
The usage of Vaa3D plugins

Jingzhou Yuan

2021-12-15



Introduction

• A Swiss Army knife for 

exploring big big image data

.

FAST
Vaa3D visualizes and explores big 3D/4D/5D images 
with giga-voxels and even tera-voxels, within seconds or 
sub-seconds!

COOL
Vaa3D extracts complex surface objects from images, 
and performs comprehensive analyses such as brain 
connectome mapping.

EXTENSIBLE
100+ plugins for image acquisition, microsurgery, data 
management and analysis, and massive-scale pipelining



Extensibility: Plugins

Plugins are independent with main program 

1.Interact at dynamic library level (*.so/*.dll/*.dylib) 

2.Addition/update of plugin does not require re-compiling 
of main program

Vaa3D provide facilities that 

1.automatically detect, load, and call plugins 

2.reserves extensible interface for new plugins



Vaa3D architecture

released_plugin:
1.Generally and usually use
2.pre-built with binary, automatic built while compiling

hackathon and bigneuron_ported:
1.they are third-party plugins
2.we could write our own plugins there
3.need to compile manually



Usage of plugins: through main menu



Usage of plugins: through command line

large scale data

Additional configurable parameters for some plugins

Better exception control 

Speed up via parallelization



Usage of plugins: through command line



Usage of plugins: through command line

an example of the usage of plugin through python



Finding out the specific plugin you want



Usage of plugins: through command line-detailed

Plugin_path

command

command



Usage of plugins: through command line-detailed

Command: view the plugin usage

Usage and Demo



Write our own plugin

Select your own 
path(usually include in 
the hackathon file)

click the create 
plugin button, then

Write some 
information



Write our own plugin

There are three files in 
your own selected path



Write our own plugin

Menu items in GUI

Function items for any 
other purposes

The actual action(s) of 
each menu item

The actual action(s) of 
each function

We could write needed 
function in test_plugin.cpp



Write our own plugin

Writing example plugin: 
“Hello world” 

And compile manually

Your own method

Put your own method in GUI

After writing plugin: “Hello 
world” 

Using qmake command in 
your path and then make

Put your own method in Function



Our own plugin result

Click menu1 button, then result:



Thank you !


