
Extend Your Research with 
Vaa3D Plugins

Yufeng Liu



Vaa3D: A Swiss Army knife for exploring big big image data



Extensibility: Plugins

❑ Dynamic libraries on top of Vaa3D that empower the main program 
with specific functions
❑ make use of Vaa3D core functions

❑ call other plugin functions: super-plugin

❑ Two-folds
❑ Large number of available plugins

❑ Plugin implementation required only minimal effort



High Extensibility with Minimal Effort 

❑ Plugins are independent with main program
❑ Interact at dynamic library level (*.so/*.dll/*.dylib)

❑ Addition/update of plugin does not require re-compiling of main program

❑ Vaa3D provide facilities that
❑ automatically detect, load, and call plugins

❑ reserves extensible interface for new plugins

Vaa3D main
AutoDetect/Loadx

plugin1 plugin2
Intercallable

callable

Addition/Update



Vaa3D architecture

Verified, release with 
binary

Third-party



released_plugins: Built-in plugins

❑ 140+ 

❑pre-built with binary, automatic 
built while compiling

❑ binaries located at `bin`

❑ Diverse functionalities: 

❑ 27 automatic tracing algorithms
❑ Neuron analysis, resampling
❑ Image analysis, transformation, 

filtering, visualization
❑ Registration, stitching
❑ File IO and conversion
❑ …



Third-party plugins

❑Hackathon & BigNeuron_ported

❑ ~400 plugins!!!

❑ Compile manually 

❑ Users are encouraged to implement 
their plugins here.



Usage of plugins: through main menu



Shortcut configuring
• Append the most frequently used plugins to the main menu



Usage of plugins: through command line

❑ large scale data 

❑ Additional configurable parameters for some plugins

❑ Better exception control

❑ Speed up via parallelization



Usage of plugins: through command line

Arguments form is different for Windows



Usage of plugins: through command line



Usage of plugins: through command line



How to find out specific plugin you want?

• For built-in plugins:
• GUI: click Plug-ins, drop down and find the specific plugins
• Command line: vaa3d –h for information, or find plugin with specific name, 

try:
• vaa3d –h | grep “keyword”
• vaa3d –x “plugin_path” –f help

• For third-party plugins:
• Go to the directory: 

• vaa3d_tools/hackathon & vaa3d_tools/bigneuron_ported

• Search by keyword: 
• Find vaa3d_tools/ -name “*keyword*” –type f



Write your own plugin: pre-requisite

Environmental pre-requisite:
• Proper Qt version installed

• C++ compiler (e.g. g++)

• Vaa3D source code (not binary!) downloaded (http://vaa3d.org)

More informations: 
• Supported versions refer to: https://github.com/Vaa3D/Vaa3D_Wiki/wiki

http://vaa3d.org/
https://github.com/Vaa3D/Vaa3D_Wiki/wiki


Write your own plugin: structure

Minimal file sets:
• plugin.h

• plugin.cpp

• plugin.pro

• Plugin creator:

• More informations: 
• Guidelines:

https://github.com/Vaa3D/Vaa3D_Wiki/wi
ki/PluginDesignGuide.wiki

Slide from Dr. Peng

https://github.com/Vaa3D/Vaa3D_Wiki/wiki/PluginDesignGuide.wiki


Write your own plugin: an example



Super-plugin: how to call other plugins

• Example: call externel plugin ex_matrix in current plugin (ex_call).

• Usage:
• v3d.callPluginFunc(ex_matrix_path, func_name)

• Reference code: v3d_plugins/v3dplugin_call_each_other_example

ex_call ex_matrix

Plugins



attendees practice

• APP2 tracing: 
• Through command line

• Writing example plugin: “Hello world”
• Writing & Compiling

• Validation


