from __future__ import unicode_literals, print_function, division from io import open import unicodedata import string import re import random import torch import torch.nn as nn from torch import optim import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu") SOS_token = 0 EOS_token = 1 class Lang: def __init__(self, name): self.name = name self.word2index = {} self.word2count = {} self.index2word = {0: "SOS", 1 : "EOS"} self.n_words = 2 def addSentence(self, sentence): for word in sentence.split(' '): self.addWord(word) def addWord(self, word): if word not in self.word2index: self.word2index[word] = self.n_words self.word2count[word] = 1 self.index2word[self.n_words] = word self.n_words += 1 else: self.word2count[word] += 1 #Turn a unicode strng to a plain ASCII def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) def normalizeString(s): s = unicodeToAscii(s.lower().strip()) s = re.sub(r"([.!?])", r" \1", s) s = re.sub(r"[^a-zA-Z.!?]+", r" ", s) return s def readLangs(lang1, lang2, reverse=False): print("Reading lines...") # Read the file and split into lines lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\ read().strip().split('\n') # Split every line into pairs and normalize pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] # Reverse pairs, make Lang instance if reverse: pairs = [list(reversed(p)) for p in pairs] input_lang = Lang(lang2) output_lang = Lang(lang1) else: input_lang = Lang(lang1) input_lang = Lang(lang2) return input_lang, output_lang, pairs MAX_LENGTH = 10 eng_prefixes = ( "i am ", "i m ", "he is", "he s ", "she is", "she s ", "you are", "you re ", "we are", "we re ", "they are", "they re " ) def filterPair(p): return len(p[0].split(' ')) < MAX_LENGTH and \ len(p[1].split(' ')) < MAX_LENGTH and \ p[1].startswith(eng_prefixes) def filterPairs(pairs): return [pair for pair in pairs if filterPair(pair)] def prepareData(lang1, lang2, reverse=False): input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse) print("Read %s sentence pairs" % len(pairs)) pairs = filterPairs(pairs) print("Trimmed to %s sentence pairs" % len(pairs)) print("Counting words...") for pair in pairs: input_lang.addSentence(pair[0]) output_lang.addSentence(pair[1]) #Write all processed sentences to a file, so #our c++ program does not need these pre-processing processed_file = open('data/%s-%s_procd.txt' % (lang1, lang2), 'w') for pair in pairs: processed_file.write("%s\t%s\n" %(pair[0], pair[1])) processed_file.close() print("Write to processed file done....") print("Counted words:") print(input_lang.name, input_lang.n_words) print(output_lang.name, output_lang.n_words) return input_lang, output_lang, pairs input_lang, output_lang, pairs = prepareData('eng', 'fra', True) print(random.choice(pairs)) class EncoderRNN(nn.Module): def __init__(self, input_size, hidden_size): super(EncoderRNN, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size) def forward(self, input, hidden): embedded = self.embedding(input).view(1, 1, -1) output = embedded output, hidden = self.gru(output, hidden) return output, hidden def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device) class DecoderRN(nn.Module): def __init__(self, hidden_size, output_size): super(DecoderRNN, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(output_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size) self.out = nn.Linear(hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): output = self.embedding(input).view(1, 1, -1) output = F.relu(output) output, hidden = self.gru(output, hidden) output = self.softmax(self.out(output[0])) return output, hidden def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device) #we need to concat the output and hidden here, so there #is only one useful output(there attn_weights are not used by migraphx) class AttnDecoderRNN(nn.Module): def __init__(self, hidden_size, output_size, dropout_p = 0.1, max_length = MAX_LENGTH): super(AttnDecoderRNN, self).__init__() super(AttnDecoderRNN, self).__init__() self.hidden_size = hidden_size self.output_size = output_size self.dropout_p = dropout_p self.max_length = max_length self.embedding = nn.Embedding(self.output_size, self.hidden_size) self.attn = nn.Linear(self.hidden_size * 2, self.max_length) self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size) self.dropout = nn.Dropout(self.dropout_p) self.gru = nn.GRU(self.hidden_size, self.hidden_size) self.out = nn.Linear(self.hidden_size, self.output_size) def forward(self, input, hidden, encoder_outputs): embedded = self.embedding(input).view(1, 1, -1) embedded = self.dropout(embedded) attn_weights = F.softmax( self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1) attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0)) output = torch.cat((embedded[0], attn_applied[0]), 1) output = self.attn_combine(output).unsqueeze(0) output = F.relu(output) output, hidden = self.gru(output, hidden) output = F.log_softmax(self.out(output[0]), dim=1) uns_output = torch.unsqueeze(output, 0) output = torch.cat((uns_output, hidden), 2) return output, attn_weights def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device) #Preparing training data def indexesFromSentence(lang, sentence): return [lang.word2index[word] for word in sentence.split(' ')] def tensorFromSentence(lang, sentence): indexes = indexesFromSentence(lang, sentence) indexes.append(EOS_token) return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) def tensorsFromPair(pair): input_tensor = tensorFromSentence(input_lang, pair[0]) target_tensor = tensorFromSentence(output_lang, pair[1]) return (input_tensor, target_tensor) #training function teacher_forcing_ratio = 0.5 use_teacher_forcing = True def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length = MAX_LENGTH): encoder_hidden = encoder.initHidden() encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() input_length = input_tensor.size(0) target_length = target_tensor.size(0) encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device = device) loss = 0 for ei in range(input_length): encoder_output, encoder_hidden = encoder( input_tensor[ei], encoder_hidden) encoder_outputs[ei] = encoder_output[0, 0] decoder_input = torch.tensor([[SOS_token]], device=device) decoder_hidden = encoder_hidden use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False if use_teacher_forcing: # Teacher forcing: Feed the target as the next input for di in range(target_length): output, decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) decoder_output = output.narrow(2, 0, output_lang.n_words) decoder_output = torch.squeeze(decoder_output, 0) decoder_hidden = output.narrow(2, output_lang.n_words, hidden_size) #decoder_output, decoder_hidden, decoder_attention = decoder( # decoder_input, decoder_hidden, encoder_outputs) loss += criterion(decoder_output, target_tensor[di]) decoder_input = target_tensor[di] # Teacher forcing else: # Without teacher forcing: use its own predictions as the next input for di in range(target_length): output, decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) decoder_output = output.narrow(2, 0, output_lang.n_words) decoder_output = torch.squeeze(decoder_output, 0) decoder_hidden = output.narrow(2, output_lang.n_words, hidden_size) #decoder_output, decoder_hidden, decoder_attention = decoder( # decoder_input, decoder_hidden, encoder_outputs) topv, topi = decoder_output.topk(1) decoder_input = topi.squeeze().detach() # detach from history as input loss += criterion(decoder_output, target_tensor[di]) if decoder_input.item() == EOS_token: break loss.backward() encoder_optimizer.step() decoder_optimizer.step() return loss.item() / target_length import time import math def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs)) import matplotlib.pyplot as plt plt.switch_backend('agg') import matplotlib.ticker as ticker import numpy as np def showPlot(points): plt.figure() fig, ax = plt.subplots() loc = ticker.MultipleLocator(base = 0.2) ax.yaxis.set_major_locator(loc) plt.plot(points) #train iterations def trainIters(encoder, decoder, n_iters, print_every = 1000, plot_every = 100, learning_rate = 0.01): start = time.time() plot_losses = [] print_loss_total = 0 plot_loss_total = 0 encoder_optimizer = optim.SGD(encoder.parameters(), lr = learning_rate) decoder_optimizer = optim.SGD(decoder.parameters(), lr = learning_rate) training_pairs = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)] criterion = nn.NLLLoss() for iter in range(1, n_iters + 1): training_pair = training_pairs[iter - 1] input_tensor = training_pair[0] target_tensor = training_pair[1] loss = train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion) print_loss_total += loss plot_loss_total += loss if iter % print_every == 0: print_loss_avg = print_loss_total / print_every print_loss_total = 0 print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters), iter, iter / n_iters * 100, print_loss_avg)) if iter % plot_every == 0: plot_loss_avg = plot_loss_total / plot_every plot_losses.append(plot_loss_avg) plot_loss_total = 0 showPlot(plot_losses) def evaluate(encoder, decoder, sentence, max_length = MAX_LENGTH): with torch.no_grad(): input_tensor = tensorFromSentence(input_lang, sentence) input_length = input_tensor.size()[0] encoder_hidden = encoder.initHidden() encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device = device) for ei in range(input_length): encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden) encoder_outputs[ei] += encoder_output[0, 0] decoder_input = torch.tensor([[SOS_token]], device = device) decoder_hidden = encoder_hidden decoded_words = [] decoder_attentions = torch.zeros(max_length, max_length) for di in range(max_length): #decode_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_outputs) output, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_outputs) decoder_output = output.narrow(2, 0, output_lang.n_words) decoder_output = torch.squeeze(decoder_output, 0) decoder_hidden = output.narrow(2, output_lang.n_words, hidden_size) decoder_attentions[di] = decoder_attention.data topv, topi = decoder_output.data.topk(1) if topi.item() == EOS_token: decoded_words.append('') break; else: decoded_words.append(output_lang.index2word[topi.item()]) decoder_input = topi.squeeze().detach() return decoded_words, decoder_attentions[:di + 1] #evaluate randomly def evaluateRandomly(encoder, decoder, n = 10): for i in range(n): pair = random.choice(pairs) print('>', pair[0]) print('=', pair[1]) output_words, attentions = evaluate(encoder, decoder, pair[0]) output_sentence = ' '.join(output_words) print('<', output_sentence) print('') #evaluate one pair def evaluateOnePair(encoder, decoder, n = 50): for i in range(n): pair = pairs[i * 10] print('>', pair[0]) print('=', pair[1]) output_words, attentions = evaluate(encoder, decoder, pair[0]) output_sentence = ' '.join(output_words) print('<', output_sentence) print('') hidden_size = 256 encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device) attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p = 0.1).to(device) trainIters(encoder1, attn_decoder1, 75000, print_every=5000) evaluateOnePair(encoder1, attn_decoder1) #export encoder onnx file input_tensor, target_tensor = tensorsFromPair(random.choice(pairs)) encoder_hidden = encoder1.initHidden() torch.onnx.export(encoder1, (input_tensor[0], encoder_hidden), "s2s_encoder.onnx", verbose=True) #export decoder onnx file decoder_input = torch.tensor([[SOS_token]], device = device) decoder_hidden = encoder_hidden encoder_outputs = torch.randn(MAX_LENGTH, encoder1.hidden_size) torch.onnx.export(attn_decoder1, (decoder_input, decoder_hidden, encoder_outputs), "s2s_decoder.onnx", verbose=True)