Automated Neuron Tracing in Vaa3D

Presenter: Liya Ding

Institute for Brain and Intelligence

Southeast University

mBrainAligner: Nature Method, 2021(accepted)

Neuron Morphology

- A defining feature of neuronal types
- Highly diverse and region specific
- Big number of reconstruction desired
- Automated reconstruction needed

BigNeuron

A community effort to find out what is exactly the state-of-the-art of single neuron reconstruction, standardize the protocols, and establish a Big Data resource for neuroscience.

Neuron Reconstruction Plugins(32+) in Vaa3D

- pruning (All-path-pruning 1, All-path-pruning 2)
- fitting geometrical elements (*NeuTube*)
- ray casting (Most-RayCasting, Simple-RayCasting, NeuronGPSTree)
- spanning tree and shortest paths (*TreMap, SimpleTracing-dt, Simple-RollingBall*)
- deformable curves (FarSight-Snake)

🔳 Vaa3D

File Image/Data Visualize Advanced Plug-In Window Work-Mode Help

File Image/Data Visualize Adva	anced Plug-In Window Work-Mode	Help		
X	Plug-in manager			
	Re-scan all plugins		Advantra	•
	Recently used plugins	•	aVaaTrace3D	•
	Most used plugins	•	BILIT factmarching channingtre	
Å	Clear used plugins history		BULT moonshift	
<u>~</u>	_Vaa3D_plugin_creator	•	BJOI_meansnit	
	AllenApps	•	Cvviab_method I_version I	,
-	celegans	•	EnsembleNeuronTracerBasic	•
	cell_counting	•	EnsembleNeuronTracerV2n	•
	color_channel	•	EnsembleNeuronTracerV2s	•
	data_IO	•	ENT	•
	detect_type	•	HUST_NeuroGPSTree	•
	dynamicApp2	•	LCM_boost	•
	FlyWorkstation_utilities	•	MOST tracing	•
	image_analysis	•	MST tracing	•
	image_blending	•	nctuTW	•
			NeuronChaser	•
	image_filters		NeuroStalker	•
	image_geometry			
	image_projection		neutu_autotrace	
	image_registration			
	image_ROL			
	image segmentation	•	RegMST	•
	image thresholding	•	Rivulet2	•
	linker file	•	segment_maker	•
	marker utilities	•	SIGEN	•
	misc	•	SimpleAxisAnalyzer	•
	movies and snapshots	•	SimpleTracing	•
	neuron stitch	•	smartTrace	•
	neuron_toolbox	•	Soma OC	•
	neuron_tracing	•	tips GD	•
	neuron_utilities	•		•
	pixel_intensity	•	ultratracer	•
	shape_analysis	•	Vaa3D-FarSight snake tracing	•
	synapse_detector	•	Vaa3D Neuron1	•
	Sync_Views	•		
	Vaa3D_PluginInterface_Demo	os •		,
	show_markers			
	about			

Automatic Tracing Examples

Neuron Reconstruction Results Evaluation

• Automatic

Gold Standard

- Manual annotations
- Inspected by multiple annotators

APP2 Intro

- APP2 = All Path Pruning 2.0
- Paper:

"APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of gray-weighted image distance-trees", Xiao, H., and Peng, H., Bioinformatics, 2013.

- Steps:
 - 1. GWDT: gray-weighted image distance transform
 - 2. Initial neuron reconstruction
 - 3. Hierarchical pruning

Peng, H. et al. Bioinformatics, 2013.

APP2 Step 1: GWDT

DT: distance transform

- Create a gradient of image intensity: ICDB
 - close to center of the region, the image intensity is large;
 - close to the boundary, the intensity is small.
- DT -> a binary image(by thresholding)

GWDT: gray-weighted image distance transform

- sum of image pixels' intensity along the shortest path to background.
- With low threshold value
- All image background pixels as 'seeds', then compute the distances from other pixels to these seed pixels.
- Formulated within the FM framework

★ FastMarching

- A region-growing scheme, important in APP2 GWDT & Initial neuron reconstruction
 - Step 1-initialization
 - seed vertices ALIVE; neighbors of seeds TRIAL; rest FAR
 - Step 2-recursion
 - from TRIAL vertices, extract one vertex x, with minimum distance value to the ALIVE set.
 - x : converted from TRIAL to ALIVE,
 - Non-ALIVE neighbor y of x to TRIAL if it is FAR.
 - Distance function of y is updated

APP2 Step 1: GWDT based on FM

GWDT based on fast marching (FM)

APP2 Step 2: Initial neuron reconstruction

FM Initialization step:

- parent of each image pixel x is set to be itself, i.e. par(x) = x.
- for each neighbor pixel y of s, we set them to have label 'TRIAL', and par(y) = s

FM recursive step:

For the minimum pixel x and each of its neighbor y

if y is FAR, then par(y) = x; if d(x) + e(x, y) < d(y), then par(y) = x.

APP2 Step 3: Hierarchical pruning

Hierarchical segments construction

- Order segments from most important to the least important
- Generate a hierarchy of them
- The 'importance' of a segment is defined based on its length

APP2 Step 3: Hierarchical pruning

Recursive pruning

• coverage area of a node • coverage area of segment • coverage ratio of segment

• image-pixel-intensity weighted coverage ratio

APP2 Step 3: Hierarchical pruning

Recursive pruning -- result

Smooth

Enjoyable

App2 in Vaa3D

3D View [D:/PPT/app2_test_images/test1.tiff]

- Base tracer
 - Base tracer vs. UltraTracer
- Single and Sparse neuron
 - Not designed for densely interweaved neurons

• Samples not suitable for App2:

App2 Interface with default parameters

INVaa3D-Neuron2 Auto_tracing Based on APP2 (All ? $ imes$					
color channel	1				
background_threshold (if set as -1, then auto-thresholding)	10 <u>.</u>				
auto-downsample 🗹 use	GSDT 🔲 allow gap 🗌 radius from 2D? 🗹				
auto-resample SWC 🗹 hi	gh intensity background 🗌 bright filed 🗌				
cnn_type	2				
length_thresh	5				
SR_ratio	0. 333333				
cancel	ok				

- 🕿 test1.tiff
- a test1.tiff x256 y258 z130 app2.swc
- 🛃 test2.tiff
- 🛃 test3.tiff
- 🛃 test4_original.tiff

test1.tiff ini.swc

test4_preprocessed.tiff

App2 Parameters: Background threshold

INVaa3D-Neuron2 Auto_tracing Based on APP2 (All ? \times					
color channel	1				
background_threshold (if set as -1,	10 *				
then auto-thresholding)					
auto-downsample 🚩 use	auto-downsample 🗹 use GSDT 🔲 allow gap 🗌 radius from 2D? 🗹				
auto-resample SWC 🚩 h	igh intensity background 🗌 bright filed 🗌				
cnn_type	2				
length_thresh	5				
SR_ratio	0. 333333				
cancel	ok				

- How it works?
 - With low threshold, App2 generate initial reconstruction and prune away irrelevant segments
- Is it critical?
 - Yes and No
- Background threshold:
 - Default:10
 - Automatic determining threshold: with -1
 - Mean + 0.5 * Std

Automatic background threshold

How to estimate a good threshold?

App2 Parameters

■ Vaa3D-Neuron2 Auto_tracing Based on APP2 (All ? ×				
color channel	1			
background_threshold (if set as -1,	10			
auto-downsample 🗹 use	e GSDT □ allow gap □ radius from 2D? ▼			
auto-resample SWC 🚩 h	igh intensity background 📋 bright filed 📋			
cnn_type	2			
length_thresh	5			
SR_ratio	0. 333333			
cancel	ok			

- Auto-downsample
 - Default: Yes
 - Downsample to 256*256*256
 - Can change it to No when image is big and detailed resolution needed

Auto-downsample

- Auto-downsample
 - Set it to "No" whenever your computer can handle it
 - Set it to "No" for the rest of my talk

App2 Parameters that fits most cases

III Vaa3D-Neuron2 Auto_tracing Based on APP2 (All ? \times					
color channel	1				
background_threshold (if set as -1,	-1 .				
then auto-thresholding/					
auto-downsample 🔲 เรe	e GSDT 🔲 allow gap 🗌 radius from 2D? 🎽				
auto-resample SWC 🚩 hi	igh intensity background 🗌 bright filed 📃				
cnn_type	2				
length_thresh	5				
SR_ratio	0. 333333				
cancel	ok				

- Auto-downsample
 - No
- Background threshold:
 - Automatic determining threshold: with -1
 - Mean + 0.5 * Std
- Would suggest this to all cases as initial test

Automatic Tracing Examples

UltraTracer

Tip-queue based Neuron Growth Algorithm

Comparison Results

Algorithm	АР	PP1	APP2		Neutube		MOST	
Tracing Method	TR	UT	TR	UT	TR	UT	TR	UT
Morphology Reconstruction	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	X		A A A A A A A A A A A A A A A A A A A		A A A A A A A A A A A A A A A A A A A
BASDM (voxels) (against 2 ind. manual tracings)	1.83, 2.35	1.99, 2.50	2.30, 3.17	2.78, 3.57	179.72, 173.71	5.17, 5.42	39.83 <i>,</i> 38.83	3.01, 3.42
Peak Memory (GB)	77.18	14.21	31.23	2.82	27.9	1.92	4.61	0.64
Tracing Time (s)	956.94	1132.82	69.95	115.67	1322.50	3317.86	22.43	29.65
Total Cost (PM x TT)	73856.63	16097.37	2184.54	326.19	36897.75	6370.29	103.40	18.98
Performance Gain (UT/TR)	3.	59	5.70		4.79		4.45	

BASDM (BASD score compared to a pure human manual reconstruction);

BASD: Best Average Spatial Distance.

BASD score between two pure human manual reconstructions is 3.56.

Combination Scheme 1

Algorithm	APP2	Neutube	MOST	APP2+Neutube	APP2+MOST
Morphology Reconstruction	A A A	A A		X	
Total Scanned Areas (billion voxels)	0.94	2.80	1.90	2.80	1.90
Tracing time (s)	40.63	2250.73	408.91	2158.69	89.18

Combination Scheme 2

Algorithm	4002	Neutube	Real-time selection		
Algorithm	APPZ	Neutube	Best candidate	Consensus	
Morphology Reconstruction					
BASDM (voxels) (against 2 ind. Manual tracings)	2.78, 3.57	5.17, 5.42	2.62, 3.42	3.73, 4.18	
Tracing time (s)	115.67	3317.86	3565.69	3204.97	

Availability

Software availability: UltraTracer is open source and available in Vaa3D software (vaa3d.org). Currently Linux only.

Data availability: The sample data are publicly available and can be downloaded from GitHub (<u>https://github.com/Vaa3D/Vaa3D_Data/releases/download/v0.9/ultratr acer_testing_data.zip</u>).

m16_cing_1_9_cropped_neurona.v3dpbd.marker
m16_cing_1_9_cropped_neurona.v3draw

Thank you