file rotation is enabled.

127

"rotationFileSuffix": string, optional

The suffix to add to a log file on rotation, possibly expressed in SimpleDateFormat.

This has an effect when time-based file rotation is enabled.

Default: -yyyy.MM.dd-HH.mm.ss, where yyyy characters are replaced with the year, MM
characters are replaced with the month, dd characters are replaced with the day, HH
characters are replaced with the hour (00-23), mm characters are replaced with the minute
(00-60), and ss characters are replaced with the second (00-60).

"rotationInterval": duration, optional

The time interval after which to rotate log files. This duration must not be zero.

This has the effect of enabling time-based file rotation.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59
seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

"rotationTimes": array of durations, optional

The durations, counting from midnight, after which to rotate files.

The following example schedules rotation six and twelve hours after midnight:

"rotationTimes": ["6 hours", "12 hours"]

This has the effect of enabling time-based file rotation.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59
seconds.

Durations are not case sensitive.

128

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

"rotationRetentionCheckInterval": duration, optional

The time interval after which to check file rotation and retention policies for updates.

Default: 5 seconds

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

Preparing a Keystore for Tamper-Evident Logs

Tamper-evident logging depends on a public key/private key pair and on a secret key that are
stored together in a JCEKS keystore. Follow these steps to prepare the keystore:

1. Generate a key pair in the keystore.

129

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

The CSV event handler expects a JCEKS-type keystore with a key alias of Signature for the
signing key, where the key is generated with the RSA key algorithm and the SHA256withRSA
signature algorithm:

$ keytool \
 -genkeypair \
 -keyalg RSA \
 -sigalg SHA256withRSA \
 -alias "Signature" \
 -dname "CN=openig.example.com,O=Example Corp,C=FR" \
 -keystore /path/to/audit-keystore \
 -storetype JCEKS \
 -storepass password \
 -keypass password

2. Generate a secret key in the keystore.

The CSV event handler expects a JCEKS-type keystore with a key alias of Password for the
symmetric key, where the key is generated with the HmacSHA256 key algorithm and 256-bit
key size:

$ keytool \
 -genseckey \
 -keyalg HmacSHA256 \
 -keysize 256 \
 -alias "Password" \
 -keystore /path/to/audit-keystore \
 -storetype JCEKS \
 -storepass password \
 -keypass password

3. Verify the content of the keystore:

$ keytool \
 -list \
 -keystore /path/to/audit-keystore \
 -storetype JCEKS \
 -storepass password

Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 2 entries

signature, Nov 27, 2015, PrivateKeyEntry,
Certificate fingerprint (SHA1): 4D:CF:CC:29:...:8B:6E:68:D1
password, Nov 27, 2015, SecretKeyEntry,

130

Example

For instructions on recording audit events in a CSV file, see To Record Audit Events In a CSV File in
the Gateway Guide.

The following example configures a CSV audit event handler to write a log file,
/path/to/audit/logs/access.csv, that is signed every 10 seconds to make it tamper-evident:

{
 "name": "csv",
 "topics": [
 "access"
],
 "logDirectory": "/path/to/audit/logs/",
 "security": {
 "enabled": "true",
 "filename": "/path/to/audit-keystore",
 "password": "password",
 "signatureInterval": "10 seconds"
 }
}

Javadoc

org.forgerock.audit.handlers.csv.CsvAuditEventHandler

JdbcAuditEventHandler — log audit events to
relational database

Description

An audit event handler that responds to events by logging messages to an appropriately configured
relational database table.

The configuration is declared in an audit service configuration. For details, see AuditService(5).

Usage

{
 "class": "org.forgerock.audit.handlers.jdbc.JdbcAuditEventHandler",
 "config": {
 "name": string,
 "topics": array,
 "databaseType": string,
 "enabled": boolean,
 "buffering": {

131

../gateway-guide/chap-auditing.pdf#audit-csv
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/audit/handlers/csv/CsvAuditEventHandler.html

 "enabled": boolean,
 "writeInterval": duration,
 "autoFlush": boolean,
 "maxBatchedEvents": number,
 "maxSize": number,
 "writerThreads": number
 },
 "connectionPool": {
 "dataSourceClassName": string,
 "jdbcUrl": string,
 "username": string,
 "password": string,
 "autoCommit": boolean,
 "connectionTimeout": number,
 "idleTimeout": number,
 "maxLifetime": number,
 "minIdle": number,
 "maxPoolSize": number,
 "poolName": string
 },
 "tableMappings": [
 {
 "event": string,
 "table": string,
 "fieldToColumn": {
 "event-field": "database-column"
 }
 }
]
 }
}

The values in this configuration object can use expressions as long as they resolve to the correct
types for each field. For details about expressions, see Expressions(5).

Configuration

The "config" object has the following properties:

"name": string, required

The name of the event handler.

"topics": array of strings, required

The topics that this event handler intercepts.

OpenIG handles access events that occur at the system boundary, such as arrival of the initial
request and departure of the final response.

Set this to "topics": ["access"].

132

"databaseType": string, required

The database type name.

Built-in support is provided for oracle, mysql, and h2. Unrecognized database types rely on a
GenericDatabaseStatementProvider.

"enabled": boolean, optional

Whether this event handler is active.

Default: true.

"buffering": object, optional

Buffering settings for sending messages to the database. The default is for messages to be written
to the log file for each event.

The buffering object has the following fields:

"enabled": boolean, optional

Whether log buffering is enabled.

Default: false.

"writeInterval": duration, required

The interval at which to send buffered event messages to the database.

This interval must be greater than 0 if buffering is enabled.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59
seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

133

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/audit/handlers/jdbc/providers/GenericDatabaseStatementProvider.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

"autoFlush": boolean, optional

Whether the events are automatically flushed after being written.

Default: true.

"maxBatchedEvents": number, optional

The maximum number of event messages batched into a PreparedStatement.

Default: 100.

"maxSize": number, optional

The maximum size of the queue of buffered event messages.

Default: 5000.

"writerThreads": number, optional

The number of threads to write buffered event messages to the database.

Default: 1.

"connectionPool": object, required

Connection pool settings for sending messages to the database.

The connection pool object has the following fields:

"dataSourceClassName": string, optional

The class name of the data source for the database.

"jdbcUrl": string, required

The JDBC URL to connect to the database.

"username": string, required

The username identifier for the database user with access to write the messages.

"password": number, optional

The password for the database user with access to write the messages.

"autoCommit": boolean, optional

Whether to commit transactions automatically when writing messages.

Default: true.

"connectionTimeout": number, optional

The number of milliseconds to wait for a connection from the pool before timing out.

Default: 30000.

"idleTimeout": number, optional

The number of milliseconds to allow a database connection to remain idle before timing out.

134

http://docs.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html

Default: 600000.

"maxLifetime": number, optional

The number of milliseconds to allow a database connection to remain in the pool.

Default: 1800000.

"minIdle": number, optional

The minimum number of idle connections in the pool.

Default: 10.

"maxPoolSize": number, optional

The maximum number of connections in the pool.

Default: 10.

"poolName": string, optional

The name of the connection pool.

"tableMappings": array of objects, required

Table mappings for directing event content to database table columns.

A table mappings object has the following fields:

"event": string, required

The audit event that the table mapping is for.

Set this to access.

"table": string, required

The name of the database table that corresponds to the mapping.

"fieldToColumn": object, required

This object maps the names of audit event fields to database columns, where the keys and
values are both strings.

Audit event fields use JSON pointer notation, and are taken from the JSON schema for the
audit event content.

Example

The following example configures a JDBC audit event handler using a local MySQL database,
writing to a table named auditaccess:

{
 "class": "org.forgerock.audit.handlers.jdbc.JdbcAuditEventHandler",
 "config": {
 "databaseType": "mysql",

135

 "name": "jdbc",
 "topics": [
 "access"
],
 "connectionPool": {
 "jdbcUrl":
"jdbc:mysql://localhost:3306/audit?allowMultiQueries=true&characterEncoding=utf8",
 "username": "audit",
 "password": "audit"
 },
 "tableMappings": [
 {
 "event": "access",
 "table": "auditaccess",
 "fieldToColumn": {
 "_id": "id",
 "timestamp": "timestamp_",
 "eventName": "eventname",
 "transactionId": "transactionid",
 "userId": "userid",
 "trackingIds": "trackingids",
 "server/ip": "server_ip",
 "server/port": "server_port",
 "client/host": "client_host",
 "client/ip": "client_ip",
 "client/port": "client_port",
 "request/protocol": "request_protocol",
 "request/operation": "request_operation",
 "request/detail": "request_detail",
 "http/request/secure": "http_request_secure",
 "http/request/method": "http_request_method",
 "http/request/path": "http_request_path",
 "http/request/queryParameters": "http_request_queryparameters",
 "http/request/headers": "http_request_headers",
 "http/request/cookies": "http_request_cookies",
 "http/response/headers": "http_response_headers",
 "response/status": "response_status",
 "response/statusCode": "response_statuscode",
 "response/elapsedTime": "response_elapsedtime",
 "response/elapsedTimeUnits": "response_elapsedtimeunits"
 }
 }
]
 }
}

Examples including statements to create tables are provided in the JDBC handler library, forgerock-
audit-handler-jdbc-version.jar, that is built into the OpenIG .war file. Unpack the library, then find
the examples under the db/ folder.

136

Javadoc

org.forgerock.audit.handlers.jdbc.JdbcAuditEventHandler

SyslogAuditEventHandler — log audit events to the
system log

Description

An audit event handler that responds to events by logging messages to the UNIX system log as
governed by RFC 5424, The Syslog Protocol.

The configuration is declared in an audit service configuration. For details, see AuditService(5).

Usage

{
 "class": "org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler",
 "config": {
 "name": string,
 "topics": array,
 "protocol": string,
 "host": string,
 "port": number,
 "connectTimeout": number,
 "facility": "string",
 "buffering": {
 "enabled": boolean,
 "maxSize": number
 },
 "severityFieldMappings": [
 {
 "topic": string,
 "field": string,
 "valueMappings": {
 "field-value": "syslog-severity"
 }
 }
]
 }
}

The values in this configuration object can use expressions as long as they resolve to the correct
types for each field. For details about expressions, see Expressions(5).

137

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/audit/handlers/jdbc/JdbcAuditEventHandler.html
https://tools.ietf.org/html/rfc5424

Configuration

The "config" object has the following properties:

"name": string, required

The name of the event handler.

"topics": array of strings, required

The topics that this event handler intercepts.

OpenIG handles access events that occur at the system boundary, such as arrival of the initial
request and departure of the final response.

Set this to "topics": ["access"].

"protocol": string, required

The transport protocol used to send event messages to the Syslog daemon.

Set this to TCP for Transmission Control Protocol, or to UDP for User Datagram Protocol.

"host": string, required

The hostname of the Syslog daemon to which to send event messages. The hostname must
resolve to an IP address.

"port": number, required

The port of the Syslog daemon to which to send event messages.

The value must be between 0 and 65535.

"connectTimeout": number, required when using TCP

The number of milliseconds to wait for a connection before timing out.

"facility": string, required

The Syslog facility to use for event messages.

Set this to one of the following values:

kern

Kernel messages

user

User-level messages

mail

Mail system

daemon

System daemons

138

auth

Security/authorization messages

syslog

Messages generated internally by syslogd

lpr

Line printer subsystem

news

Network news subsystem

uucp

UUCP subsystem

cron

Clock daemon

authpriv

Security/authorization messages

ftp

FTP daemon

ntp

NTP subsystem

logaudit

Log audit

logalert

Log alert

clockd

Clock daemon

local0

Local use 0

local1

Local use 1

local2

Local use 2

local3

Local use 3

139

local4

Local use 4

local5

Local use 5

local6

Local use 6

local7

Local use 7

"buffering": object, optional

Buffering settings for writing to the system log facility. The default is for messages to be written
to the log for each event.

The buffering object has the following fields:

"enabled": boolean, optional

Whether log buffering is enabled.

Default: false.

"maxSize": number, optional

The maximum number of buffered event messages.

Default: 5000.

"severityFieldMappings": object, optional

Severity field mappings set the correspondence between audit event fields and Syslog severity
values.

The severity field mappings object has the following fields:

"topic": string, required

The audit event topic to which the mapping applies.

Set this to access.

"field": string, required

The audit event field to which the mapping applies.

Audit event fields use JSON pointer notation, and are taken from the JSON schema for the
audit event content.

"valueMappings": object, required

The map of audit event values to Syslog severities, where both the keys and the values are
strings.

Syslog severities are one of the following values:

140

emergency

System is unusable.

alert

Action must be taken immediately.

critical

Critical conditions.

error

Error conditions.

warning

Warning conditions.

notice

Normal but significant condition.

informational

Informational messages.

debug

Debug-level messages.

Example

The following example configures a Syslog audit event handler that writes to the system log
daemon on syslogd.example.com, port 6514 over TCP with a timeout of 30 seconds. The facility is the
first one for local use, and response status is mapped to Syslog informational messages:

{
 "class": "org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler",
 "config": {
 "protocol": "TCP",
 "host": "https://syslogd.example.com",
 "port": 6514,
 "connectTimeout": 30000,
 "facility": "local0",
 "severityFieldMappings": [
 {
 "topic": "access",
 "field": "response/status",
 "valueMappings": {
 "FAILED": "INFORMATIONAL",
 "SUCCESSFUL": "INFORMATIONAL"
 }
 }
]
 }

141

}

Javadoc

org.forgerock.audit.handlers.syslog.SyslogAuditEventHandler

ElasticsearchAuditEventHandler — log audit events in
the Elasticsearch search and analytics engine

Description

An audit event handler that responds to events by logging messages in the Elasticsearch search and
analytics engine.

The configuration is declared in an audit service configuration. For information, see
AuditService(5).

For Elasticsearch downloads and installation instructions, see the Elasticsearch Getting Started
document.

A special client handler called ElasticsearchClientHandler can be defined to send audit events to
Elasticsearch. You can use this client handler to capture the exchange between the audit service
and Elasticsearch, or to wrap the search with a filter, for example, the OAuth2ClientFilter.

To define an ElasticsearchClientHandler, create the following object in the heap for the
Elasticsearch audit event handler

{
 "name": "ElasticsearchClientHandler",
 "type": "ClientHandler",
 "config": {},
}

Usage

{
 "class": "org.forgerock.audit.handlers.elasticsearch.ElasticsearchAuditEventHandler
",
 "config": {
 "connection" : {
 "host" : string,
 "port" : number,
 "useSSL" : boolean,
 "username" : string,
 "password" : string

142

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/audit/handlers/syslog/SyslogAuditEventHandler.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html

 },
 "indexMapping" : {
 "indexName" : string
 },
 "buffering" : {
 "enabled" : boolean,
 "writeInterval" : duration,
 "maxSize" : number,
 "maxBatchedEvents" : number
 },
 "topics" : [string, ...]
 }
}

The values in this configuration object can use expressions if they resolve to the correct types for
each field. For information about expressions, see Expressions(5).

Properties

The "config" object has the following properties:

"connection": object, optional

Connection settings for sending messages to Elasticsearch. If this object is not configured, it takes
default values for its fields. This object has the following fields:

"host": string, optional

Hostname or IP address of Elasticsearch. The hostname must resolve to an IP address.

Default: localhost

"port": number, optional

The port used by Elasticsearch. The value must be between 0 and 65535.

Default: 9200

"useSSL": boolean, optional

Setting to use or not use SSL/TLS to connect to Elasticsearch.

Default: false

"username": string, optional

Username when Basic Authentication is enabled through Elasticsearch Shield.

"password": string, optional

Password when Basic Authentication is enabled through Elasticsearch Shield.

"indexMapping": object, optional

Defines how an audit event and its fields are stored and indexed.

143

"indexName": string, optional

The index name. Set this parameter if the default name audit conflicts with an existing
Elasticsearch index.

Default: audit.

"buffering": object, optional

Settings for buffering events and batch writes.

"enabled": boolean, optional

Setting to use or not use log buffering.

Default: false.

"writeInterval": duration, required if buffering is enabled

The interval at which to send buffered event messages to Elasticsearch. If buffering is
enabled, this interval must be greater than 0.

Default: 1 second

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59
seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

"maxBatchedEvents": number, optional

The maximum number of event messages in a batch write to Elasticsearch for each
writeInterval.

Default: 500

"maxSize": number, optional

The maximum number of event messages in the queue of buffered event messages.

144

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

Default: 10000

"topics": array of strings, required

The topics that this event handler intercepts.

OpenIG handles access events that occur at the system boundary, such as arrival of the initial
request and departure of the final response.

Set this to "topics": ["access"].

Example

For instructions on recording audit events in Elasticsearch, see To Record Audit Events In
Elasticsearch in the Gateway Guide.

The following example configures an Elasticsearch audit event handler:

{
 "class" :
"org.forgerock.audit.handlers.elasticsearch.ElasticsearchAuditEventHandler",
 "config" : {
 "connection" : {
 "useSSL" : false,
 "host" : "localhost",
 "port" : "9200"
 },
 "indexMapping" : {
 "indexName" : "audit"
 },
 "buffering" : {
 "enabled" : false,
 "maxSize" : 20000,
 "writeInterval" : "1 second",
 "maxBatchedEvents" : "500"
 },
 "topics" : [
 "access"
]
 }
}

145

../gateway-guide/chap-auditing.pdf#audit-elasticsearch
../gateway-guide/chap-auditing.pdf#audit-elasticsearch

Throttling Filters and Policies
To protect applications from being overused by clients, use a throttling filter to limit how many
requests clients can make in a defined time.

ThrottlingFilter — limit the rate of requests

Description

Limits the rate that requests pass through a filter. The maximum number of requests that a client is
allowed to make in a defined time is called the throttling rate.

The throttling filter uses a strategy based on the token bucket algorithm, which allows some bursts.
Because of traffic bursts, the throttling rate can occasionally be higher than the defined limit - for
example, with a throttling rate of 10 requests/10 seconds there can be more than 10 requests in the
10 second duration. However, the number of concurrent requests cannot exceed that defined for
the throttling rate - for example, with a throttling rate of 10 requests/10 seconds there cannot be
more than 10 concurrent requests.

When the throttling rate is reached, OpenIG issues an HTTP status code 429 Too Many Requests and a
Retry-After header, whose value is rounded up to the number of seconds to wait before trying the
request again.

GET http://openig.example.com:8080/throttle-scriptable HTTP/1.1

 . . .

 HTTP/1.1 429 Too Many Requests
 Retry-After: 10

Usage

{
 "name": string,
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": expression,
 "throttlingRatePolicy": reference or inline declaration, //Use either
"policy"
 "rate": { //or "rate", but not
both.
 "numberOfRequests": integer,
 "duration": duration string
 },
 "cleaningInterval": duration string,
 "executor": executor
 }

146

}

Properties

"requestGroupingPolicy": expression, required

An expression to identify the partition to use for the request. In many cases the partition
identifies an individual client that sends requests, but it can also identify a group that sends
requests. The expression can evaluate to the client IP address or user ID, or an OpenID Connect
subject/issuer.

Default: Empty string. The value for this expression must not be null.

See also Expressions(5).

"throttlingRatePolicy": reference or inline declaration, required if "rate" is not used

A reference to or inline declaration of a policy to apply for throttling rate. The following policies
can be used:

• MappedThrottlingPolicy(5)

• ScriptableThrottlingPolicy(5)

• DefaultRateThrottlingPolicy(5)

This value for this parameter must not be null.

"rate": rate object, required if "throttlingRatePolicy" is not used

The throttling rate to apply to requests. The rate is calculated as the number of requests divided
by the duration.

"numberOfRequests": integer, required

The number of requests allowed through the filter in the time specified by "duration".

"duration": duration string, required

A time interval during which the number of requests passing through the filter is counted.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

147

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

"cleaningInterval": duration, optional

The time to wait before cleaning outdated partitions. The value must be more than zero but not
more than one day.

"executor": executor, optional

An executor service to schedule the execution of tasks, such as the clean up of partitions that are
no longer used.

Default: ScheduledExecutorService

See also ScheduledExecutorService(5).

Examples

The following links provide examples of how the throttling policies are implemented:

• "Example of a Mapped Throttling Policy"

• "Example of a Scriptable Throttling Policy"

The following route defines a throttling rate of 6 requests/10 seconds to requests. For information
about how to set up and test this example, see Configuring a Simple Throttling Filter in the
Gateway Guide.

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${request.headers['UserId'][0]}",
 "rate": {
 "numberOfRequests": 6,
 "duration": "10 seconds"
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "condition": "${matches(request.uri.path, '^/throttle-simple')}"

148

../gateway-guide/chap-throttling.pdf#throttling-simple

}

Javadoc

org.forgerock.openig.filter.throttling.ThrottlingFilterHeaplet

MappedThrottlingPolicy — map throttling rates to
groups of requests

Description

Maps different throttling rates to different groups of requests, according to the evaluation of
throttlingRateMapper.

Usage

{
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": expression,
 "throttlingRatePolicy": {
 "type": "MappedThrottlingPolicy",
 "config": {
 "throttlingRateMapper": expression<string>,
 "throttlingRatesMapping": {
 "mapping1": {
 "numberOfRequests": integer,
 "duration": duration string
 },
 "mapping2": {
 "numberOfRequests": integer,
 "duration": duration string
 }
 },
 "defaultRate": {
 "numberOfRequests": integer,
 "duration": duration string
 }
 }
 }
 }
}

149

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/throttling/ThrottlingFilterHeaplet.html

Properties

"throttlingRateMapper": expression, required

An expression to categorize requests for mapping to a throttling rate in the
throttlingRatesMapping.

If this parameter is null or does not match any specified mappings, the default throttling rate is
applied.

"throttlingRatesMapping": object, required

A map of throttling rate by request group. Requests are categorized into groups by the
evaluation of the expression "throttlingRateMapper".

"mapping1" and "mapping2": string, required

The evaluation of the expression "throttlingRateMapper".

"defaultRate": object, required

The default throttling rate to apply if the evaluation of the expression "throttlingRateMapper" is
null or is not mapped to a throttling rate.

The number of mappings is not limited to two.

"numberOfRequests": integer, required

The number of requests allowed through the filter in the time specified by "duration".

"duration": duration string, required

A time interval during which the number of requests passing through the filter is counted.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

150

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

Example of a Mapped Throttling Policy

In the following example, requests from users in the accounts and sales departments of example.com
are mapped to different throttling rates. Requests from other departments use the default throttling
rate. For information about how to set up and test this example, see Configuring a Mapped
Throttling Filter in the Gateway Guide.

Alice and Bob both send requests from accounts, and so they each have a throttling rate of 6
requests/10 seconds. The throttling rate is applied independently to Alice and Bob, so no matter
how many requests Alice sends in 10 seconds, Bob can still send up to 6 requests in the same 10
seconds. Carol sends requests from sales, with a throttling rate of 3 requests/10 seconds. Dave sends
requests from finance, with the default rate of 1 request/10 seconds.

The throttling rate is assigned according to the evaluation of throttlingRateMapper. In the example,
this parameter evaluates to the value of the request header X-Forwarded-For, representing the
hostname of the department.

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${request.headers['UserId'][0]}",
 "throttlingRatePolicy": {
 "type": "MappedThrottlingPolicy",
 "config": {
 "throttlingRateMapper": "${request.headers['X-Forwarded-For'][0]}",
 "throttlingRatesMapping": {
 "accounts.example.com": {

151

../gateway-guide/chap-throttling.pdf#throttling-mapped
../gateway-guide/chap-throttling.pdf#throttling-mapped

 "numberOfRequests": 6,
 "duration": "10 seconds"
 },
 "sales.example.com": {
 "numberOfRequests": 3,
 "duration": "10 seconds"
 }
 },
 "defaultRate": {
 "numberOfRequests": 1,
 "duration": "10 seconds"
 }
 }
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "condition": "${matches(request.uri.path, '^/throttle-mapped')}"
}

Javadoc

org.forgerock.openig.filter.throttling.MappedThrottlingPolicyHeaplet

ScriptableThrottlingPolicy — script to map throttling
rates

Description

Uses a script to look up throttling rates to apply to groups of requests.

Usage

{
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": expression,
 "throttlingRatePolicy": {
 "type": "ScriptableThrottlingPolicy",
 "config": {
 "type": string,
 "file": string, // Use either "file"
 "source": string // or "source", but not both

152

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/throttling/MappedThrottlingPolicyHeaplet.html

 }
 }
 }
}

Properties

"type": string, required

The Internet media type (formerly MIME type) of the script. For Groovy, the value is
"application/x-groovy".

"file": string, required if "source" is not used

The path to the file containing the script.

Relative paths in this field are relative to the base location for scripts, which depends on the
configuration. For information, see Installing OpenIG in the Gateway Guide.

The base location for Groovy scripts is on the classpath when the scripts are executed. If a
Groovy script is not in the default package, but instead has its own package name, it belongs in
the directory corresponding to the package name. For example, a script in package
com.example.groovy belongs under openig-base/scripts/groovy/com/example/groovy/.

"source": string, required if "file" is not used

The script as a string.

Example of a Scriptable Throttling Policy

In the following example, the DefaultRateThrottlingPolicy delegates the management of throttling
to the scriptable throttling policy. For information about how to set up and test this example, see
Configuring a Scriptable Throttling Filter in the Gateway Guide.

The script applies a throttling rate of 6 requests/10 seconds to requests from the accounts
department of example.com. For all other requests, the script returns null. When the script returns
null, the default rate of 1 request/10 seconds is applied.

The script can store the mapping for the throttling rate in memory, and can use a more complex
mapping mechanism than that used in the MappedThrottlingPolicy. For example, the script can map
the throttling rate for a range of IP addresses. The script can also query an LDAP directory, query
an external database, or read the mapping from a file.

153

../gateway-guide/chap-install.pdf#install
../gateway-guide/chap-throttling.pdf#throttling-scriptable
../gateway-guide/chap-throttling.pdf#throttling-scriptable

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${request.headers['UserId'][0]}",
 "throttlingRatePolicy": {
 "type": "DefaultRateThrottlingPolicy",
 "config": {
 "delegateThrottlingRatePolicy": {
 "type": "ScriptableThrottlingPolicy",
 "config": {
 "type": "application/x-groovy",
 "file": "ThrottlingScript.groovy"
 }
 },
 "defaultRate": {
 "numberOfRequests": 1,
 "duration": "10 seconds"
 }
 }
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "condition": "${matches(request.uri.path, '^/throttle-scriptable')}"
}

The groovy script maps a throttling rate for the accounts department of example.com. Other requests
receive the default throttling rate.

154

/**
 * ThrottlingScript.groovy
 *
 * Script to throttle access for requests from the accounts department
 * of example.com. Other requests return null.
 */

if (request.headers['X-Forwarded-For'].values[0] == 'accounts.example.com') {
 return new ThrottlingRate(6, '10 seconds')
} else {
 return null
}

Javadoc

org.forgerock.openig.filter.throttling.ScriptableThrottlingPolicy.Heaplet

DefaultRateThrottlingPolicy — default policy for
throttling rate

Description

Provides a default throttling rate if the delegating throttling policy returns null.

Usage

{
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": expression,
 "throttlingRatePolicy": {
 "type": "DefaultRateThrottlingPolicy",
 "config": {
 "delegateThrottlingRatePolicy" : reference or inline declaration,
 "defaultRate": {
 "numberOfRequests": integer,
 "duration": duration string
 }
 }
 }
 }
}

155

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/throttling/ScriptableThrottlingPolicy.Heaplet.html

Properties

"delegateThrottlingRatePolicy": reference, required

The policy to which the default policy delegates the throttling rate. The
DefaultRateThrottlingPolicy delegates management of throttling to the policy specified by
delegateThrottlingRatePolicy.

If delegateThrottlingRatePolicy returns null, the defaultRate is used.

For information about policies to use, see MappedThrottlingPolicy(5) and
ScriptableThrottlingPolicy(5).

"defaultRate": object, required

The default throttling rate to apply if the delegating policy returns null.

"numberOfRequests": integer, required

The number of requests allowed through the filter in the time specified by "duration".

"duration": duration string, required

A time interval during which the number of requests passing through the filter is counted.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

Example

For an example of how this policy is used, see "Example of a Scriptable Throttling Policy" .

Javadoc

org.forgerock.openig.filter.throttling.DefaultRateThrottlingPolicyHeaplet

156

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/throttling/DefaultRateThrottlingPolicyHeaplet.html

Miscellaneous Heap Objects

ClientRegistration — Hold OAuth 2.0 client
registration information

Description

A ClientRegistration holds information about registration with an OAuth 2.0 authorization server or
OpenID Provider.

The configuration includes the client credentials that are used to authenticate to the identity
provider. The client credentials can be included directly in the configuration, or retrieved in some
other way using an expression, described in Expressions(5).

Usage

{
 "name": string,
 "type": "ClientRegistration",
 "config": {
 "clientId": expression,
 "clientSecret": expression,
 "issuer": Issuer reference,
 "registrationHandler": Handler reference,
 "scopes": [expression, ...],
 "tokenEndpointUseBasicAuth": boolean
 }
}

Properties

The client registration configuration object properties are as follows:

"name": string, required

A name for the client registration.

"clientId": expression, required

The client_id obtained when registering with the authorization server.

See also Expressions(5).

"clientSecret": expression, required

The client_secret obtained when registering with the authorization server.

See also Expressions(5).

157

"issuer": Issuer reference, required

The provider configuration to use for this client registration.

Provide either the name of a Issuer object defined in the heap, or an inline Issuer configuration
object.

See also Issuer(5).

"registrationHandler": Handler reference, optional

Invoke this HTTP client handler to communicate with the authorization server.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

Usually set this to the name of a ClientHandler configured in the heap, or a chain that ends in a
ClientHandler.

Default: OpenIG uses the default ClientHandler.

See also Handlers, ClientHandler(5).

"scopes": array of expressions, optional

OAuth 2.0 scopes to use with this client registration.

See also Expressions(5).

"tokenEndpointUseBasicAuth": boolean, optional

Whether to perform client authentication to the provider using HTTP Basic authentication when
sending a request to the provider’s OAuth 2.0 token endpoint.

When set to true, the client credentials are sent using HTTP Basic authentication as in the
following example request:

POST /oauth2/token HTTP/1.1
Host: as.example.com
Authorization: Basic
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=...

When set to false, the client credentials are sent in HTTP POST form data as in the following
example request:

POST /oauth2/token HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&client_id=.....&client_secret=.....&code=...

158

Some providers accept both authentication methods. For providers that strictly enforce how the
client must authenticate, such as recent versions of OpenAM, you must align the configuration
with that of the provider.

If the provider does not support the configured authentication method, then according to RFC
6749 The OAuth 2.0 Authorization Framework the provider sends an HTTP 400 Bad Request
response with an invalid_client error message as in the following example response:

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "error":"invalid_client"
}

Default: true

Example

The following example shows a client registration for OpenAM. In this example client credentials
are replaced with . In the actual configuration either include the credentials and protect the
configuration file or obtain the credentials from the environment in a safe manner:

{
 "name": "OpenIDConnectRelyingParty",
 "type": "ClientRegistration",
 "config": {
 "clientId": "**********",
 "clientSecret": "**********",
 "issuer": "openam",
 "redirect_uris": [
 "https://openig.example.com:8443/openid/callback"
],
 "scopes": [
 "openid",
 "profile"
]
 }
}

Javadoc

org.forgerock.openig.filter.oauth2.client.ClientRegistration

159

https://tools.ietf.org/html/rfc6749#section-5.2
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/oauth2/client/ClientRegistration.html

See Also

Issuer(5), OAuth2ClientFilter(5)

The OAuth 2.0 Authorization Framework

OAuth 2.0 Bearer Token Usage

OpenID Connect

JwtSession — store sessions in encrypted JWT cookies

Description

A JwtSession object holds settings for storing session information in encrypted JSON Web Token
(JWT) cookies.

In this context, encrypted JWT cookie means an HTTP cookie whose value is an encrypted JWT. The
payload of the encrypted JWT is a JSON representation of the session information.

The JWT cookie lifetime is Session (not persistent), meaning the user-agent deletes the JWT cookie
when it shuts down.

When using this storage implementation, you must use data types for session information that can
be mapped to JavaScript Object Notation (JSON). JSON allows strings, numbers, true, false, null, as
well as arrays and JSON objects composed of the same primitives. Java and Groovy types that can
be mapped include Java primitive types and null, String and CharSequence objects, as well as List
and Map objects.

As browser cookie storage capacity is limited to 4 KB, and encryption adds overhead, take care to
limit the size of any JSON that you store. Rather than store larger data in the session information,
consider storing a reference instead.

When a request enters a route that uses a new session type, the scope of the session information
becomes limited to the route. OpenIG builds a new session object and does not propagate any
existing session information to the new object. session references the new session object. When the
response then exits the route, the session object is closed, and serialized to a JWT cookie in this
case, and session references the previous session object. Session information set inside the route is
no longer available.

An HTTP client that performs multiple requests in a session that modify the content of its session
can encounter inconsistencies in the session information. This is because OpenIG does not share
JwtSessions across threads. Instead, each thread has its own JwtSession objects that it modifies as
necessary, writing its own session to the JWT cookie regardless of what other threads do.

Usage

{

160

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750
http://openid.net/connect/
http://json.org

 "name": string,
 "type": "JwtSession",
 "config": {
 "keystore": KeyStore reference,
 "alias": string,
 "password": configuration expression,
 "cookieName": string,
 "sessionTimeout": duration,
 "sharedSecret": string
 }
}

An alternative value for type is JwtSessionFactory.

Properties

"keystore": KeyStore reference, optional

The keystore holding the key pair with the private key used to decrypt the JWT.

Provide either the name of the KeyStore object defined in the heap, or the inline KeyStore
configuration object inline.

Default: When no keystore is specified, OpenIG generates a unique key pair, and stores the key
pair in memory. With JWTs encrypted using a unique key pair generated at runtime, OpenIG
cannot decrypt the JWTs after a restart, nor can it decrypt such JWTs encrypted by another
OpenIG server.

See also KeyStore(5).

"alias": string, required when keystore is used

Alias for the private key.

"password": configuration expression, required when keystore is used

The password to read the private key from the keystore.

A configuration expression, described in Expressions(5) is independent of the request, response,
and contexts, so do not use expressions that reference their properties. You can, however, use
${env['variable']}, ${system['property']}, and all the built-in functions listed in Functions(5).

"cookieName" string, optional

The name of the JWT cookie stored on the user-agent.

Default: openig-jwt-session

"sessionTimeout" duration, optional

The amount of time before the cookie session expires.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

161

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds

Default: 30 minutes

A zero duration for session timeout is not a valid setting. The maximum session timeout
duration is 3650 days (approximately 10 years). If you set a longer duration, OpenIG truncates
the duration to the maximum value.

"sharedSecret" string, optional

Specifies the key used to sign and verify the JWTs.

This attribute is expected to be base-64 encoded. The minimum key size after base-64 decoding is
32 bytes/256 bits (HMAC-SHA-256 is used to sign JWTs). If the provided key is too short, an error
message is created.

If this attribute is not specified, random data is generated as the key, and the OpenIG instance
can verify only the sessions it has created.

Example

The following example defines a JwtSession for storing session information in a JWT token cookie
named OpenIG. The JWT is encrypted with a private key that is recovered using the alias private-key,
and stored in the keystore. The password is both the password for the keystore and also the private
key:

{
 "name": "JwtSession",
 "type": "JwtSession",
 "config": {
 "keystore": {
 "type": "KeyStore",
 "config": {
 "url": "file://${env['HOME']}/keystore.jks",
 "password": "${system['keypass']}"

162

 }
 },
 "alias": "private-key",
 "password": "${system['keypass']}",
 "cookieName": "OpenIG"
 }
}

Javadoc

org.forgerock.openig.jwt.JwtSessionManager

KeyManager — configure a Java Secure Socket
Extension KeyManager

Description

This represents the configuration for a Java Secure Socket Extension KeyManager, which manages
the keys used to authenticate an SSLSocket to a peer. The configuration references the keystore that
actually holds the keys.

Usage

{
 "name": string,
 "type": "KeyManager",
 "config": {
 "keystore": KeyStore reference,
 "password": expression,
 "alg": string
 }
}

Properties

"keystore": KeyStore reference, optional

The keystore that references the store for the actual keys.

Provide either the name of the KeyStore object defined in the heap, or the inline KeyStore
configuration object inline.

See also KeyStore(5).

"password": expression, required

The password to read private keys from the keystore.

163

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/jwt/JwtSessionManager.html
http://docs.oracle.com/javase/7/docs/api/index.html?javax/net/ssl/KeyManager.html

"alg" string, optional

The certificate algorithm to use.

Default: the default for the platform, such as SunX509.

See also Expressions(5).

Example

The following example configures a key manager that depends on a KeyStore configuration. The
keystore takes a password supplied as a Java system property when starting the container where
OpenIG runs, as in -Dkeypass=password. This configuration uses the default certificate algorithm:

{
 "name": "MyKeyManager",
 "type": "KeyManager",
 "config": {
 "keystore": {
 "type": "KeyStore",
 "config": {
 "url": "file://${env['HOME']}/keystore.jks",
 "password": "${system['keypass']}"
 }
 },
 "password": "${system['keypass']}"
 }
}

Javadoc

org.forgerock.openig.security.KeyManagerHeaplet

See Also

JSSE Reference Guide, KeyStore(5), TrustManager(5)

KeyStore — configure a Java KeyStore

Description

This represents the configuration for a Java KeyStore, which stores cryptographic private keys and
public key certificates.

Usage

{

164

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/security/KeyManagerHeaplet.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/security/KeyStore.html

 "name": name,
 "type": "KeyStore",
 "config": {
 "url": expression,
 "password": expression,
 "type": string
 }
}

Properties

"url": expression, required

URL to the keystore file.

See also Expressions(5).

"password": expression, optional

The password to read private keys from the keystore.

If the keystore is used as a truststore to store only public key certificates of peers and no
password is required to do so, then you do not have to specify this field.

Default: No password is set.

See also Expressions(5).

"type": string, optional

The keystore format.

Default: the default for the platform, such as JKS.

Example

The following example configures a keystore that references a Java Keystore file,
$HOME/keystore.jks. The keystore takes a password supplied as a Java system property when
starting the container where OpenIG runs, as in -Dkeypass=password. As the keystore file uses the
default format, no type is specified:

{
 "name": "MyKeyStore",
 "type": "KeyStore",
 "config": {
 "url": "file://${env['HOME']}/keystore.jks",
 "password": "${system['keypass']}"
 }
}

165

Javadoc

org.forgerock.openig.security.KeyStoreHeaplet

See Also

JSSE Reference Guide, KeyManager(5), TrustManager(5)

Issuer — Describe an Authorization Server or OpenID
Provider

Description

An Issuer describes an OAuth 2.0 Authorization Server or an OpenID Provider that OpenIG can use
as a OAuth 2.0 client or OpenID Connect relying party.

An Issuer is generally referenced from a ClientRegistration, described in ClientRegistration(5).

Usage

{
 "name": string,
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": URL string,
 "authorizeEndpoint": URI expression,
 "registrationEndpoint": URI expression,
 "tokenEndpoint": URI expression,
 "userInfoEndpoint": URI expression,
 "issuerHandler": Handler reference,
 "supportedDomains": [domain pattern, ...]
 }
}

Properties

If the provider has a well-known configuration URL as defined for OpenID Connect 1.0 Discovery
that returns JSON with at least authorization and token endpoint URLs, then you can specify that
URL in the provider configuration. Otherwise, you must specify at least the provider authorization
and token endpoint URLs, and optionally the registration endpoint and user info endpoint URLs.

The provider configuration object properties are as follows:

"name": string, required

A name for the provider configuration.

166

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/security/KeyStoreHeaplet.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

"wellKnownEndpoint": URL string, required unless authorizeEndpoint and tokenEndpoint are
specified

The URL to the well-known configuration resource as described in OpenID Connect 1.0
Discovery.

"authorizeEndpoint": expression, required unless obtained through wellKnownEndpoint

The URL to the provider’s OAuth 2.0 authorization endpoint.

See also Expressions(5).

"registrationEndpoint": expression, optional

The URL to the provider’s OpenID Connect dynamic registration endpoint.

See also Expressions(5).

"tokenEndpoint": expression, required unless obtained through wellKnownEndpoint

The URL to the provider’s OAuth 2.0 token endpoint.

See also Expressions(5).

"userInfoEndpoint": expression, optional

The URL to the provider’s OpenID Connect UserInfo endpoint.

Default: no UserInfo is obtained from the provider.

See also Expressions(5).

"issuerHandler": Handler reference, optional

Invoke this HTTP client handler to communicate with the authorization server.

Provide either the name of a Handler object defined in the heap, or an inline Handler
configuration object.

Usually set this to the name of a ClientHandler configured in the heap, or a chain that ends in a
ClientHandler.

Default: OpenIG uses the default ClientHandler.

See also Handlers, ClientHandler(5).

"supportedDomains": array of patterns, optional

List of patterns matching domain names handled by this issuer, used as a shortcut for OpenID
Connect discovery before performing OpenID Connect dynamic registration.

In summary when the OpenID Provider is not known in advance, it might be possible to discover
the OpenID Provider Issuer based on information provided by the user, such as an email
address. The OpenID Connect discovery specification explains how to use WebFinger to discover
the issuer. OpenIG can discover the issuer in this way. As a shortcut OpenIG can also use
supported domains lists to find issuers already described in the OpenIG configuration.

167

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://tools.ietf.org/html/rfc7033

To use this shortcut, OpenIG extracts the domain from the user input, and looks for an issuer
whose supported domains list contains a match.

Supported domains patterns match host names with optional port numbers. Do not specify a URI
scheme such as HTTP. OpenIG adds the scheme. For instance, *.example.com matches any host in
the example.com domain. You can specify the port number as well as in host.example.com:8443.
Patterns must be valid regular expression patterns according to the rules for the Java Pattern
class.

Examples

The following example shows an OpenAM issuer configuration for OpenAM. OpenAM exposes a
well-known endpoint for the provider configuration, but this example demonstrates use of the
other fields:

{
 "name": "openam",
 "type": "Issuer",
 "config": {
 "authorizeEndpoint":
 "https://openam.example.com:8443/openam/oauth2/authorize",
 "registration_endpoint":
 "https://openam.example.com:8443/openam/oauth2/connect/register",
 "tokenEndpoint":
 "https://openam.example.com:8443/openam/oauth2/access_token",
 "userInfoEndpoint":
 "https://openam.example.com:8443/openam/oauth2/userinfo",
 "supportedDomains": ["mail.example.*", "docs.example.com:8443"]
 }
}

The following example shows an issuer configuration for Google:

{
 "name": "google",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint":
 "https://accounts.google.com/.well-known/openid-configuration",
 "supportedDomains": ["gmail.*", "googlemail.com:8052"]
 }
}

Javadoc

org.forgerock.openig.filter.oauth2.client.Issuer

168

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/filter/oauth2/client/Issuer.html

ScheduledExecutorService — schedule the execution
of tasks

Description

An executor service to schedule tasks for execution after a delay or for repeated execution with a
fixed interval of time in between each execution. You can configure the number of threads in the
executor service and how the executor service is stopped.

The ScheduledExecutorService is shared by all downstream components that use an executor
service.

Usage

{
 "name": string,
 "type": "ScheduledExecutorService",
 "config": {
 "corePoolSize”: integer or expression<integer>,
 "gracefulStop": boolean or expression<boolean>,
 "gracePeriod" : duration string or expression<duration string>
 }
}

Properties

"corePoolSize": integer or expression<integer>, optional

The minimum number of threads to keep in the pool. If this property is an expression, the
expression is evaluated as soon as the configuration is read.

The value must be an integer greater than zero.

Default: 1

"gracefulStop": boolean or expression<boolean> , optional

Defines how the executor service stops. If this property is an expression, the expression is
evaluated as soon as the configuration is read.

If true, the executor service does the following:

• Blocks the submission of new jobs.

• Allows running jobs to continue.

• If a grace period is defined, waits for up to that maximum time for running jobs to finish
before it stops.

If false, the executor service does the following:

169

• Blocks the submission of new jobs.

• Removes submitted jobs without running them.

• Attempts to end running jobs.

• If a grace period is defined, ignores it.

Default: true

"gracePeriod": duration string or expression<duration string>, optional

The maximum time that the executor service waits for running jobs to finish before it stops. If
this property is an expression, the expression is evaluated as soon as the configuration is read.

If all jobs finish before the grace period, the executor service stops without waiting any longer. If
jobs are still running after the grace period, the executor service stops anyway and prints a
message.

When gracefulStop is false, the grace period is ignored.

A duration is a lapse of time expressed in English, such as 23 hours 59 minutes and 59 seconds.

Durations are not case sensitive.

Negative durations are not supported.

The following units can be used in durations:

• indefinite, infinity, undefined, unlimited: unlimited duration

• zero, disabled: zero-length duration

• days, day, d: days

• hours, hour, h: hours

• minutes, minute, min, m: minutes

• seconds, second, sec, s: seconds

• milliseconds, millisecond, millisec, millis, milli, ms: milliseconds

• microseconds, microsecond, microsec, micros, micro, us: microseconds

• nanoseconds, nanosecond, nanosec, nanos, nano, ns: nanoseconds
Default: 10 seconds

Example

The following example creates a thread pool to execute tasks. When the executor service is
instructed to stop, it blocks the submission of new jobs, and waits for up to 10 seconds for
submitted and running jobs to complete before it stops. If any jobs are still submitted or running
after 10 seconds, the executor service stops anyway and prints a message.

{
 "name": "ExecutorService",
 "comment": "Default service for executing tasks in the background.",

170

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/util/Duration.html

 "type": "ScheduledExecutorService",
 "config": {
 "corePoolSize": 5,
 "gracefulStop": true,
 "gracePeriod": "10 seconds"
 }
}

Javadoc

org.forgerock.openig.thread.ScheduledExecutorServiceHeaplet

TemporaryStorage — cache streamed content

Description

Allocates temporary buffers for caching streamed content during request processing. Initially uses
memory; when the memory limit is exceeded, switches to a temporary file.

Usage

{
 "name": string,
 "type": "TemporaryStorage",
 "config": {
 "initialLength": number,
 "memoryLimit": number,
 "fileLimit": number,
 "directory": string
 }
}

Properties

"initialLength": number, optional

The initial length of memory buffer byte array. Default: 8192 (8 KiB).

"memoryLimit": number, optional

The length limit of the memory buffer. Exceeding this limit results in promotion from memory
to file. Default: 65536 (64 KiB).

"fileLimit": number, optional

The length limit of the file buffer. Exceeding this limit results in a thrown exception. Default:
1048576 (1 MiB).

171

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/thread/ScheduledExecutorServiceHeaplet.html

"directory": string, optional

The directory where temporary files are created. If omitted, then the system-dependent default
temporary directory is used (typically "/tmp" on Unix systems). Default: use system-dependent
default.

Javadoc

org.forgerock.openig.io.TemporaryStorage

TrustManager — configure a Java Secure Socket
Extension TrustManager

Description

This represents the configuration for a Java Secure Socket Extension TrustManager, which manages
the trust material (typically X.509 public key certificates) used to decide whether to accept the
credentials presented by a peer. The configuration references the keystore that actually holds the
trust material.

Usage

{
 "name": string,
 "type": "TrustManager",
 "config": {
 "keystore": KeyStore reference,
 "alg": string
 }
}

Properties

"keystore": KeyStore reference, optional

The KeyStore that references the store for public key certificates.

Provide either the name of the KeyStore object defined in the heap, or the inline KeyStore
configuration object inline.

See also KeyStore(5).

"alg" string, optional

The certificate algorithm to use.

Default: the default for the platform, such as SunX509.

172

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/io/TemporaryStorage.html
http://docs.oracle.com/javase/7/docs/api/index.html?javax/net/ssl/TrustManager.html

Example

The following example configures a trust manager that depends on a KeyStore configuration. This
configuration uses the default certificate algorithm:

{
 "name": "MyTrustManager",
 "type": "TrustManager",
 "config": {
 "keystore": {
 "type": "KeyStore",
 "config": {
 "url": "file://${env['HOME']}/keystore.jks",
 "password": "${system['keypass']}"
 }
 }
 }
}

Javadoc

org.forgerock.openig.security.TrustManagerHeaplet

See Also

JSSE Reference Guide, KeyManager(5), KeyStore(5)

TrustAllManager — a TrustManager that blindly trusts
all servers

Description

The TrustAllManager blindly trusts all server certificates presented the servers for protected
applications. It can be used instead of a TrustManager(5) in test environments to trust server
certificates that were not signed by a well-known CA, such as self-signed certificates.

The TrustAllManager is not safe for production use. Use a properly configured TrustManager(5)
instead.

Usage

{
 "name": string,
 "type": "TrustAllManager"
}

173

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/security/TrustManagerHeaplet.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

Example

The following example configures a client handler that blindly trusts server certificates when
OpenIG connects to servers over HTTPS:

{
 "name": "BlindTrustClientHandler",
 "type": "ClientHandler",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 }
 }
}

Javadoc

org.forgerock.openig.security.TrustAllManager

UmaService — represent an UMA resource server
configuration

Description

An UmaService represents a User-Managed Access (UMA) resource server. Each service is statically
registered as an OAuth 2.0 client of a single UMA authorization server.

The UmaService includes a list of resource patterns and associated actions that define the scopes
for permissions to matching resources. When creating a share using the REST API described below,
you specify a path matching a pattern in a resource of the UmaService.

Usage

{
 "type": "UmaService",
 "config": {
 "protectionApiHandler": Handler reference,
 "authorizationServerUri": URI string,
 "clientId": expression,
 "clientSecret": expression,
 "resources": [resource, ...]
 }
}

174

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/security/TrustAllManager.html

Properties

"protectionApiHandler": Handler reference, required

The handler to use when interacting with the UMA authorization server to manage resource
sets, such as a ClientHandler capable of making an HTTPS connection to the server.

For details, see Handlers.

"authorizationServerUri": URI string, required

The URI to the UMA authorization server.

"clientId": expression, required

An expression that evaluates to the OAuth 2.0 client_id registered with the UMA authorization
server.

"clientSecret": expression, required

An expression that evaluates to the OAuth 2.0 client_secret registered with the UMA
authorization server.

"resources": array of resources, required

Resource objects matching the resources the resource owner wants to share.

Each resource object has the following form:

{
 "pattern": resource pattern,
 "actions": [
 {
 "scopes": [scope string, ...],
 "condition": boolean expression
 },
 {
 ...
 }
]
}

Each resource pattern can be seen to represent an application, or a consistent set of endpoints
that share scope definitions. The actions map each request to the associated scopes. This
configuration serves to set the list of scopes in the following ways:

1. When registering a resource set, OpenIG uses the list of actions to provide the aggregated,
exhaustive list of all scopes that can be used.

2. When responding to an initial request for a resource, OpenIG derives the scopes for the
ticket based on the scopes that apply according to the request.

3. When verifying the RPT, OpenIG checks that all required scopes are encoded in the RPT.

A description of each field follows:

175

"pattern": resource pattern, required

A pattern matching resources to be shared by the resource owner, such as . to match any
resource path, and /photos/. to match paths starting with /photos/.

See also Patterns(5).

"actions": array of action objects, optional

A set of actions on matching resources that the resource owner can authorize.

When granting permission, the resource owner specifies the action scope. Conditions specify
what the scopes mean in concrete terms. A given scope matches a requesting party operation
when the corresponding condition evaluates to true.

"scopes": array of scope strings, optional

Scope strings to identify permissions.

For example, #read (read access on a resource).

"condition": boolean expression, required

A boolean expression representing the meaning of a scope.

For example, ${request.method == 'GET'} (true when reading a resource).

See also Expressions(5).

The REST API for Shares

The REST API for UMA shares is exposed at a registered endpoint. OpenIG logs the paths to
registered endpoints when the log level is INFO or finer. Look for messages such as the following in
the log:

UMA Share endpoint available at
 '/openig/api/system/objects/router-handler/routes/00-uma/objects/umaservice/share'

To access the endpoint over HTTP or HTTPS, prefix the path with the OpenIG scheme, host, and port
to obtain a full URL, such as http://localhost:8080/openig/api/system/objects/router-
handler/routes/00-uma/objects/umaservice/share.

The UMA REST API supports create (POST only), read, delete, and query (_queryFilter=true only).
For an introduction to common REST APIs, see About Common REST.

In the present implementation, OpenIG does not have a mechanism for persisting shares. When the
OpenIG container stops, the shares are discarded.

A share object has the following form:

{
 "path": pattern,
 "pat": UMA protection API token (PAT) string,

176

 "id": unique identifier string,
 "resource_set_id": unique identifier string,
 "user_access_policy_uri": URI string
}

The fields are as follows:

"path": pattern, required

A pattern matching the path to protected resources, such as /photos/.*.

This pattern must match a pattern defined in the UmaService for this API.

See also Patterns(5).

"pat": PAT string, required

A PAT granted by the UMA authorization server given consent by the resource owner.

In the present implementation, OpenIG has access only to the PAT, not to any refresh tokens.

"id": unique identifier string, read-only

This uniquely identifies the share. This value is set by the service when the share is created, and
can be used when reading or deleting a share.

"resource_set_id": unique identifier string, read-only

This uniquely identifies the UMA resource set registered with the authorization server. This
value is obtained by the service when the resource set is registered, and can be used when
setting access policy permissions.

"user_access_policy_uri": URI string, read-only

This URI indicates the location on the UMA authorization server where the resource owner can
set or modify access policies. This value is obtained by the service when the resource set is
registered.

See Also

User-Managed Access (UMA) Profile of OAuth 2.0

org.forgerock.openig.uma.UmaSharingService

177

https://docs.kantarainitiative.org/uma/rec-uma-core.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/uma/UmaSharingService.html

Expressions
Many configuration parameters support dynamic expressions.

Expressions — expression configuration parameter
values

Description

Expressions are specified as configuration parameter values for a number of built-in objects. Such
expressions conform to the Universal Expression Language as specified in JSR-245.

General Syntax

All expressions follow standard Universal Expression Language syntax: ${expression}. The
expression can be a simple reference to a value, a function call, or arbitrarily complex arithmetic,
logical, relational and conditional operations. When supplied within a configuration parameter, an
expression is always a string enclosed in quotation marks, for example: "${request.method}".

Value Expressions

A value expression references a value relative to the scope supplied to the expression. For example,
"${request.method}" references the method of an incoming HTTP request.

An lvalue-expression is a specific type of value expression that references a value to be written. For
example, "${session.gotoURL}" specifies a session attribute named gotoURL to write a value to.
Attempts to write values to read-only values are ignored.

Indexed Properties

Properties of values are accessed using the . and [] operators, and can be nested arbitrarily.

The value expressions "${request.method}" and "${request['method']}" are equivalent.

In the case of arrays, the index of an element in the array is expressed as a number in brackets. For
example, "${request.headers['Content-Type'][0]}" references the first Content-Type header value in
a request. If a property does not exist, then the index reference yields a null (empty) value.

Operations

Universal Expression Language supports arbitrarily complex arithmetic, logical, relational and
conditional operations. They are, in order of precedence:

• Index property value: [], .

• Change precedence of operation: ()

• Unary negative: -

178

http://www.jcp.org/en/jsr/detail?id=245

• Logical operations: not, !, empty

• Arithmetic operations: *, /, div, %, mod

• Binary arithmetic operations: +, -

• Relational operations: <, >, ⇐, >=, lt, gt, le, ge, ==, !=, eq, ne

• Logical operations: &&, and, ||, or

• Conditional operations: ?, :

System Properties and Environment Variables

You can use expressions to retrieve Java system properties, and to retrieve environment variables.

For system properties, ${system['property']} yields the value of property, or null if there is no
value for property. For example, ${system['user.home']} yields the home directory of the user
running the application server for OpenIG.

For environment variables, ${env['variable']} yields the value of variable, or null if there is no
value for variable. For example, ${env['HOME']} yields the home directory of the user running the
application server for OpenIG.

Functions

A number of built-in functions described in Functions(5) can be called within an expression.

Syntax is ${function(parameter, …)}, where zero or more parameters are supplied to the function.
For example, "${toLowerCase(request.method)}" yields the method of the request, converted to
lower case. Functions can be operands for operations, and can yield parameters for other function
calls.

Escaping Literal Expressions

Use the backslash \ character as the escape character. For example, ${true} as an expression
normally evaluates to true. To include the string ${true} in an expression, write ${true}.

You can also escape literal expressions by single-quoting the initial characters. For example,
${'${'}true} evaluates to ${true}. To include a single backslash \ character, write ${'\\'}. To
include a double backslash, write ${'\\\\'}.

Embedding Expressions

Although an expression cannot be embedded as ${expression} inside another expression,
embedding system property, environment variable, and function expressions within each other is
fine. Do not enclose the embedded elements in ${}.

The following single line example embeds an env environment variable expression and the Java
String.concat() method in the argument to a read() function:

179

"entity" : "${read(env['OPENIG_BASE'].concat('/html/defaultResponse.html'))}"

In the example the entity property value is set to the contents of the file
$OPENIG_BASE/html/defaultResponse.html.

Extensions

OpenIG offers a plugin interface for extending expressions. See Key Extension Points in the
Gateway Guide.

If your deployment uses expression plugins, read the plugin documentation about the additional
expressions you can use.

Examples

"${request.uri.path == '/wordpress/wp-login.php'
 and request.form['action'][0] != 'logout'}"

"${request.uri.host == 'wiki.example.com'}"

"${request.cookies[keyMatch(request.cookies,'^SESS.*')][0].value}"

"${toString(request.uri)}"

"${request.method == 'POST' and request.uri.path == '/wordpress/wp-login.php'}"

"${request.method != 'GET'}"

"${request.headers['cookie'][0]}"

"${request.uri.scheme == 'http'}"

"${not (response.status.code == 302 and not empty session.gotoURL)}"

"${response.headers['Set-Cookie'][0]}"

"${request.headers['host'][0]}"

"${not empty system['OPENIG_BASE'] ? system['OPENIG_BASE'] :
'/path/to'}/logs/gateway.log"

See Also

Contexts(5), Functions(5), Request(5), Response(5)

180

../gateway-guide/chap-extending.pdf#extension-points

Functions — built-in functions to call within
expressions

Description

A set of built-in functions that can be called from within expressions, which are described in
Expressions(5).

array

array(strings...)

Returns an array of the strings given as argument. .Parameters

strings

the strings to put in the array.

Returns

array

the resulting array of containing the given strings.

contains

contains(object, value)

Returns true if the object contains the specified value. If the object is a string, a substring is
searched for the value. If the object is a collection or array, its elements are searched for the value.
.Parameters

object

the object to be searched for the presence of.

value

the value to be searched for.

Returns

true

if the object contains the specified value.

decodeBase64

decodeBase64(string)

Returns the base64-decoded string, or null if the string is not valid Base64. .Parameters

181

string

The base64-encoded string to decode.

Returns

string

The base64-decoded string.

encodeBase64

encodeBase64(string)

Returns the base64-encoded string, or null if the string is null. .Parameters

string

The string to encode into Base64.

Returns

string

The base64-encoded string.

formDecodeParameterNameOrValue

formDecodeParameterNameOrValue(string)

Returns the string that results from decoding the provided form encoded parameter name or value
as per application/x-www-form-urlencoded, which can be null if the input is null. .Parameters

string

the parameter name or value

Returns

string

The string resulting from decoding the provided form encoded parameter name or value as per
application/x-www-form-urlencoded.

formEncodeParameterNameOrValue

formEncodeParameterNameOrValue(string)

Returns the string that results from form encoding the provided parameter name or value as per
application/x-www-form-urlencoded, which can be null if the input is null. .Parameters

string

the parameter name or value

182

Returns

string

The string resulting from form encoding the provided parameter name or value as per
application/x-www-form-urlencoded.

indexOf

indexOf(string, substring)

Returns the index within a string of the first occurrence of a specified substring. .Parameters

string

the string in which to search for the specified substring.

substring

the value to search for within the string.

Returns

number

the index of the first instance of substring, or -1 if not found.

The index count starts from 1, not 0.

join

join(strings, separator)

Joins an array of strings into a single string value, with a specified separator. .Parameters

separator

the separator to place between joined elements.

strings

the array of strings to be joined.

Returns

string

the string containing the joined strings.

keyMatch

keyMatch(map, pattern)

Returns the first key found in a map that matches the specified regular expression pattern, or null

183

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

if no such match is found. .Parameters

map

the map whose keys are to be searched.

pattern

a string containing the regular expression pattern to match.

Returns

string

the first matching key, or null if no match found.

length

length(object)

Returns the number of items in a collection, or the number of characters in a string. .Parameters

object

the object whose length is to be determined.

Returns

number

the length of the object, or 0 if length could not be determined.

matchingGroups

matchingGroups(string, pattern)

Returns an array of matching groups for the specified regular expression pattern applied to the
specified string, or null if no such match is found. The first element of the array is the entire match,
and each subsequent element correlates to any capture group specified within the regular
expression. .Parameters

string

the string to be searched.

pattern

a string containing the regular expression pattern to match.

Returns

array

an array of matching groups, or null if no such match is found.

184

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

matches

matches(string, pattern)

Returns true if the string contains a match for the specified regular expression pattern. .Parameters

string

the string to be searched.

pattern

a string containing the regular expression pattern to find.

Returns

true

if the string contains the specified regular expression pattern.

read

read(string)

Takes a file name as a string, and returns the content of the file as a plain string, or null on error
(due to the file not being found, for example).

Either provide the absolute path to the file, or a path relative to the location of the Java system
property user.dir. .Parameters

string

The name of the file to read.

Returns

string

The content of the file or null on error.

readProperties

readProperties(string)

Takes a Java Properties file name as a string, and returns the content of the file as a key/value map
of properties, or null on error (due to the file not being found, for example).

Either provide the absolute path to the file, or a path relative to the location of the Java system
property user.dir.

For example, to get the value of the key property in the properties file /path/to/my.properties, use
${readProperties('/path/to/my.properties')['key']}. .Parameters

185

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

string

The name of the Java Properties file to read.

Returns

object

The key/value map of properties or null on error.

split

split(string, pattern)

Splits the specified string into an array of substrings around matches for the specified regular
expression pattern. .Parameters

string

the string to be split.

pattern

the regular expression to split substrings around.

Returns

array

the resulting array of split substrings.

toLowerCase

toLowerCase(string)

Converts all of the characters in a string to lower case. .Parameters

string

the string whose characters are to be converted.

Returns

string

the string with characters converted to lower case.

toString

toString(object)

Returns the string value of an arbitrary object. .Parameters

186

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

object

the object whose string value is to be returned.

Returns

string

the string value of the object.

toUpperCase

toUpperCase(string)

Converts all of the characters in a string to upper case. .Parameters

string

the string whose characters are to be converted.

Returns

string

the string with characters converted to upper case.

trim

trim(string)

Returns a copy of a string with leading and trailing whitespace omitted. .Parameters

string

the string whose white space is to be omitted.

Returns

string

the string with leading and trailing white space omitted.

urlDecode

urlDecode(string)

Returns the URL decoding of the provided string.

This is equivalent to "formDecodeParameterNameOrValue". .Parameters

string

The string to be URL decoded, which may be null.

187

Returns

string

The URL decoding of the provided string, or null if string was null.

urlEncode

urlEncode(string)

Returns the URL encoding of the provided string.

This is equivalent to "formEncodeParameterNameOrValue". .Parameters

string

The string to be URL encoded, which may be null.

Returns

string

The URL encoding of the provided string, or null if string was null.

urlDecodeFragment

urlDecodeFragment(string)

Returns the string that results from decoding the provided URL encoded fragment as per RFC 3986,
which can be null if the input is null. .Parameters

string

the fragment

Returns

string

The string resulting from decoding the provided URL encoded fragment as per RFC 3986.

urlDecodePathElement

urlDecodePathElement(string)

Returns the string that results from decoding the provided URL encoded path element as per RFC
3986, which can be null if the input is null. .Parameters

string

the path element

188

Returns

string

The string resulting from decoding the provided URL encoded path element as per RFC 3986.

urlDecodeQueryParameterNameOrValue

urlDecodeQueryParameterNameOrValue(string)

Returns the string that results from decoding the provided URL encoded query parameter name or
value as per RFC 3986, which can be null if the input is null. .Parameters

string

the parameter name or value

Returns

string

The string resulting from decoding the provided URL encoded query parameter name or value
as per RFC 3986.

urlDecodeUserInfo

urlDecodeUserInfo(string)

Returns the string that results from decoding the provided URL encoded userInfo as per RFC 3986,
which can be null if the input is null. .Parameters

string

the userInfo

Returns

string

The string resulting from decoding the provided URL encoded userInfo as per RFC 3986.

urlEncodeFragment

urlEncodeFragment(string)

Returns the string that results from URL encoding the provided fragment as per RFC 3986, which
can be null if the input is null. .Parameters

string

the fragment

189

Returns

string

The string resulting from URL encoding the provided fragment as per RFC 3986.

urlEncodePathElement

urlEncodePathElement(string)

Returns the string that results from URL encoding the provided path element as per RFC 3986,
which can be null if the input is null. .Parameters

string

the path element

Returns

string

The string resulting from URL encoding the provided path element as per RFC 3986.

urlEncodeQueryParameterNameOrValue

urlEncodeQueryParameterNameOrValue(string)

Returns the string that results from URL encoding the provided query parameter name or value as
per RFC 3986, which can be null if the input is null. .Parameters

string

the parameter name or value

Returns

string

The string resulting from URL encoding the provided query parameter name or value as per RFC
3986.

urlEncodeUserInfo

urlEncodeUserInfo(string)

Returns the string that results from URL encoding the provided userInfo as per RFC 3986, which
can be null if the input is null. .Parameters

string

the userInfo

190

Returns

string

The string resulting from URL encoding the provided userInfo as per RFC 3986.

Javadoc

Some functions are provided by org.forgerock.openig.el.Functions.

Other functions are provided by org.forgerock.http.util.Uris.

Patterns — regular expression patterns

Description

Patterns in configuration parameters and expressions use the standard Java regular expression
Pattern class. For more information on regular expressions, see Oracle’s tutorial on Regular
Expressions.

Pattern Templates

A regular expression pattern template expresses a transformation to be applied for a matching
regular expression pattern. It may contain references to capturing groups within the match result.
Each occurrence of $g (where g is an integer value) is substituted by the indexed capturing group in
a match result. Capturing group zero "$0" denotes the entire pattern match. A dollar sign or
numeral literal immediately following a capture group reference can be included as a literal in the
template by preceding it with a backslash (\). Backslash itself must be also escaped in this manner.

See Also

Java Pattern class

Regular Expressions tutorial

191

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/openig/el/Functions.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/util/Uris.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/index.html
http://docs.oracle.com/javase/tutorial/essential/regex/index.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#cg
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/index.html

Requests, Responses, and Contexts
This part of the reference describes the OpenIG object model. The top-level objects are request,
response, and contexts.

Attributes — context for arbitrary information

Description

Provides a map for arbitrary context information.

This is one of the contexts described in Contexts(5).

Properties

"attributes": map

Map of arbitrary information where the keys are strings, and the values are objects.

This is never null.

Javadoc

org.forgerock.services.context.AttributesContext

Client — HTTP client context information

Description

Provides information about the client sending the request.

This is one of the contexts described in Contexts(5).

Properties

"certificates": array

List of X.509 certificates presented by the client

If the client does not present any certificates, OpenIG returns an empty list.

This is never null.

"isExternal": boolean

True if the client connection is external.

"isSecure": boolean

True if the client connection is secure.

192

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/services/context/AttributesContext.html

"localAddress": string

The IP address of the interface that received the request

"localPort": number

The port of the interface that received the request

"remoteAddress": string

The IP address of the client (or the last proxy) that sent the request

"remotePort": number

The source port of the client (or the last proxy) that sent the request

"remoteUser": string

The login of the user making the request, or null if unknown

This is likely to be null unless you have deployed OpenIG with a non-default deployment
descriptor that secures the OpenIG web application.

"userAgent": string

The value of the User-Agent HTTP header in the request if any, otherwise null

Javadoc

org.forgerock.services.context.ClientContext

Contexts — HTTP request contexts

Description

The root object for request context information.

Contexts is a map of available contexts, which implement the Context interface. The contexts map’s
keys are strings and the values are context objects. A context holds type-safe information useful for
processing requests and responses. The contexts map is populated dynamically when creating
bindings for evaluation of expressions and scripts.

All context objects have the following properties:

"contextName": string

Name of the context.

"id": string

Read-only string uniquely identifying the context object.

"rootContext": boolean

True if the context object is a RootContext (has no parent).

193

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/services/context/ClientContext.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/services/context/Context.html

"parent": Context object

Parent of this context object.

Properties

The contexts object provides access to the following contexts:

"attributes": AttributesContext object

Arbitrary state information.

OpenIG can use this to inject arbitrary state information into the context.

See also Attributes(5).

"client": ClientContext object

Information about the client making the request.

See also Client(5).

"router": UriRouterContext object

Routing information associated with the request.

See also UriRouterContext(5).

"session": SessionContext object

Session context associated with the remote client.

See also Session(5).

Javadoc

org.forgerock.services.context.Context

Request — HTTP request

Description

An HTTP request message.

Properties

"method": string

The method to be performed on the resource. Example: "GET".

"uri": object

The fully-qualified URI of the resource being accessed. Example:
"http://www.example.com/resource.txt".

194

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/services/context/Context.html

See also URI(5).

"version": string

Protocol version. Example: "HTTP/1.1".

"headers": object

Exposes message header fields as name-value pairs, where name is header name and value is an
array of header values.

"cookies": object

Exposes incoming request cookies as name-value pairs, where name is cookie name and value is
an array of string cookie values.

"form": object

Exposes query parameters and/or application/x-www-form-urlencoded entity as name-value pairs,
where name is the field name and value is an array of string values.

"entity": object

The message entity body (no accessible properties).

Javadoc

org.forgerock.http.protocol.Request

Response — HTTP response

Description

An HTTP response message.

Properties

"cause": Exception object

The cause of an error if the status code is in the range 4xx-5xx. Possibly null.

"status": Status object

The response status.

For details, see Status(5).

"version": string

Protocol version. Example: "HTTP/1.1".

"headers": object

Exposes message header fields as name-value pairs, where name is header name and value is an
array of header values.

195

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/protocol/Request.html

"entity": object

The message entity body (no accessible properties).

Javadoc

org.forgerock.http.protocol.Response

Session — HTTP session context

Description

Provides access to the HTTP session context.

This is one of the contexts described in Contexts(5).

Properties

"session": map

Provides access to the HTTP session, which is a map. Session attributes are name-value pairs,
where both keys and value are strings.

Javadoc

org.forgerock.http.session.SessionContext

Status — HTTP response status

Description

Represents an HTTP response status. For details, see RFC 7231: HTTP/1.1 Semantics and Content.

Properties

"code": integer

Three-digit integer reflecting the HTTP status code.

"family": enum

Family Enum value representing the class of response that corresponds to the code:

Family.INFORMATIONAL

Status code reflects a provisional, informational response: 1xx.

Family.SUCCESSFUL

The server received, understood, accepted and processed the request successfully. Status

196

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/protocol/Response.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/session/SessionContext.html
https://tools.ietf.org/html/rfc7231#section-6.1

code: 2xx.

Family.REDIRECTION

Status code indicates that the client must take additional action to complete the request: 3xx.

Family.CLIENT_ERROR

Status code reflects a client error: 4xx.

Family.SERVER_ERROR

Status code indicates a server-side error: 5xx.

Family.UNKNOWN

Status code does not belong to one of the known families: 600+.

"reasonPhrase": string

The human-readable reason-phrase corresponding to the status code.

For details, see RFC 7231: HTTP/1.1 Semantics and Content.

"isClientError": boolean

True if Family.CLIENT_ERROR.

"isInformational": boolean

True if Family.INFORMATIONAL.

"isRedirection": boolean

True if Family.REDIRECTION.

"isServerError": boolean

True if Family.SERVER_ERROR.

"isSuccessful": boolean

True if Family.SUCCESSFUL.

Javadoc

org.forgerock.http.protocol.Status

URI — Uniform Resource Identifier

Description

Represents a Uniform Resource Identifier (URI) reference.

197

https://tools.ietf.org/html/rfc7231#section-6.1
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/protocol/Status.html

Properties

"scheme": string

The scheme component of the URI, or null if the scheme is undefined.

"authority": string

The decoded authority component of the URI, or null if the authority is undefined.

Use "rawAuthority" to access the raw (encoded) component.

"userInfo": string

The decoded user-information component of the URI, or null if the user information is
undefined.

Use "rawUserInfo" to access the raw (encoded) component.

"host": string

The host component of the URI, or null if the host is undefined.

"port": number

The port component of the URI, or null if the port is undefined.

"path": string

The decoded path component of the URI, or null if the path is undefined.

Use "rawPath" to access the raw (encoded) component.

"query": string

The decoded query component of the URI, or null if the query is undefined.

Use "rawQuery" to access the raw (encoded) component.

"fragment": string

The decoded fragment component of the URI, or null if the fragment is undefined.

Use "rawFragment" to access the raw (encoded) component.

Javadoc

org.forgerock.http.MutableUri

Router — HTTP request routing context information

Description

Provides context information related to HTTP request routing.

This is one of the contexts described in Contexts(5).

198

https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/MutableUri.html

Properties

"matchedUri": string

The portion of the request URI that matched the URI template.

"originalUri": URI

The original target URI for the request, as received by the web container.

The value of this field is read-only.

"remainingUri": string

The portion of the request URI that is remaining to be matched.

"uriTemplateVariables": map

An unmodifiable Map where the keys and values are strings. The map contains the parsed URI
template variables keyed on the URI template variable name.

Javadoc

org.forgerock.http.routing.UriRouterContext

199

https://docs.oracle.com/javase/7/docs/api/index.html?java/net/URI.html
https://doc.openidentityplatform.org/openig/apidocs/index.html?org/forgerock/http/routing/UriRouterContext.html

Appendix A: Release Levels and Interface
Stability
This appendix includes Open Identity Platform definitions for product release levels and interface
stability.

200

Appendix B: Release Levels and Interface
Stability
This appendix includes definitions for product release levels and interface stability.

Product Release Levels
Open Identity Platform Community defines Major, Minor, and Maintenance product release levels.
The release level is reflected in the version number. The release level tells you what sort of
compatibility changes to expect.

Table A.1. Release Level Definitions

Release Label Version Numbers Characteristics

Major Version: x[.0.0]
(trailing 0s are
optional)

• Bring major new features, minor features, and bug
fixes

• Can include changes even to Stable interfaces

• Can remove previously Deprecated functionality, and
in rare cases remove Evolving functionality that has
not been explicitly Deprecated

• Include changes present in previous Minor and
Maintenance releases

Minor Version: x.y[.0]
(trailing 0s are
optional)

• Bring minor features, and bug fixes

• Can include backwards-compatible changes to Stable
interfaces in the same Major release, and incompatible
changes to Evolving interfaces

• Can remove previously Deprecated functionality

• Include changes present in previous Minor and
Maintenance releases

Maintenance Version: x.y.z • Bring bug fixes

• Are intended to be fully compatible with previous
versions from the same Minor release

Open Identity Platform Product Interface Stability
Open Identity Platform products support many protocols, APIs, GUIs, and command-line interfaces.
Some of these interfaces are standard and very stable. Others offer new functionality that is
continuing to evolve.

Open Identity Platform Community acknowledges that you invest in these interfaces, and therefore
must know when and how Open Identity Platform Community expects them to change. For that
reason, Open Identity Platform Community defines interface stability labels and uses these
definitions in Open Identity Platform products.

201

Interface Stability Definitions

Stability Label Definition

Stable This documented interface is expected to undergo backwards-compatible
changes only for major releases. Changes may be announced at least one
minor release before they take effect.

Evolving This documented interface is continuing to evolve and so is expected to
change, potentially in backwards-incompatible ways even in a minor
release. Changes are documented at the time of product release.

While new protocols and APIs are still in the process of standardization,
they are Evolving. This applies for example to recent Internet-Draft
implementations, and also to newly developed functionality.

Deprecated This interface is deprecated and likely to be removed in a future release.
For previously stable interfaces, the change was likely announced in a
previous release. Deprecated interfaces will be removed from Open
Identity Platform products.

Removed This interface was deprecated in a previous release and has now been
removed from the product.

Internal/Undocumente
d

Internal and undocumented interfaces can change without notice. If you
depend on one of these interfaces, contact Open Identity Platform
Approved Vendors to discuss your needs.

202

https://github.com/OpenIdentityPlatform/.github/wiki/Approved-Vendor-List

	Configuration Reference
	Table of Contents
	Preface
	Who Should Use this Reference
	Reserved Routes
	Reserved Field Names
	Field Value Conventions
	About Common REST
	Formatting Conventions
	Accessing Documentation Online
	Joining the Open Identity Platform Community
	Getting Support and the Contacting Open Identity Platform Community

	Required Configuration
	GatewayHttpApplication — configure OpenIG
	Heap Objects — configure and initialize objects, with dependency injection
	Configuration Settings — configure objects

	Handlers
	Chain — dispatch the request to ordered list of filters and finally a handler
	ClientHandler — submit requests to remote servers
	DesKeyGenHandler — generate a DES key
	DispatchHandler — dispatch to one of a list of handlers
	MonitorEndpointHandler — return basic audit statistics in JSON format
	Route — Configuration for handling a specified request
	Router — Route processing to distinct configurations
	SamlFederationHandler — play the role of SAML 2.0 Service Provider
	ScriptableHandler — handle a request by using a script
	SequenceHandler — process request through sequence of handlers
	StaticResponseHandler — create static response to a request

	Filters
	AssignmentFilter — conditionally assign values to expressions
	ConditionEnforcementFilter — verify a condition to continue the chain of execution
	CookieFilter — manage, suppress, relay cookies
	CryptoHeaderFilter — encrypt, decrypt headers
	EntityExtractFilter — extract pattern from message entity
	FileAttributesFilter — retrieve record from a file
	HeaderFilter — remove and add headers
	HttpBasicAuthFilter — perform HTTP Basic authentication
	LocationHeaderFilter — rewrites Location headers
	OAuth2ClientFilter — Authenticate an end user with OAuth 2.0 delegated authorization
	OAuth2ResourceServerFilter — validate a request containing an OAuth 2.0 access token
	PasswordReplayFilter — replay credentials with a single filter
	PolicyEnforcementFilter — enforce policy decisions from OpenAM
	ScriptableFilter — process requests and responses by using a script
	SqlAttributesFilter — execute SQL query
	StaticRequestFilter — create new request
	SwitchFilter — divert requests to another handler
	TokenTransformationFilter — transform a token issued by OpenAM to another type
	UmaFilter — protect access as an UMA resource server

	Decorators
	AuditDecorator — trigger notification of audit events for Filters and Handlers
	BaseUriDecorator — override scheme, host, and port of request URI
	CaptureDecorator — capture request and response messages
	TimerDecorator — record times to process Filters and Handlers

	Logging Framework
	ConsoleLogSink — log to standard error
	FileLogSink — log to a file
	Slf4jLogSink — delegate log writing to SLF4J

	Audit Framework
	AuditService — enable common audit service for a route
	CsvAuditEventHandler — log audit events to CSV format files
	JdbcAuditEventHandler — log audit events to relational database
	SyslogAuditEventHandler — log audit events to the system log
	ElasticsearchAuditEventHandler — log audit events in the Elasticsearch search and analytics engine

	Throttling Filters and Policies
	ThrottlingFilter — limit the rate of requests
	MappedThrottlingPolicy — map throttling rates to groups of requests
	ScriptableThrottlingPolicy — script to map throttling rates
	DefaultRateThrottlingPolicy — default policy for throttling rate

	Miscellaneous Heap Objects
	ClientRegistration — Hold OAuth 2.0 client registration information
	JwtSession — store sessions in encrypted JWT cookies
	KeyManager — configure a Java Secure Socket Extension KeyManager
	KeyStore — configure a Java KeyStore
	Issuer — Describe an Authorization Server or OpenID Provider
	ScheduledExecutorService — schedule the execution of tasks
	TemporaryStorage — cache streamed content
	TrustManager — configure a Java Secure Socket Extension TrustManager
	TrustAllManager — a TrustManager that blindly trusts all servers
	UmaService — represent an UMA resource server configuration

	Expressions
	Expressions — expression configuration parameter values
	Functions — built-in functions to call within expressions
	Patterns — regular expression patterns

	Requests, Responses, and Contexts
	Attributes — context for arbitrary information
	Client — HTTP client context information
	Contexts — HTTP request contexts
	Request — HTTP request
	Response — HTTP response
	Session — HTTP session context
	Status — HTTP response status
	URI — Uniform Resource Identifier
	Router — HTTP request routing context information

	Appendix A: Release Levels and Interface Stability
	Appendix B: Release Levels and Interface Stability
	Product Release Levels
	Open Identity Platform Product Interface Stability

