
1

SYSTEM INTEGRATOR MANUAL

Dec 2014

2

SYSTEM
INTEGRATOR MANUAL

Copyright © Nortek AS 2010. All rights reserved.

This document may not – in whole or in part – be copied, photocopied, translated, converted or reduced to any

electronic medium or machine-readable form without prior consent in writing from Nortek AS. Every effort has

been made to ensure the accuracy of this manual. However, Nortek AS makes no warranties with respect to this

documentation and disclaims any implied warranties of merchantability and fitness for a particular purpose. Nortek

AS shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing,

performance or use of this manual or the examples herein. Nortek AS reserves the right to amend any of the

information given in this manual in order to take account of new developments.

Microsoft, ActiveX, Windows, Windows 2000, and Win32 are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries. Other product names, logos, designs, titles,

words or phrases mentioned within this publication may be trademarks, service marks, or trade names of Nortek

AS or other entities and may be registered in certain jurisdictions including internationally.

Nortek AS, Vangkroken 2, NO-1351 RUD, Norway.

Tel: +47 6717 4500 • Fax: +47 6713 6770 • e-mail: inquiry@nortek.no • www.nortek-as.com

http://www.nortek-as.com/

3

CONTENTS

1 Introduction ... 5

1.1 ActiveX® .. 5

2 Basic Interface Concepts ... 6

2.1 Operational Modes .. 6

2.2 The Break .. 6

2.3 Checksum Control ... 6

2.4 Two-character ASCII Commands ... 6

2.5 Acknowledgement ... 7

3 Use with a Controller .. 8

3.1 Simple Storage Device .. 8

3.2 Control the Instrument Directly ... 8

3.3 Turning the Power On/Off ... 9

3.4 Power Consumption .. 9

3.5 Control via the Serial Line ... 9

4 Remote Control Commands .. 11

4.1 Command Mode .. 11

4.2 Data Collection Mode .. 19

4.3 In Confirmation Mode ... 20

5 Firmware Data Structures ... 22

5.1 Generic Structures ... 22

5.2 Aquadopp and Aquadopp DW Specific Structures ... 26

5.3 Vector Specific Structures ... 28

5.4 Aquadopp Profiler Specific Structures .. 33

5.5 HR Aquadopp Specific Structures ... 34

5.6 AWAC Specific Structures .. 36

5.7 Continental Data .. 40

5.8 Prolog .. 40

5.9 Vectrino Specific Structures .. 45

5.10 Error And Status Codes ... 48

6 ASCII Output .. 49

6.1 Disk Recording in ASCII Format .. 49

6.2 ASCII Output from MA/AS Commands ... 49

6.2.1 Aquadopp Profiler and AWAC (non-AST) .. 50

6.2.2 Continental .. 51

6.2.3 Aquadopp .. 52

6.3 NMEA Output ... 53

4

7 Making A Nortek file – Example .Vec.. 58

8 Overview of the IDs .. 59

9 Inductive Modem Integration .. 60

10 Example Program ... 67

10.1 Generating a Break .. 67

10.2 Decoding of Data Structures .. 68

10.3 Structure Definitions .. 70

11 Appendix A: Instrument States .. 77

5

1 INTRODUCTION

This document provides the information needed to control a Nortek product (Aquadopp,

Vector, etc.) with a non-PC controller. It is aimed at system integrators and engineers

with interfacing experience. Code examples are provided in C. The document’s scope

is limited to interfacing and does not address general performance issues of the

instruments. For a more thorough understanding of the principle of operation, we

recommend the Principles of Operation chapter in the Comprehensive Manual, available

at the Nortek web.

The document is complete in the sense that it describes all available commands and

modes of communication. For most users, it will make sense to let the supplied Nortek

software do most of the hardware configuration and then let the controller limit its task

to starting/stopping data collection. For more in-depth information about specific

commands, we urge you to contact Nortek to discuss how your particular problem is

best solved. For those who wish to write their own Windows applications to control one

or more Nortek products an ActiveX® object is available. This greatly simplifies

interfacing and the handling of the internal data structures.

Note that the Nortek products use a binary data format for communication. This makes

it hard to “see” what is going on with a terminal emulator. However, the binary interface

saves programming time because parsing the text files will not be needed. It may take

more time initially to put the basic communication in place, but once done the remainder

of the work should be straightforward. The use of checksums and CRC helps to make

the binary data interface more robust.

As always, these types of documents are subject to change. We recommend that you

check http://www.nortek-as.com/en/support or contact Nortek to ensure you have the

all the latest information and versions of any software you plan to use.

We recommend you do this as part of your project planning before you start any

development work. If you have any comments or suggestions on the information given

here, please let us know. Your comments are always appreciated; our general e-mail

address is inquiry@nortek.no. You can always join our forum and post your comments,

suggestions or questions there, visit our website www.nortek-as.com and click the link

to the forum.

1.1 ACTIVEX®

The ActiveX®/DLL software interface provides functions to configure the instrument,

control the data acquisition process and retrieve data from the recorder. In a DLL

implementation, C/C++ API calls are made to the Paradopp DLL. A Paradopp OCX

implementation requires that the software development environment support the OCX

interface. Visual Basic, Visual C++ and Delphi, are a few environments that support the

OCX interface. The ActiveX® control interface is described in the ActiveX Module for

System Integrators, available separately from Nortek.

http://www.nortek-as.com/en/support
mailto:inquiry@nortek.no
http://www.nortek-as.com/

6

2 BASIC INTERFACE CONCEPTS

The Nortek products communicate with a default protocol of 8 data bits, no parity and

1 stop bit. The baud rate is user selectable and can be configured either with the supplied

Windows programs or by using direct commands to the system after the direct

communication has been initiated (see the chapter on Remote Control Terminal

Commands). The only lines used are RxD, TxD, and GND. Status and handshaking

lines are not used.

2.1 OPERATIONAL MODES

The operational modes for any Nortek system are:

 Command mode. The system is waiting for an instruction over the serial line.

After 5 minutes of inactivity, the system will power down.

 Power down mode. This state is used to conserve power. A break must be sent

to cause the instrument to wake up.

 Measurement mode. The system cycles through a series of states when

collecting data. To exit collection mode, a break and confirmation string must

be sent.

 Data retrieval mode. After a power on/off, the system will remember what mode

it is in.

For more details, see the Instrument States document available in Appendix A.

2.2 THE BREAK

A break command is used to change between the various operational modes of the

instrument and to interrupt the instrument regardless of which mode it is in. It is used

frequently when communicating with the instrument. Consequently, any system

designed to control a Nortek system must be able to send a break.

To send a break you first send “@@@@@@” followed by a delay of 100 ms and then

send “K1W%!Q”.

2.3 CHECKSUM CONTROL

Most data structures contain a 16-bit checksum. An example program is given in the

chapter on Data Structures to help explain how the checksum can be implemented.

2.4 TWO-CHARACTER ASCII COMMANDS

The command interface uses two character commands where the two characters are

treated as a single 16-bit word. The time delay between the two characters in a command

must be less than 0.5 second; otherwise, the Nortek instrument will discard both

characters.

Data is transferred as words and the convention is Intel style, which means that low byte

is sent before high byte. The data types are given in the section describing the various

commands. More about this can be found in the Terminal Commands chapter.

7

2.5 ACKNOWLEDGEMENT

After a successful command is sent, the system returns an acknowledgement. The actual

value for acknowledge (AckAck) is 0x0606. Whenever the system firmware receives a

command/word that is invalid, it immediately returns a negative acknowledge

(NackNack). The value is 0x1515.

8

3 USE WITH A CONTROLLER

This chapter provides useful information when setting up your Nortek instrument with

a controller. Basically, a controller will act in one of the two following ways:

 As a simple storage unit for the data acquired.

 As a device controlling the Nortek instrument’s behavior, with or without data

transfer to the controller.

All Nortek instruments come with deployment software running on the Windows®

platform. We strongly recommend that you use this software to set up the instrument

properly.

The data output to the controller is in binary format for all instruments. However, the

Aquadopp Profiler, the Aquadopp Current Meter, the Aquadopp Deep-water Current

Meter, the AWAC and the Continental can output data in ASCII format – see the chapter

on ASCII Output for more information. In addition the Aquadopp Profiler, the AWAC,

the Aquadopp Current Meter, the Aquadopp Deep-water Current Meter are supporting

the NMEA format.

All Nortek instruments are supplied with RS 232 interface unless specified otherwise.

For long distance transmission (more than 50m), we recommend the use of RS 422,

which is available as an option for all Nortek instruments.

3.1 SIMPLE STORAGE DEVICE

If you decide to use your controller as a simple storage device, you will have to make

up your mind whether or not to use the internal recorder in addition to the controller.

More about the internal recorder feature can be found in the user guide for the Nortek

instrument.

Data output from the Nortek instrument will be properly time stamped as long as the

instrument remains powered, so you will not have to implement time stamping in the

controller to keep track of the data acquisition.

See the chapter on Data Structures for more information on how to interpret the data

received from the instrument.

3.2 CONTROL THE INSTRUMENT DIRECTLY

If you decide to use your controller to control the Nortek instrument, you have two

options:

 The controller starts and stops the measurements by turning the power to the

Nortek instrument off when not measuring. This allows for a longer

deployment. However, this may require the controller to time-stamp the data,

since Nortek instruments may lose their time information when the power is

removed for more than 5 minutes. For more information regarding power

consumption, read the power consumption paragraph below.

 The controller starts and stops the measurements using a combination of a two-

character ASCII command and a break command.

9

You may want to store data read from the instrument in the controller. Some

applications may also require that you download deployment setups from the instrument

at regular intervals and store these in the controller.

For commands to be received and executed, the instrument must be in Command mode.

If the instrument is in Power down mode, a break must be sent to wake it up. If, on the

other hand, the instrument is in Data collection mode (i.e. measuring) a break followed

by a confirmation string must be sent. The confirmation string will be the MC command,

which must be sent within 10 seconds after the break. Otherwise, the instrument will

resume data measurement. In some newer versions of the firmware, the confirmation

string - MC command - must be sent within 60 seconds or the instrument will resume

data measurement.

3.3 TURNING THE POWER ON/OFF

In this case, the system will automatically start measuring and outputting data when

power is applied. To use this method effectively, you must:

 Make sure the appropriate deployment planning has been downloaded to the

instrument, either from a PC or from the controller.

 Start data collection from the PC or the controller before disconnecting. Once

the power is shut down, the instrument will remember that it is in data collection

mode and continue to collect data once the power is re-applied.

When using this technique of removing and applying power, the recorder will operate

in Append mode. If started with the SR command (Start with Recorder), all the data will

be recorded to the same file. This allows easy verification of the controller since what

has been logged to the internal recorder is identical to what has been sent to the

controller.

When controlling a continuously measuring instrument with Prolog installed, make sure

that the Prolog has enough time to flush the collected data before power is removed.

The Prolog will flush data every 32kB when the instrument is configured to measure

continuously. If the power is removed before 32kB of data is collected, no data is

flushed.

3.4 POWER CONSUMPTION

Older instruments or those with firmware versions prior to V3.0 the internal clock may

lose the correct time if the power is disconnected for more than 5 minutes. Instruments

with later versions of the firmware will maintain the correct time for several weeks.

Newer versions of the instruments use so little power that you will need to disconnect

the power for some time or configure the instrument for continuous operation. If not,

the power loss might not be detected by the instrument.

3.5 CONTROL VIA THE SERIAL LINE

In this case, the data collection is controlled over the serial line. To start data collection,

a two-character ASCII command is sent; for instance AD. The instrument automatically

enters power down when the measurement is finished. To wake the system up or

10

interrupt the measurement – a break must be sent. Using the AD command the

instrument will jump directly to command mode upon receiving a break.

To start a measurement from Command mode, send the command ST. The system will

send an acknowledge (AckAck) to show that the measurement is started. More about

this can be found in the Terminal Commands chapter.

A typical sequence proceeds as follows:

 Send a break command to gain control of the system and put it in Command

mode. If the system is busy collecting data (i.e. measuring), a verification is

required, otherwise the instrument will not stop measuring. Send the characters

MC within 60 seconds.

 To start a measurement from Command mode send the command ST. (SR if

you want to also store data in the instrument’s recorder – see the list of

commands in Terminal Commands chapter.

 To stop data collection, send a break and the verification characters.

 To conserve power between measurement intervals, send the command PD.

A typical Aquadopp session might look like this:

Aquadopp sends Controller sends Comments

 <BREAK> Aquadopp in power down

Aquadopp

Nortek AS 2003 Version

1.23 Command

mode AckAck

 In command mode

 AD

 Measuring

....) (*&) (*&) (& Outputs binary data

&!%#&)*J ASH(#&

 Aquadopp is powered down

11

4 REMOTE CONTROL COMMANDS

A few terms:

RTC: Real Time Clock

MSW: Most Significant Word, bits 31–16 in a 32 bits data field

LSW: Least Significant Word, bits 15–0 in a 32 bits data field

SW: The software program in the computer or controller

FW: The software program in the instrument

0x: Indicates hex code

Low byte before high byte. When designing computers, there are two different

architectures for handling memory storage. They are often called Big Endian and Little

Endian and refer to the order in which the bytes are stored in memory. The Windows

series of operating systems has been designed around Little Endian architecture and is

not compatible with Big Endian.

These two phrases are derived from “Big End In” and “Little End In.” They refer to the

way in which memory is stored. On an Intel computer, the little end is stored first. This

means a Hex word like 0x1234 is stored in memory as (0x34 0x12). The little end, or

lower end, is stored first. The same is true for a four-byte value; for example,

0x12345678 would be stored as (0x78 0x56 0x34 0x12). For this reason, we show the

Hex values in reversed order in the tables below.

Example: For the RC command the character ‘R’ corresponds to 0x52 and the character

‘C’ to 0x43. Shown in reversed order (to comply with the Little Endian principle) this

will read 0x4352, which is what you will find listed in the table: Remote Control

Commands in Command Mode

Please note than when using the terminal emulator embedded in Nortek software the

little endian conversion is done by the terminal emulator.

BCD format: Binary coded decimal is an encoding for decimal numbers in which each

digit is represented by its own binary sequence. Four bits are used per digit. We show

the binary sequences in hex.

The different instrument states and how to change state is illustrated in Appendix A:

Instrument States

4.1 COMMAND MODE

Read clock

Execute command

RC

Description

Reads the current date and time of the RTC in the instrument.

Hex

4352

Response

3 words clock data structure followed by AckAck

12

 Command parameter required

None

 Response example

09 07 02 11 10 12 06 06 (2. December 2010 11:09:07)

Reference

Chapter on

Data Structures

Note

Set clock

Execute command

SC

Hex

4353

Description

Sets the current date and time of the RTC in the instrument.

Response

AckAck

Parameter

3 word clock data structure

Reference

Chapter on

Data Structures

Note

The setting of the clock is synchronized to the transition of

seconds i.e. the FW waits until a second transition has occurred

and then sets the clock.

Inquiry

Execute command

II

Hex

4949

Description

Returns a word z telling which mode the instrument is in.

Response structure

1 word z followed by AckAck

Response interpretation

z = 0x0000: Firmware upgrade mode

z = 0x0001: Measurement mode

z = 0x0002: Command mode

z = 0x0004: Data retrieval mode

z = 0x0005: Confirmation mode

Response example

02 00 06 06

Indicating Command mode followed by AckAck

Reference

Note

In measurement mode all commands are single character. This

means that if you send a normal inquiry command, the

instrument will return the result twice. The Inquiry command is

the preferred command to use for automatic baud rate detection

for the PC.

Set baud rate

Execute command

BR

Hex

5242

Description

Sets the instrument baud rate.

Response

AckAck

Parameter to be sent

Z

Parameter structure

z = 0x3030 300 baud

z = 0x3131 600 baud

z = 0x3232 1200 baud

z = 0x3333 2400 baud

z = 0x3434 4800 baud

13

z = 0x3535 9600 baud

z = 0x3636 19200 baud

z = 0x3737 38400 baud

z = 0x3838 57600 baud

z = 0x3939 115200 baud

z = 0x3031 600000 baud

z = 0x3231 1200000 baud

Example

5242 3232 06 06

Command for setting baud rate to 1200 baud

followed by the response AckAck

Reference

Note

The baud rate is stored in the instrument only when the recorder

is formatted, when a measurement is started, or an SB command

is sent. This will ensure that the communication can be restored

by waiting until the instrument powers down after 5 minutes of

inactivity. The PC must make sure that the baud rate being used

is sufficiently high to ensure that all data can be transferred over

the serial line for the chosen data format and measurement

interval. For example, at 300 baud it is only possible to transfer

30 bytes/s, so having a measurement interval of 1 second will

not be possible. Using very low baud rates will inevitably have

an impact on the power consumption because of the added time

needed for data transfer on the serial line before the instrument

can power down. For most applications, however, the difference

will be negligible. Note that baud rates above 115200 will

require a high speed RS232/422 to USB converter.

Save baud rate

Execute command

SB

Hex

4253

Description

Saves the currently set baud rate

Response

AckAck

Parameter

0x4733 0x3241

Reference

Chapter on

Data Structures

Note

ASCII counterpart: 3GA2. If you have set the baud with the BR

command you must save it afterwards if you want the instrument

to wake up with that baud rate after power down. The parameter

is shown obeying the low-byte-before-high-byte principle, i.e. in

the way it should be sent to the instrument.

Read complete configuration data

Execute command

GA

Hex

4147

Description

Read the currently used hardware configuration, the head

configuration, and the deployment configuration from the

instrument

Response

Complete setup information (48 +224+512 bytes) followed by

AckAck

Parameter

None

Response example

a5 05 18 00 41 51 44 20 31 32 31 35 20 20 20 20

20 20 02 00 d0 07 0d 00 3c 00 90 00 01 00 ff ff

ff ff ff ff ff ff ff ff ff ff 31 2e 31 31 98 5c

14

a5 04 70 00 0d 00 d0 07 00 00 41 51 50 20 30 38

35 32 20 20 20 00 19 00 19 00 19 00 00 00 3d 19

.

..

cd ff 8b 00 e5 00 ee 00 0b 00 84 ff 3d ff 4c 52

06 06

Reference

Chapter on

Data Structures

Note

Some lines in the above example have been removed for clarity.

Read deployment user configuration data

Execute command

GC

Hex

4347

Description

Read the currently used deployment configuration from the

instrument.

Response

Deployment setup (512 bytes) followed by AckAck

Parameter

None

Response example

a5 00 00 01 5c 00 22 00 18 00 b6 02 00 02 0f 00

01 00 03 00 02 00 60 00 00 00 00 00 00 00 01 00

01 00 14 00 14 17 01 00 00 00 00 00 00 00 00 00

50 01 06 10 04 02 06 00 00 00 20 00 11 41 01 00

01 00 0f 00 00 00 00 00 a8 2f 5e 01 ca 3c e6 3c

.

..

cd ff 8b 00 e5 00 ee 00 0b 00 84 ff 3d ff 4c 52

06 06

Reference

Chapter on

Data Structures

Note

Some lines in the above example have been removed for clarity.

Read hardware configuration data

Execute command

GP

Hex

5047

Description

Read the currently used hardware configuration from the

instrument.

Response

HW setup information (48 bytes) followed by AckAck

Parameter

None

Response example

a5 05 18 00 41 51 44 20 31 32 31 35 20 20 20 20

20 20 02 00 d0 07 0d 00 3c 00 90 00 01 00 ff ff

ff ff ff ff ff ff ff ff ff ff 31 2e 31 31 98 5c 06 06

Reference

Chapter on

Data Structures

Note

Read head configuration data

Execute command

GH

Hex

4847

Description

Read the currently used head configuration from the instrument

Response

Head configuration (224 bytes) followed by AckAck

15

Parameter

None

Response example

a5 04 70 00 1f 40 d0 07 00 00 41 51 50 20 34 33

35 34 00 00 00 00 00 00 00 00 2d 00 00 00 50 0b

.

.

.

38 0e 10 0e 10 0e 10 27 64 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00

f0 60 06 06

Reference

Chapter on

Data Structures

Note

Some lines in the above example have been removed for clarity.

Power down

Execute command

PD

Hex

4450

Description

The Power down command puts the instrument in sleep mode

(switches off the power)

Response

AckAck

Parameter

None

Battery voltage

Execute command

BV

Hex

5642

Description

Read the battery voltage from the instrument.

Response

4 bytes followed by AckAck

Parameter sent out

None

Response example

a7 1f 06 06

Reference Note

Bearing in mind the low-byte-before-high-byte principle, the

response should be interpreted as 0x1fa7, which corresponds to

decimal 8103, which in turn is the voltage directly in mV.

Transparent compass

Execute command

TC

Hex

4354

Description

The transparent compass command powers up the compass and

makes a transparent channel from the compass to the PC.

Response

AckAck

Parameter

None

Reference Note

This command enables the PC to read the data strings output

from the compass and to send commands to the compass.

Observe that this command sets the baud rate of the instrument

to 38400. However, the baud rate is set back to the current

instrument baud rate once a break is sent to the instrument from

the controller. You can use this command to tell the controller to

verify that the compass is outputting the correct data. It can also

16

be used to set up the compass to match the required setup for the

instrument.

Caution! The FW command will never attempt to change the

setup of the compass, so if the controller sends commands to the

compass, these must set up the compass correctly before you

send a break to end the transparent compass session!

Get identification string

Execute command

ID

Hex

4449

Description

Read the identification string from the instrument.

Response

14 bytes ASCII string followed by AckAck

Parameter

None

Response example

41 51 44 20 31 32 31 35 20 20 20 20 20 20 06 06

corresponding to AQD1215

Start measurement without recorder

Execute command

ST

Hex

5453

Description

Immediately starts a measurement based on the current

configuration of the instrument without storing data to the

recorder. Data is output on the serial port.

Response

AckAck or NackNack

Parameter

None

Reference Note

If the measurement was successfully started, AckAck is

returned. If the measurement could not be started NackNack is

returned. The reason for failing to start is usually that the

instrument configuration is invalid.

Start measurement with recorder, at a specific time

Execute command

SD

Hex

4453

Description

Starts a measurement at a specified time based on the current

configuration of the instrument. Data is stored to a new file in

the recorder. Data is output on the serial port only if specified in

the configuration.

Response

AckAck or NackNack

Parameter

None

Reference Note

If the measurement was successfully started, AckAck is

returned. If the measurement could not be started, NackNack is

returned. The reason for failing to start is usually that the

instrument configuration is invalid or that the recorder is full.

Acquire data

Execute command Description

17

AD

Hex

4441

Starts a single measurement based on the current configuration

of the instrument without storing data to the recorder. Instrument

enters Power Down Mode when measurement has been made.

Response

AckAck or NackNack

Parameter

None

Reference Note

If the measurement was successfully started, AckAck is

returned. If the measurement could not be started NackNack is

returned. The reason for failing to start is usually that the

instrument configuration is invalid. If the instrument is

configured for continuous measurement it will keep taking data

until a break is received. Upon receipt of a break it will jump

directly into Command Mode.

Start measurement with recorder

Execute command

SR

Hex

5253

Description

Immediately starts a measurement based on the current

configuration of the instrument. Data is stored to a new file in

the recorder and also output on the serial port

Response

AckAck or NackNack

Parameter

None

 Note

If the measurement was successfully started, AckAck is

returned. If the measurement could not be started NackNack is

returned. The reason for failing to start is usually that the

instrument configuration is invalid or that the recorder is full. If

the filename is not set in the configuration the filename will

default to DEF.

Start ASCII measurement without recorder

Execute command

AS

Hex

5341

Description

Immediately starts a measurement based on the current

configuration of the instrument without storing data to the

recorder. Data is output on the serial port.

Response

AckAck or NackNack

Parameter

None

Reference Note

If the measurement was successfully started, AckAck is

returned. If the measurement could not be started NackNack is

returned. The reason for failing to start is usually that the

instrument configuration is invalid.

Acquire ASCII data

Execute command

MA

Hex

414D

Description

Starts a single measurement based on the current configuration

of the instrument without storing data to the recorder. Instrument

enters Power Down Mode when measurement has been made.

18

Response

AckAck or NackNack

Parameter

None

Reference Note

If the measurement was successfully started, AckAck is

returned. If the measurement could not be started NackNack is

returned. The reason for failing to start is usually that the

instrument configuration is invalid. If the instrument is

configured for continuous measurement it will keep taking data

until a break is received. Upon receipt of a break it will jump

directly to Command Mode.

Start NMEA measurement without recorder

Execute command

NM

Hex

4D4E

Description

Immediately starts a measurement based on the current

configuration of the instrument without storing data to the

recorder. Data is output on the serial port.

Response

XXXX or 0000

Parameter

None

Reference Note

XXXX is the number of seconds before the first message is

output (=average interval). 0000 is NMEA’s NACK most likely

due to too low baudrate

Acquire NMEA data

Execute command

NS

Hex

534E

Description

Starts a single measurement based on the current configuration

of the instrument without storing data to the recorder. Instrument

enters Power Down Mode when measurement has been made.

Response

XXXX or 0000

Parameter

None

Reference Note

XXXX is the number of seconds before the first message is

output (=average interval). 0000 is NMEA’s NACK most likely

due to too low baudrate. The reason for failing to start is usually

that the instrument configuration is invalid. If the instrument is

configured for continuous measurement, it will keep taking data

until a break is received. Upon receipt of a break, it will jump

directly to Command Mode.

Configure instrument

Execute command

CC

Hex

4343

Description

Use this command to download a new deployment file to the

instrument.

Response

AckAck

Parameter sent out

The setup file to be downloaded

Reference

User guide for your

Nortek instrument

Note

The command must be followed by a deployment setup file –

how to generate this is described below.

19

Always use the Nortek software accompanying your Nortek instrument when making

deployment files. This will save you from a lot of unneeded efforts! When you have

generated the file, you may save it. However, this will not generate a file in binary

format suitable for direct download to your controller.

To generate deployment files in binary format do as follows:

1. Generate a new shortcut to the Nortek software. Right click on the AquaPro (in

this example) icon

2. Append the characters -cu in the target line as shown below (using AquaPro as

example).

3. Start the Nortek software using the new shortcut.

4. When you now save the deployment file, this will generate two files – the

regular file and a file in binary format with the file extension .pcf. This file is

the one to download with your controller.

5. Open the .pcf file in a binary editor and insert 4343 at the very beginning of the

file.

6. Save the file as .pdc

7. In the terminal emulator check the binary mode check box

8. Choose Command File and the .pdc file

4.2 DATA COLLECTION MODE

The commands available in data collection mode are all single character commands.

Before sending these commands, the controller must transmit a character with binary

value 0x00 or the character @ and then wait for 100 ms before sending the command.

The idea behind the commands in data collection mode is to allow the controller to find

out where the instrument is in its measurement cycle. It is thus possible to interrogate

the system without disturbing the data collection. The inquiry (see II command) is

present in all modes. In data collection mode only one character, ‘I’ is used. If the

standard inquiry command is sent (‘II’), the system will send the response twice.

20

These commands are not available when a 4GB logger/prolog is installed.

Time remaining of average interval

Execute command

A

Hex

41

Description

This command returns a word that indicates the number of

seconds left of the average or burst interval.

Response

A 16-bit word followed by AckAck

Parameter

None

Response example

0x1e00 0606

Reference Note

The commands available in data collection mode are all single

character commands. Before sending these commands, the

controller must transmit a character with binary value 0x00.

Time remaining of measurement interval

Execute command

M

Hex

4D

Description

This command returns a word that indicates the number of

seconds left of the measurement interval.

Response

A 16-bit word followed by AckAck

Parameter

None

Response example

0x1c01 0606

Reference Note

The commands available in data collection mode are all single

character commands. Before sending these commands, the

controller must transmit a character with binary value 0x00.

Inquiry

Execute command

I

Hex

49

Description

Returns a word z telling which mode the instrument is in.

Response

See II command

Parameter

See II command

Reference

See II command
Note

The commands available in data collection mode are all single

character commands. Before sending these commands, the

controller must transmit a character with binary value 0x00.

4.3 IN CONFIRMATION MODE

Enter command mode

Execute command

MC

Hex

434D

Description

Preceded by a break command, this command is sent to force the

instrument to exit Measurement mode and enter Command

mode.

Response

AckAck

Parameter

None

21

Reference Note

The MC command must be sent within 10 seconds after the

break was sent. Otherwise the measurement will continue.

Within 2 seconds after AckAck is sent, the instrument will enter

Command mode

Wave Interval – ProLog only

Execute command

WI

Hex

4957

Description

This command changes the wave interval. Takes a 32 bit

argument and sets the parameter to the specified number of

seconds

Response

AckAck or NackNack

Parameter

32 bit argument

Example

60 min interval = 3600 sec = Ox 0E 10

57 49 00 00 10 0E

Reference Note

For newer versions of AWAC with ProLog. Can be used in Data

retrieval mode and Command mode.

Measurement Interval

Execute command

MI

Hex

494D

Description

This command changes the Measurement Interval. Takes a 16 bit

argument and sets the parameter to the specified number of

seconds

Response

AckAck or NackNack

Parameter

16 bit argument

Example

10 min interval = 600 sec = Ox 02 58

4D 49 58 02

Reference Note

For newer versions of AWAC, AquaPro and Vector. Can be

used in Data retrieval mode and Command mode.

Continue

Execute command

CO

Hex

4F43

Description

The CO command can be used instead of the SR command to get

the data and set the clock without going into Command Mode.

Response

AckAck or NackNack

Parameter

None

Reference Note

For newer versions of AWAC, AquaPro and Vector.

22

5 FIRMWARE DATA STRUCTURES

This section describes the data structures that are used for the Nortek products. They are

grouped in generic data structures that are common to all instruments and instrument

specific structures.

The following firmware data structures are described:

 Generic Structures

 Aquadopp-specific Structures

 Vector-specific Structures

 Aquadopp Profiler-specific Structures

 AWAC-specific Structures

 Continental

5.1 GENERIC STRUCTURES

Clock Data

Size Name Offset Description

1 Minute 0 minute (BCD format)

1 Second 1 second (BCD format)

1 Day 2 day (BCD format)

1 Hour 3 hour (BCD format)

1 Year 4 year (BCD format)

1 Month 5 month (BCD format)

Total Size 6 Bytes

Hardware Configuration

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 05 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

14 SerialNo 4 instrument type and serial number

2 Config 18 board configuration:

bit 0: Recorder installed (0=no, 1=yes)

bit 1: Compass installed (0=no, 1=yes)

2 Frequency 20 board frequency [kHz]

2 PICversion 22 PIC code version number

2 HWrevision 24 Hardware revision

2 RecSize 26 Recorder size (*65536 bytes)

2 Status 28 status: bit 0: Velocity range

23

(0=normal, 1=high)

12 Spare 30 spare

4 FWversion 42 firmware version

2 Checksum 46 = b58c(hex) + sum of all words in structure

Total Size 48 Bytes

Head Configuration

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 04 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

2 Config 4 head configuration:

bit 0: Pressure sensor (0=no, 1=yes)

bit 1: Magnetometer sensor (0=no, 1=yes)

bit 2: Tilt sensor (0=no, 1=yes)

bit 3: Tilt sensor mounting (0=up, 1=down)

2 Frequency 6 head frequency (kHz)

2 Type 8 head type

12 SerialNo 10 head serial number

176 System 22 system data

22 Spare 198 spare

2 NBeams 220 number of beams

2 Checksum 222 = b58c(hex) + sum of all words in structure

Total Size 224 Bytes

User Configuration

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 00 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

2 T1 4 transmit pulse length (counts)

2 T2 6 blanking distance (counts)

2 T3 8 receive length (counts)

2 T4 10 time between pings (counts)

2 T5 12 time between burst sequences (counts)

2 NPings 14 number of beam sequences per burst

2 AvgInterval 16 average interval in seconds

For Vector AvgInterval = 512/Sampling Rate

2 NBeams 18 number of beam

24

2 TimCtrlReg 20 timing controller mode

bit 1: profile (0=single, 1=continuous)

bit 2: mode (0=burst, 1=continuous)

bit 5: power level (0=1, 1=2, 0=3, 1=4)

bit 6: power level (0 0 1 1)

bit 7: synchout position (0=middle of sample, 1=end

of sample (Vector))

bit 8: sample on synch (0=disabled,1=enabled, rising

edge)

bit 9: start on synch (0=disabled,1=enabled, rising

edge)

2 PwrCtrlReg 22 power control register

bit 5: power level (0=1, 1=2, 0=3, 1=4)

bit 6: power level (0 0 1 1)

2 A1 24 not used

2 B0 26 not used

2 B1 28 not used

2 CompassUpdRate 30 compass update rate

2 CoordSystem 32 coordinate system (0=ENU, 1=XYZ, 2=BEAM)

2 NBins 34 number of cells

2 BinLength 36 cell size

2 MeasInterval 38 measurement interval

6 DeployName 40 recorder deployment name

2 WrapMode 46 recorder wrap mode (0=NO WRAP, 1=WRAP WHEN

FULL)

6 clockDeploy 48 deployment start time

4 DiagInterval 54 number of seconds between diagnostics measurements

2 Mode 58 mode:

bit 0: use user specified sound speed (0=no, 1=yes)

bit 1: diagnostics/wave mode 0=disable, 1=enable)

bit 2: analog output mode (0=disable, 1=enable)

bit 3: output format (0=Vector, 1=ADV)

bit 4: scaling (0=1 mm, 1=0.1 mm)

bit 5: serial output (0=disable, 1=enable)

bit 6: reserved EasyQ

bit 7: stage (0=disable, 1=enable)

bit 8: output power for analog input (0=disable,

1=enable)

2 AdjSoundSpeed 60 user input sound speed adjustment factor

2 NSampDiag 62 # samples (AI if EasyQ) in diagnostics mode

2 NBeamsCellDiag 64 # beams / cell number to measure in diagnostics mode

2 NPingsDiag 66 # pings in diagnostics/wave mode

2 ModeTest 68 mode test:

bit 0: correct using DSP filter (0=no filter, 1=filter)

bit 1: filter data output (0=total corrected

velocity,1=only correction part)

2 AnaInAddr 70 analog input address

2 SWVersion 72 software version

2 Spare 74 Spare

25

180 VelAdjTable 76 velocity adjustment table

180 Comments 256 file comments

2 Mode 436 wave measurement mode

bit 0: data rate (0=1 Hz, 1=2 Hz)

bit 1: wave cell position (0=fixed, 1=dynamic)

bit 2: type of dynamic position (0=pct of mean

pressure, 1=pct of min re)

2 DynPercPos 438 percentage for wave cell positioning

(=32767×#%/100) (# means number of)

2 T1 440 wave transmit pulse

2 T2 442 fixed wave blanking distance (counts)

2 T3 444 wave measurement cell size

2 NSamp 446 number of diagnostics/wave samples

2 A1 448 not used

2 B0 450 not used

2 B1 452 not used for most instruments

For Vector it holds Number of Samples Per Burst

2 Spare 454 Spare

2 AnaOutScale 456 analog output scale factor (16384=1.0, max=4.0)

2 CorrThresh 458 correlation threshold for resolving ambiguities

2 Spare 460 Spare

2 TiLag2 462 transmit pulse length (counts) second lag

30 Spare 464 Spare

16 QualConst 494 stage match filter constants (EZQ)

2 Checksum 510 =b58c(hex) + sum of all words in structure

Total Size 512 Bytes

File Allocation Table

Byte

0

Byte

1

Byte

2

Byte

3

Byte

4

Byte

5

Byte

6

Byte 7 Byte

8

Byte

9

Byte

10

Byte

11

Byte

12

Byte

13

Byte

14

Byte

15

File name (ASCII) of file #0 Seq Status Start address Stop address

File name (ASCII) of file #1 Seq Status Start address Stop address

File name (ASCII) of file #2 Seq Status Start address Stop address

File name (ASCII) of file #29 Seq Status Start address Stop address

File name (ASCII) of file #30 Seq Status Start address Stop address

Not used

26

Seq: If several files share the same file name, they must be distinguished by their

position in the FAT. The standard instrument software has implemented this by

appending a sequence number to the file name. Example: Multiple use of the file name

ANTHON will byte (added automatically).

Status: If bit 0 (the LSB) has been set to 1, file wrapping has been enabled. If bit 1 has

been set to 1, a complete wraparound has occurred, i.e. all the data initially stored has

been overwritten at least once.

Start address: The start address of the measured data

Stop address: The stop address of the measured data.

Altogether, a maximum of 31 different measurement files may be stored in the

instrument’s internal recorder. The length of these files depends on the amount of

memory installed.

If the recorder is full, it can be formatted by use of the FO command. In Hex, the

command to erase the recorder is 46 4F 12 D4 1E EF.

5.2 AQUADOPP AND AQUADOPP DW SPECIFIC STRUCTURES

Aquadopp Velocity Data

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 01 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

1 Minute 4 minute (BCD)

1 Second 5 second (BCD)

1 Day 6 day (BCD)

1 Hour 7 hour (BCD)

1 Year 8 year (BCD)

1 Month 9 month (BCD)

2 Error 10 error code

2 AnaIn1 12 analog input 1

2 Battery 14 battery voltage (0.1 V)

2 SoundSpeed/AnaIn2 16 speed of sound (0.1 m/s) or analog

input 2

2 Heading 18 compass heading (0.1°)

2 Pitch 20 compass pitch (0.1°)

2 Roll 22 compass roll (0.1°)

1 PressureMSB 24 pressure MSB (0.001 dbar) (Pressure

= 65536×PressureMSB +

PressureLSW)

27

1 Status 25 status code

2 PressureLSW 26 pressure LSW (0.001 dbar) (Pressure

= 65536×PressureMSB +

PressureLSW)

2 Temperature 28 temperature (0.01 °C)

2 Vel B1/X/E 30 velocity beam1 or X or East

coordinates (mm/s)

2 Vel B2/Y/N 32 velocity beam2 or Y or North

coordinates (mm/s)

2 Vel B3/Z/U 34 velocity beam3 or Z or Up

coordinates (mm/s)

1 Amp B1 36 amplitude beam1 (counts)

1 Amp B2 37 amplitude beam2 (counts)

1 Amp B3 38 amplitude beam3 (counts)

1 Fill 39 fill byte

2 Checksum 40 = b58c(hex) + sum of all words in

structure

Total size 42 Bytes

Aquadopp Diagnostics Data Header

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 06 (hex)

2 Size 2 size of structure in number of words (1

word = 2 bytes)

2 Records 4 number of diagnostics samples to

follow

2 Cell 6 cell number of stored diagnostics data

1 Noise1 8 noise amplitude beam 1 (counts)

1 Noise2 9 noise amplitude beam 2 (counts)

1 Noise3 10 noise amplitude beam 3 (counts)

1 Noise4 11 noise amplitude beam 4 (counts)

2 ProcMagn1 12 processing magnitude beam 1

2 ProcMagn2 14 processing magnitude beam 2

2 ProcMagn3 16 processing magnitude beam 3

2 ProcMagn4 18 processing magnitude beam 4

2 Distance1 20 distance beam 1

2 Distance2 22 distance beam 2

2 Distance3 24 distance beam 3

2 Distance 26 distance beam 4

6 Spare 28 spare

2 Checksum 34 = b58c(hex) + sum of all words in

structure

Total size 36 Bytes

28

Aquadopp Diagnostics Data

Same as Aquadopp Velocity Data, except Id = 0x80.

5.3 VECTOR SPECIFIC STRUCTURES

Vector Velocity Data Header

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 12 (hex)

2 Size 2 size of structure in number of words (1

word = 2 bytes)

1 Minute 4 minute (BCD)

1 Second 5 second (BCD)

1 Day 6 day (BCD)

1 Hour 7 hour (BCD)

1 Year 8 year (BCD)

1 Month 9 month (BCD)

2 NRecords 10 number of velocity samples to follow

1 Noise1 12 noise amplitude beam 1 (counts)

1 Noise2 13 noise amplitude beam 2 (counts)

1 Noise3 14 noise amplitude beam 3 (counts)

1 Spare 15

1 Correlation1 16 noise correlation beam 1

1 Correlation2 17 noise correlation beam 2

1 Correlation3 18 noise correlation beam 3

1 Spare 19

20 Spare 20 spare

2 Checksum 40 = b58c(hex) + sum of all words in

structure

Total Size 42 Bytes

29

Vector Velocity Data

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 10 (hex)

1 AnaIn2LSB 2 analog input 2 LSB

1 Count 3 ensemble counter

1 PressureMSB 4 pressure MSB (0.001 dbar) (Pressure =

65536×PressureMSB + PressureLSW)

1 AnaIn2MSB 5 analog input 2 MSB

2 PressureLSW 6 pressure LSW (0.001 dbar) (Pressure =

65536×PressureMSB + PressureLSW)

2 AnaIn1 8 analog input 1

2 Vel B1/X/E 10 velocity beam1 or X or East (mm/s)

2 Vel B2/Y/N 12 velocity beam2 or Y or North (mm/s)

2 Vel B3/Z/U 14 velocity beam3 or Z or Up (mm/s)

1 Amp B1 16 amplitude beam1 (counts)

1 Amp B2 17 amplitude beam2 (counts)

1 Amp B3 18 amplitude beam3 (counts)

1 Corr B1 19 correlation beam1 (%)

1 Corr B2 20 correlation beam2 (%)

1 Corr B3 21 correlation beam3 (%)

2 Checksum 22 = b58c(hex) + sum of all words in

structure

Total Size 24 Bytes

Vector System Data

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 11 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

1 Minute 4 minute (BCD)

1 Second 5 second (BCD)

1 Day 6 day (BCD)

1 Hour 7 hour (BCD)

1 Year 8 year (BCD)

1 Month 9 month (BCD)

2 Battery 10 battery voltage (0.1 V)

2 SoundSpeed 12 speed of sound (0.1 m/s)

30

2 Heading 14 compass heading (0.1 deg)

2 Pitch 16 compass pitch (0.1 deg)

2 Roll 18 compass roll (0.1 deg)

2 Temperature 20 temperature (0.01 deg C)

1 Error 22 error code

1 Status 23 status code

2 AnaIn 24 analog input

2 Checksum 26 = b58c(hex) + sum of all words in

structure

Total Size 28 Bytes

Vector and Vectrino Probe Check Data

The structure of the probe check is the same for both Vectrino and Vector. The

difference is that a Vector has 3 beams and 300 samples, while the Vectrino has 4 beams

and 500 samples.

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 07(hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

2 Samples 4 Number of samples per beam

2 First sample 6 First sample number

1 Amp 1 B1 7 amplitude cell 1, beam1 (counts)

1 Amp 2…n 8 ...repeated for cells 2 through n

1 Amp 1 B2 amplitude cell 1, beam2 (counts)

1 Amp 2…n ...repeated for cells 2 through n

1 Amp 1 B3 amplitude cell 1, beam3 (counts)

1 Amp 2…n ...repeated for cells 2 through n

2 Checksum = b58c(hex) + sum of all words in

structure

Total Size is variable

Vector With IMU

The Vector may be outfitted with an optional Inertial Motion Unit. The sensor package

is composed of a triaxial accelerometer, triaxial gyro, and a triaxial magnetometer. The

obvious value of the sensor is that it not only provides accurate information about

attitude and motion, but it estimates are sampled and recorded at the same rate as the

Vector. This permits corrections for motion and orientation for Vectors that are subject

to motion (e.g., buoy or mooring line configurations). Note that the gravitational

constant uses fixed reference of g=9.80665 m/s2.

31

The analysis required to correct and characterize motion is a non-trivial problem. It is

assumed that the end user has competence in this area. It may benefit the end user to

visit Microstrain’s web site (www.microstrain.com) and navigate to the 3DM-GX3-25

product; here one can find supporting documentation on specifications, methods, and

elemental technical notes.

If there is a need to make adjustments to the way IMU is integrated, it is possible to use

a transparent mode making it possible to connect directly to the IMU sensor, and then

make use of the Microstrain software (named 3DM-GX3 Monitor). The Hex command

to send is 54 53 00 00. It will work on 9600 baud, but 115000 is preferable.

The structure of the IMU differs according to the selected deployment configuration:

Acceleration, Angular Rate, Magnetometer Vectors and Orientation Matrix:

Size Name Offset Description

1 Sync 0 Sync = 0xa5

1 Id 1 Identification = 0x71

2 Size 2 Size of structure in number of words

(1 word = 2 bytes)

1 EnsCnt 4 Ensemble Counter

1 AHRSId 5 AHRS ID 0xcc

4 Accel x 6 Acceleration x (m/s^2)

4 Accel y 10 Acceleration y (m/s^2)

4 Accel z 14 Acceleration z (m/s^2)

4 AngRt x 18 Angular Rate x (°/s)

4 AngRt y 22 Angular Rate y (°/s)

4 AngRt z 26 Angular Rate z (°/s)

4 MagRt x 30 Magnetometer Rate x (Gauss)

4 MagRt y 34 Magnetometer Rate y (Gauss)

4 MagRt z 38 Magnetometer Rate y (Gauss)

4 MatrixX 42 Orientation Matrix X (M11)

4 MatrixX 46 Orientation Matrix X (M12)

4 MatrixX 50 Orientation Matrix X (M13)

4 MatrixY 54 Orientation Matrix Y (M21)

4 MatrixY 58 Orientation Matrix Y (M22)

4 MatrixY 62 Orientation Matrix Y (M23)

4 MatrixZ 66 Orientation Matrix Z (M31)

4 MatrixZ 70 Orientation Matrix Z (M32)

4 MatrixZ 74 Orientation Matrix Z (M33)

4 timer 78 Timestamp (s)

2 AHRSchecksum 82 AHRS Checksum

2 Checksum 84 sum of all words in structure

http://www.microstrain.com/

32

Total Size 86 Bytes

Gyro-stabilized Acceleration, Angular Rate and Magnetometer Vectors:

Size Name Offset Description

1 Sync 0 Sync = 0xa5

1 Id 1 Identification = 0x71

2 Size 2 Size of structure in number of words

(1 word = 2 bytes)

1 EnsCnt 4 Ensemble counter

1 AHRSId 5 AHRS ID 0xd2

4 Accel x 6 Acceleration x (m/s^2)

4 Accel y 10 Acceleration y (m/s^2)

4 Accel z 14 Acceleration z (m/s^2)

4 AngRt x 18 Angular Rate x (°/s)

4 AngRt y 22 Angular Rate y (°/s)

4 AngRt z 26 Angular Rate z (°/s)

4 MagRt x 30 Magnetometer Rate x (Gauss)

4 MagRt y 34 Magnetometer Rate y (Gauss)

4 MagRt z 38 Magnetometer Rate z (Gauss)

4 timer 42 Timestamp (s)

2 AHRSchecksum 46 AHRS Checksum

2 Checksum 48 sum of all words in structure

Total Size 50 Bytes

DeltaAngle, DeltaVelocity and Magnetometer Vectors:

Size Name Offset Description

1 Sync 0 Sync = 0xa5

1 Id 1 Identification = 0x71

2 Size 2 Size of structure in number of words

(1 word = 2 bytes)

1 EnsCnt 4 Ensemble Counter

1 AHRSId 5 AHRS ID, 0xd3

4 Angle 6 Delta Angle x (°)

4 Angle 10 Delta Angle y (°)

4 Angle 14 Delta Angle z (°)

4 Veloc 18 Delta Velocity Rate x (m/s)

4 Veloc 22 Delta Velocity Rate y (m/s)

4 Veloc 26 Delta Velocity Rate z (m/s)

33

4 MagVe 30 Delta Mag Vector Rate x (Gauss)

4 MagVe 34 Delta Mag Vector Rate y (Gauss)

4 MagVe 38 Delta Mag Vector Rate z (Gauss)

4 timer 42 Timestamp (s)

2 AHRSchecksum 46 AHRS Checksum

2 Checksum 48 sum of all words in structure

Total Size 50 Bytes

5.4 AQUADOPP PROFILER SPECIFIC STRUCTURES

Aquadopp Profiler Velocity Data

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 21 (hex)

2 Size 2 size of structure in number of words (1 word = 2

bytes)

1 Minute 4 minute (BCD)

1 Second 5 second (BCD)

1 Day 6 day (BCD)

1 Hour 7 hour (BCD)

1 Year 8 year (BCD)

1 Month 9 month (BCD)

2 Error 10 error code

2 AnaIn1 12 analog input 1

2 Battery 14 battery voltage (0.1 V)

2 SoundSpeed/AnaIn2 16 speed of sound (0.1 m/s) or analog input 2

2 Heading 18 compass heading (0.1°)

2 Pitch 20 compass pitch (0.1°)

2 Roll 22 compass roll (0.1°)

1 PressureMSB 24 pressure MSB (0.001 dbar) (Pressure =

65536×PressureMSB + PressureLSW)

1 Status 25 status code

2 PressureLSW 26 pressure LSW (0.001 dbar) (Pressure =

65536×PressureMSB + PressureLSW)

2 Temperature 28 temperature (0.01 °C)

2 Vel 1 B1/X/E 30 velocity cell 1, beam1 or X or East (mm/s)

2 Vel 2…n 32… ...repeated for cells 2 through n

2 Vel 1 B2/Y/N velocity cell 1, beam2 or Y or North (mm/s)

2 Vel 2…n ...repeated for cells 2 through n

2 Vel 1 B3/Z/U velocity cell 1, beam3 or Z or Up (mm/s)

34

2 Vel 2…n ...repeated for cells 2 through n

1 Amp 1 B1 amplitude cell 1, beam1 (counts)

1 Amp 2…n ...repeated for cells 2 through n

1 Amp 1 B2 amplitude cell 1, beam2 (counts)

1 Amp 2…n ...repeated for cells 2 through n

1 Amp 1 B3 amplitude cell 1, beam3 (counts)

1 Amp 2…n ...repeated for cells 2 through n

1 Fill fill byte if number of cells mod 2 is not equal to 0

2 Checksum = b58c(hex) + sum of all words in structure

Total Size is variable

Aquadopp Profiler Wave Burst Data

Same as AWAC Wave Data and AWAC Wave Data Header

5.5 HR AQUADOPP SPECIFIC STRUCTURES

High Resolution Aquadopp Profiler Data

Size Name Offset Description

1 Sync 0 a5(hex)

1 Id 1 2a (hex)

2 Size 2 Size of structure in number of words

(1 word = 2 bytes)

1 Minute 4 Minute (BCD)

1 Second 5 Second (BCD)

1 Day 6 Day (BCD)

1 Hour 7 Hour (BCD)

1 Year 8 Year (BCD)

1 Month 9 Month (BCD)

2 Milliseconds 10 Milliseconds

2 Error 12 Error code

2 Battery 14 Battery voltage (0.1 V)

2 SoundSpeed 16 Speed of sound (0.1 m/s)

2 Heading 18 Compass heading (0.1°)

2 Pitch 20 Compass pitch (0.1°)

2 Roll 22 Compass roll (0.1°)

1 PressureMSB 24 Pressure MSB (0.001 dbar) (Pressure =

65536×PressureMSB + PressureLSW)

1 Status 25 Status code

35

2 PressureLSW 26 Pressure LSW (0.001 dbar) (Pressure =

65536×PressureMSB + PressureLSW)

2 Temperature 28 Temperature (0.01 °C)

2 AnaIn1 30 Analogue Input 1

2 AnaIn2 32 Analogue Input 2

1 Beams 34 Number of beams

1 Cells 35 Number of Cells

6 VelLag2[3] 36 Velocity Lag 2 - array of 3 - 1 per beam

3 AmpLag2[3] 42 Amplitude Lag 2 - array of 3 - 1 per beam

3 CorrLag2[3] 45 Correlation Lag 2 - array of 3 - 1 per beam

2 Spare 1 48

2 Spare 2 50

2 Spare 1 52

 Vel[n Beams][n Cells] 54 Note that this part of the structure varies in size

depending upon the number of beams and cells

being used.

Per beam and per cell Vel is 2 bytes, while

Amp and Corr is 1 byte

 Amp[n Beams][n Cells]

 Corr[n Beams][n Cells]

2 hC Checksum = b58c(hex) + sum of all words in structure

Total Size is variable

Velocity, amplitude and correlation is output in the following order

Velocity Beam 1 cell 1

Velocity Beam 1 cell 2

Velocity Beam 1 cell 3

….

Velocity Beam 2 cell 1

Velocity Beam 2 cell 2

Velocity Beam 2 cell 3

….

Velocity Beam 3 cell 1

Velocity Beam 3 cell 2

Velocity Beam 3 cell 3

….

Amplitude Beam 1 cell 1

Amplitude Beam 1 cell 2

Amplitude Beam 1 cell 3

….

Amplitude Beam 2 cell 1

Amplitude Beam 2 cell 2

Amplitude Beam 2 cell 3

….

Amplitude Beam 3 cell 1

Amplitude Beam 3 cell 2

Amplitude Beam 3 cell 3

….

Correlation Beam 1 cell 1

36

Correlation Beam 1 cell 2

Correlation Beam 1 cell 3

….

Correlation Beam 2 cell 1

Correlation Beam 2 cell 2

Correlation Beam 2 cell 3

….

Correlation Beam 3 cell 1

Correlation Beam 3 cell 2

Correlation Beam 3 cell 3

5.6 AWAC SPECIFIC STRUCTURES

Awac Velocity Profile Data

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 20 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

1 Minute 4 minute (BCD)

1 Second 5 second (BCD)

1 Day 6 day (BCD)

1 Hour 7 hour (BCD)

1 Year 8 year (BCD)

1 Month 9 month (BCD)

2 Error 10 error code

2 AnaIn1 12 analog input 1

2 Battery 14 battery voltage (0.1 V)

2 SoundSpeed/AnaIn2 16 speed of sound (0.1 m/s) or analog input 2

2 Heading 18 compass heading (0.1°)

2 Pitch 20 compass pitch (0.1°)

2 Roll 22 compass roll (0.1°)

1 PressureMSB 24 pressure MSB (0.001 dbar)

(Pressure = 65536×PressureMSB +

PressureLSW)

1 Status 25 status code

2 PressureLSW 26 pressure LSW (0.001 dbar)

 (Pressure = 65536×PressureMSB +

PressureLSW)

2 Temperature 28 temperature (0.01 °C)

88 Spare 30 Spare

2 Vel 1 B1/X/E 118 velocity cell 1, beam1 or X or East (mm/s)

2.. Vel 2…n 120 ...repeated for cells 2 through n

2 Vel 1 B2/Y/N . velocity cell 1, beam2 or Y or North (mm/s)

37

2.. Vel 2…n repeated for cells 2 through n

2 Vel 1 B3/Z/U . velocity cell 1, beam3 or Z or Up (mm/s)

2.. Vel 2…n repeated for cells 2 through n

1 Amp 1 B1 . amplitude cell 1, beam1 (counts)

1.. Amp 2…n repeated for cells 2 through n

1 Amp 1 B2 . amplitude cell 1, beam2 (counts)

1.. Amp 2…n repeated for cells 2 through n

1 Amp 1 B3 . amplitude cell 1, beam3 (counts)

1.. Amp 2…n repeated for cells 2 through n

1 Fill . fill byte if number of cells mod 2 is not equal to 0

2 Checksum . = b58c(hex) + sum of all words in structure

Total Size is variable

Awac Wave Data Header

Size Name Offset Description

1 Sync 0 A5 (hex)

1 Id 1 31 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

1 Minute 4 minute (BCD)

1 Second 5 second (BCD)

1 Day 6 day (BCD)

1 Hour 7 hour (BCD)

1 Year 8 year (BCD)

1 Month 9 month (BCD)

2 NRecords 10 number of wave data records to follow

2 Blanking 12 blanking distance (counts)

2 Battery 14 battery voltage (0.1V)

2 SoundSpeed 16 speed of sound (0.1 m/s)

2 Heading 18 compass heading (0.1°)

2 Pitch 20 compass pitch (0.1°)

2 Roll 22 compass roll (0.1°)

2 MinPress 24 min pressure value of previous profile (0.001 dbar)

2 MaxPress 26 max pressure value of previous profile (0.001 dbar)

2 Temperature 28 temperature (0.01 °C)

2 CellSize 30 cell size in counts of T3

1 Noise1 32 noise amplitude beam 1 (counts)

1 Noise2 33 noise amplitude beam 2 (counts)

38

1 Noise3 34 noise amplitude beam 3 (counts)

1 Noise4 35 noise amplitude beam 4 (counts)

2 ProcMagn1 36 processing magnitude beam 1

2 ProcMagn2 38 processing magnitude beam 2

2 ProcMagn3 40 processing magnitude beam 3

2 ProcMagn4 42 processing magnitude beam 4

14 Spare 44 spare

2 Checksum 58 = b58c(hex) + sum of all words in structure

Total Size is 60 Bytes

Awac Stage Data

Size Name Offset Description

1 Sync 0 a5(hex)

1 Id 1 42 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

2 Spare 4 (AST distance1 duplicate)

1 Amplitude1 6 amplitude beam 1 (counts)

1 Amplitude2 7 amplitude beam 2 (counts)

1 Amplitude3 8 amplitude beam 3 (counts)

1 Spare 9 (AST quality duplicate)

2 Pressure 10 pressure (0.001 dbar)

2 AST1 12 AST distance 1 (mm)

2 AST Quality 14 AST quality (counts)

2 SoundSpeed 16 Speed of sound (0.1 m/s)

2 AST2 18 AST distance 2 (mm)

2 Spare 20

2 Velocity1 22 velocity beam 1 (mm/s) (East for SUV)

2 Velocity2 24 velocity beam 2 (mm/s) (North for SUV)

2 Velocity3 26 velocity beam 3 (mm/s) (Up for SUV)

2 Spare 28 (AST distance2 duplicate)

2 Spare 30

1 Amp 1 32 amplitude cell 1 (counts)

1 Amp 2..n 33 repeated for cells 2 through n

1 Fill fill byte if number of cells mod 2 is not equal to 0

2 Checksum = b58c(hex) + sum of all words in structure

Total Size is Variable

39

Awac Wave Data

Size Name Offset Description

1 Sync 0 a5(hex)

1 Id 1 30 (hex)

2 Size 2 size of structure in number of words (1 word = 2 bytes)

2 Pressure 4 pressure (0.001 dbar)

2 Distance1 6 distance 1 to surface vertical beam (mm)

2 AnaIn 8 analog input

2 Vel1 10 velocity beam 1 (mm/s) (East for SUV)

2 Vel2 12 velocity beam 2 (mm/s) (North for SUV)

2 Vel3 14 velocity beam 3 (mm/s) (Up for SUV)

2 Distance 2/

Vel4

16 distance 2 to surface vertical beam (mm)

For non-AST velocity beam 4 (mm/s)

1 Amp1 18 amplitude beam 1 (mm/s)

1 Amp2 19 amplitude beam 2 (mm/s)

1 Amp3 20 amplitude beam 3 (mm/s)

1 Amp4 21 AST quality Counts)

For non-AST amplitude beam 4 (mm/s)

2 Checksum 22 = b58c(hex) + sum of all words in structure

Total Size is 24 Bytes

Awac Wave Data for SUV

Size Name Offset Description

1 Sync 0 a5(hex)

1 Id 1 36 (hex)

2 Heading 2 heading (0.1deg)

2 Pressure 4 pressure (0.001 dbar)

2 Distance 6 distance 1 to surface vertical beam (mm)

1 Pitch 8 pitch (0.1 or 0.2 deg) (+/- 12.7 deg)

1 Roll 9 roll (0.1 or 0.2 deg) (+/- 12.7 deg)

2 Vel1 10 velocity beam 1 (mm/s) (East for SUV)

2 Vel2 12 velocity beam 2 (mm/s) (North for SUV)

2 Vel3 14 velocity beam 3 (mm/s) (Up for SUV)

2 Distance 2/

Vel4

16 distance 2 to surface vertical beam (mm)

For non-AST velocity beam 4 (mm/s)

1 Amp1 18 amplitude beam 1 (mm/s)

1 Amp2 19 amplitude beam 2 (mm/s)

1 Amp3 20 amplitude beam 3 (mm/s)

40

1 Amp4 21 AST quality Counts

For non-AST amplitude beam 4 (mm/s)

2 Checksum 22 = b58c(hex) + sum of all words in structure

Total Size is 24 Bytes

5.7 CONTINENTAL DATA

Same as AWAC Profiler Data, except ID = 0x24

5.8 PROLOG

The Prolog is a module that can be added to Nortek instruments in replacement of the

standard recorder. It is installed in the location as the static recorder. The pure recorder

variant uses an industrial grade SD card with 4 GB of memory. The industrial grade SD

card is sealed and watertight, which is in line with the Nortek philosophy that the data

should still be available even in the event of damage to the instrument that leads to a

leakage.

The Prolog can have added wave processing functionality when used with an AWAC.

Data may then be streamed over the serial line of the AWAC in either binary format or

as NMEA ASCII strings. When wave processing is enabled, the processed data – as

well as raw data - is stored on the SD card. Below is a detailed description of both the

binary data formats and the NMEA data strings that the user would need to either

convert or parse.

Note that the AWAC software includes the conversion of the processed binary data file

(*.WPB) found on the SD card. This is found under the ASCII data conversion tool.

More information about the use and description of the data products is found in the

instrument deployment software (e.g., AWAC AST software).

The serial output may be either binary or ASCII, but not both. The current profile and

sensor data is always streamed out amongst the data structures when serial output is

activated. The user can select the different processed data types output when wave

processing is enabled; wave parameters are always output.

When the current profile is to be followed by a wave measurement, the profile data is

output together with the processed wave data. Otherwise, the current profile is output at

the end of the average interval.

It is possible to use the Prolog in an emulation mode where a raw AWAC data file

(*.WPR) is re-processed. This can be done either using the configuration in the WPR-

file on the SD card or using the configuration set with the AWAC software. These two

emulations of wave processing and data streaming is started with the commands EWFF

(Emulate Wave File configuration) and EWSS (Emulate Wave Software Setup),

respectively. When either of these commands are sent to the AWAC (in a terminal

emulator program, such as the AWAC’s), the ProLog will open the first WPR-file it

finds. If serial output is enabled, there will be a 10 second delay before the processing

41

is started to allow connection to another serial port. Data are, as during regular

measurements, always output to file and also output on the serial port according to the

configuration (NMEA, binary, SeaState online format). If the SeaState online format is

used the station configuration is output before the wave processing starts.

ASCII serial data is output according to NMEA standard. The format does not follow

the NMEA standard strictly (no limits on length), but uses this standard as the basis for

comma separated data. Section 6.3 NMEA Output is a description of how the different

data are formatted.

Prolog specific structures

The recorded processed, binary data is composed of the instrument’s header data

structures (User, Head, Hardware, etc.), current profile data structure, and all of the

processed wave data enabled by the user. The wave parameter data structure

(PdWaveData) is always included in processed wave data structures. The following is a

description of the processed wave data structures.

Wave parameter estimates

Size Name Offset Description

1 Sync 0 A5 (hex)

1 ID 1 60 (hex)

2 Size 2 size in words

6 clock 4 date and time

1 hSpectrumTyp 10 spectrum used for calculation

1 hProcMethod 11 processing method used in actual calculation

2 Hm0 12 Spectral significant wave height [mm]

2 H3 14 AST significant wave height (mean of largest 1/3)

[mm]

2 H10 16 AST wave height(mean of largest 1/10) [mm]

2 Hmax 18 AST max wave height in wave ensemble [mm]

2 Tm02 20 Mean period spectrum based [0.01 sec]

2 Tp 22 Peak period [0.01 sec]

2 Tz 24 AST mean zero-crossing period [0.01 sec]

2 DirTp 26 Direction at Tp [0.01 deg]

2 SprTp 28 Spreading at Tp [0.01 deg]

2 DirMean 30 Mean wave direction [0.01 deg]

2 UI 32 Unidirectivity index [1/65535]

4 hPressureMean 34 Mean pressure during burst [0.001 dbar]

2 NumNoDet 38 Number of AST No detects

42

2 NumBadDet 40 Number of AST Bad detects

2 CurSpeedMean 42 Mean current speed - wave cells [mm/sec]

2 CurDirMean 44 Mean current direction - wave cells [0.01 deg]

4 hError 46 Error Code for bad data

4 ASTdistMean 50 Mean AST distance during burst [mm]

4 ICEdistMean 54 Mean ICE distance during burst [mm]

2 FreqDirAmbLimit 58 Low frequency in [0.001 Hz]

2 T3 60 AST significant wave period (sec)

2 T10 62 AST 1/10 wave period (sec)

2 Tmax 64 AST max period in wave ensemble (sec)

2 Hmean 66 Mean wave height (mm)

10 Spares 68

2 Checksum 78 checksum

Total Size is 80 Bytes

Wave band estimates

Size Name Offset Description

1 Sync 0 A5 (hex)

1 ID 1 61 (hex)

2 Size 2 size in words

6 Clock 4 date and time

1 SpectrumType 10 spectrum used for calculation

1 ProcMethod 11 processing method used in actual calculation

2 LowFrequency 12 low frequency in [0.001 Hz]

2 HighFrequency 14 high frequency in [0.001 Hz]

2 Hm0 16 Spectral significant wave height [mm]

2 Tm02 18 Mean period spectrum based [0.01 sec]

2 Tp 20 Peak period [0.01 sec]

2 DirTp 22 Direction at Tp [0.01 deg]

2 DirMean 24 Mean wave direction [0.01 deg]

2 SprTp 26 Spreading at Tp [0.01 deg]

4 Error 28 Error Code for bad data

14 Spares 32

2 Checksum 46 checksum

Total Size is 48 Bytes

43

Wave energy spectrum

Size Name Offset Description

1 Sync 0 A5(hex)

1 ID 1 62 (hex)

2 Size 2 size in words

6 Clock 4 date and time

1 SpectrumType 10 spectrum used for calculation

1 Spare 11

2 NumSpectrum 12 Number of spectral bins (default 98)

2 LowFrequency 14 low frequency in [0.001 Hz]

2 HighFrequency 16 high frequency in [0.001 Hz]

2 StepFrequency 18 frequency step in [0.001 Hz]

18 Spares 20

4 EnergyMultiplier 38 AST energy spectrum multiplier [cm^2/Hz]

var Energy 42 AST Spectra [0 - 1/65535] -

2 Checksum . checksum

Total Size is Variable

Wave fourier coefficient spectrum

Size Name Offset Description

1 cSync 0 A5 (hex)

1 cID 1 63 (hex)

2 Size 2 size in words

6 clock 4 date and time

1 cSpare 10

1 cProcMethod 11 processing method used in actual calculation

2 NumSpectrum 12 Number of spectral bins (default 49)

2 LowFrequency 14 low frequency in [0.001 Hz]

2 HighFrequency 16 high frequency in [0.001 Hz]

2 StepFrequency 18 frequency step in [0.001 Hz]

10 Spares 20

196 A1 30 Fourier coefficients in [+/- 1/32767]

196 B1 226 Fourier coefficients in [+/- 1/32767]

196 A2 422 Fourier coefficients in [+/- 1/32767]

196 B2 618 Fourier coefficients in [+/- 1/32767]

2 Checksum 814 checksum

Total Size is 816 Bytes

44

Awac Cleaned Up AST Time Series

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 65 (hex)

2 Size 2 size of structure in number of words

(1 word = 2 bytes)

1 Minute 4 Minute (BCD)

1 Second 5 Second (BCD)

1 Day 6 Day (BCD)

1 Hour 7 Hour (BCD)

1 Year 8 Year (BCD)

1 Month 9 Month (BCD)

2 Samples 10 Number of wave samples (AST samples =

2*nSamples)

12 Spare 12

2 AST

2*Samples

 AST distance time series (mm)

2 Checksum = b58c(hex) + sum of all words in structure

Total size is variable, depending on number of samples

Data that is determined to be invalid in the wave processing is flagged with a hex value

of 0xFFFF. This means that the value for unsigned is 65636 and it is -32768 for signed

values.

Awac Processed Velocity Profile Data

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 6a (hex)

2 Size 2 Size of structure in number of words (1word = 2

bytes)

1 Minute 4 Minute (BCD)

1 Second 5 Second (BCD)

1 Day 6 Day (BCD)

1 Hour 7 Hour (BCD)

1 Year 8 Year (BCD)

1 Month 9 Month (BCD)

2 Milliseconds 10 Milliseconds

1 Beams 12 Number of beams

1 Cells 13 Number of cells

2 Vel 1 (B1/X/E) 14 Velocity cell 1, beam1/X/East

2 Vel 2 … n 16… …repeated for cells 2 through n

2 Vel 1 (B2/Y/N) Velocity cell 1, beam2/Y/North

2 Vel 2 … n …repeated for cells 2 through n

2 Vel 1 (B3/Z/U) Velocity cell 1, beam2/Y/North

2 Vel 2 … n …repeated for cells 2 through n

2 SNR 1 B1 Signal-to-Noise ratio, cell 1, beam 1 (counts)

45

2 SNR 2 … n …repeated for cells 2 through n

2 SNR 1 B2 Signal-to-Noise ratio, cell 1, beam 2 (counts)

2 SNR 2 … n …repeated for cells 2 through n

2 SNR 1 B3 Signal-to-Noise ratio, cell 1, beam 3 (counts)

2 SNR 2 … n …repeated for cells 2 through n

2 STD 1 B1 Standard deviation cell 1, beam 1

2 STD 2 … n …repeated for cells 2 through n

2 STD 1 B2 Standard deviation cell 1, beam 2

2 STD 2 … n …repeated for cells 2 through n

2 STD 1 B3 Standard deviation cell 1, beam 3

2 STD 2 … n …repeated for cells 2 through n

1 CellErr 1, B1 Error code, cell 1, beam 1

1 CellErr 2… n …repeated for cells 2 through n

1 CellErr 1, B2 Error code, cell 1, beam 2

1 CellErr 2… n …repeated for cells 2 through n

1 CellErr 1, B3 Error code, cell 1, beam 3

1 CellErr 2… n …repeated for cells 2 through n

2 Speed 1…n Speed

2 Dir 1…n Direction

2 VertDist 1..n Vertical distance (m)

1 ProfErr 1…n Error code

1 QCflag 1…n Flag. 0= not eval; 1 = bad; 2 = questionable; 3 =

good

2 Checksum = b58c(hex) + sum of all words in structure

Total size is variable, depending in number of samples

5.9 VECTRINO SPECIFIC STRUCTURES

Vectrino velocity data header

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 50 (hex)

2 Size 2 size of structure in number of words (1 word = 2 bytes)

2 Distance 4 distance (0.1 mm)

2 DistQuality 6 distance quality (-1536 to +1536)

2 Lag1 8 lag1 used

2 Lag2 10 lag2 used

1 Noise1 12 noise amplitude beam 1 (counts)

1 Noise2 13 noise amplitude beam 2 (counts)

1 Noise3 14 noise amplitude beam 3 (counts)

1 Noise4 15 noise amplitude beam 4 (counts)

1 Correlation 16 noise correlation beam 1 (%)

1 Correlation 17 noise correlation beam 2 (%)

1 Correlation 18 noise correlation beam 3 (%)

1 Correlation 19 noise correlation beam 4 (%)

46

2 Temperature 20 temperature (0.01 deg C)

2 SoundSpeed 22 speed of sound (0.1 m/s)

1 AmpZ0 24 amplitude in sampling volume beam 1 (counts)

1 AmpZ0 25 amplitude in sampling volume beam 2 (counts)

1 AmpZ0 26 amplitude in sampling volume beam 3 (counts)

1 AmpZ0 27 amplitude in sampling volume beam 4 (counts)

1 AmpX1 28 amplitude at boundary beam 1 (counts)

1 AmpX1 29 amplitude at boundary beam 2 (counts)

1 AmpX1 30 amplitude at boundary beam 3 (counts)

1 AmpX1 31 amplitude at boundary beam 4 (counts)

1 AmpZ0PLag1 32 Z0 plus lag1 used beam 1 (counts)

1 AmpZ0PLag1 33 Z0 plus lag1 used beam 2 (counts)

1 AmpZ0PLag1 34 Z0 plus lag1 used beam 3 (counts)

1 AmpZ0PLag1 35 Z0 plus lag1 used beam 4 (counts)

1 AmpZ0PLag2 36 Z0 plus lag2 used beam 1 (counts)

1 AmpZ0PLag2 37 Z0 plus lag2 used beam 2 (counts)

1 AmpZ0PLag2 38 Z0 plus lag2 used beam 3 (counts)

1 AmpZ0PLag2 39 Z0 plus lag2 used beam 4 (counts)

2 Checksum 40 = b58c(hex) + sum of all words in structure

Total Size is 42 Bytes

Vectrino velocity data

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 51 (hex)

1 Status 2 [exvcccbb] status bits, where

e = error (0 = no error, 1 = error condition)

x = not used

v = velocity scaling (0 = mm/s, 1 = 0.1mm/s)

ccc = #cells -1

bb = #beams -1

1 Count 3 ensemble counter (0 - 255)

2 Vel 1 B1/X 4 velocity cell 1, beam1 or X (mm/s)

2 Vel 1 B2/Y 6 velocity cell 1, beam2 or Y (mm/s)

2 Vel 1 B3/Z 8 velocity cell 1, beam3 or Z (mm/s)

2 Vel 1 B4/Z2 10 velocity cell 1, beam4 or Z2 (mm/s)

1 Amp 1 B1 12 amplitude cell 1, beam1 (counts)

1 Amp 1 B2 13 amplitude cell 1, beam2 (counts)

1 Amp 1 B3 14 amplitude cell 1, beam3 (counts)

47

1 Amp 1 B4 15 amplitude cell 1, beam4 (counts)

1 Corr 1 B1 16 correlation cell 1, beam1 (%)

1 Corr 1 B2 17 correlation cell 1, beam2 (%)

1 Corr 1 B3 18 correlation cell 1, beam3 (%)

1 Corr 1 B4 19 correlation cell 1, beam4 (%)

2 Checksum 20 = b58c(hex) + sum of all words in structure

Total Size is 22 Bytes

Vectrino distance data

Size Name Offset Description

1 Sync 0 a5 (hex)

1 Id 1 02 (hex)

2 Size 2 size of structure in number of words (1

word = 2 bytes)

2 Temperature 4 temperature (0.01 deg C)

2 SoundSpeed 6 speed of sound (0.1 m/s)

2 Distance 8 distance (0.1 mm)

2 DistQuality 10 distance quality (-1536 to +1536)

2 Spare 12 spare

2 Checksum 14 = b58c(hex) + sum of all words in

structure

Total Size is 16 Bytes

48

5.10 ERROR AND STATUS CODES

Error

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Aquadopp Coord.

Transf

0=ok

1=error

CT

sensor

0=ok

1=error

Beam

number

0=ok

1=error

Flash

0=ok

1=error

Tag bit

0=ok

1=error

Sensor

data

0=ok

1=error

Measurement

data

0=ok

1=error

Compass

0=ok

1=error

Vector Coord.

Transf

0=ok

1=error

 Beam

number

0=ok

1=error

 Tag bit

0=ok

1=error

Sensor

data

0=ok

1=error

Measurement

data

0=ok

1=error

Compass

0=ok

1=error

AquaPro

HR

Coord.

Transf

0=ok

1=error

 Beam

number

0=ok

1=error

Flash

0=ok

1=error

Tag bit

0=ok

1=error

Sensor

data

0=ok

1=error

Measurement

data

0=ok

1=error

Compass

0=ok

1=error

Other Coord.

Transf

0=ok

1=error

 Beam

number

0=ok

1=error

Flash

0=ok

1=error

Tag bit

0=ok

1=error

Sensor

data

0=ok

1=error

Measurement

data

0=ok

1=error

Compass

0=ok

1=error

Status

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Aquadopp

DW

Power level

00=0 (high)

Wakeup state

00=bad power

01=power applied

10=break

11=RTC alarm

Roll

0=ok

1= out

of

range

Pitch

0=ok

1= out

of range

Scaling

0=mm/s

1=0.1mm/s

Orientation

0=up

1=down

Vector Power level

00=0 (high)

10=2(low)

Wakeup state

00=bad power

01=power applied

10=break

11=RTC alarm

Roll

0=ok

1= out

of

range

Pitch

0=ok

1= out

of range

Scaling

0=mm/s

1=0.1mm/s

Orientation

0=up

1=down

Other Power level

00=0 (high)

01=1

10=2

11=3 (low)

Wakeup state

00=bad power

01=power applied

10=break

11=RTC alarm

Roll

0=ok

1= out

of

range

Pitch

0=ok

1= out

of range

Scaling

0=mm/s

1=0.1mm/s

Orientation

0=up

1=down

Vector users: Note Bit 1 of the Status code. This bit indicates the scaling of the velocity

output and depends on the velocity range setting. If the instrument is set to use the

highest ranges, the least significant bit is 1 mm/s. For the lowest range, it is 0.1 mm/s.

The purpose of varying scale factor is to make sure we utilize as much as we can of the

dynamic range that is inherent in the system. This is all transparent if you use the Vector

software to convert to ASCII because the data reported in the ASCII files is in

engineering units. If you develop your own program to read the binary data files, the

variable scaling needs to be taken into account.

49

6 ASCII OUTPUT

Most Nortek instruments can output ASCII data directly. There are three ways of doing

this.

- Disk recording in ASCII format

- ASCII output from MA/AS commands

- Prolog ASCII serial output

6.1 DISK RECORDING IN ASCII FORMAT

The output format is the same as the standard output of the ASCII conversion using the

Nortek software. The sequence is the same, but the error and status codes are decimal

numbers instead of binary (i.e. 17710 instead of 101100012) Also, the field de-limiter

is always just a single space. The description of the format is found in the .hdr file that

is generated when you convert for instance an .aqd data file to ASCII.

6.2 ASCII OUTPUT FROM MA/AS COMMANDS

Some Nortek instrument are also capable of sending out ASCII formatted data.

There are two ways to enable the ASCII output:

1. The command AS (AsciiStart) is the ASCII equivalent to the regular ST command.

It starts a measurement with the current configuration and outputs the data in ASCII

format. To get back into command mode you must send the confirmation characters MC

after sending a break.

2. The command MA (MeasureAscii) makes one measurement with the current

configuration (unless when configured for continuous measurement – see below) and

outputs the data in ASCII format. There is a new binary equivalent to this command,

AD (AquireData). If you want to control the data timing from a data logger, you should

use one of these commands. By using either the MA or the AD command, the instrument

will automatically power down after the measurement is finished. Sending a break will

cause the instrument to enter command mode directly, for example, if you want to stop

a continuous measurement.

The following should be observed:

Make sure you have configured the instrument correctly before using the ASCII output

commands. To use the ASCII commands, you will first configure the instrument from

the Nortek software by entering the required setup parameters and updating the

instrument with this deployment planning.

Note that for the MA command to make only a single measurement, the current meter

cannot be in Continuous mode. This means that it must have a measuring interval that

is at least 4s longer than its averaging interval.

When you stop the measurement to enter Command mode, the instrument will

remember the last configuration, even when power is removed.

50

To start a measurement with output in ASCII format the following steps must be used:

1. Set the relevant deployment parameters using the Nortek software that is shipped with

the instrument.

2. Download the deployment configuration to the instrument by using the update

function in the deployment planning.

4. Start an ASCII measurement from the terminal emulator using the two-character

command AS (Ascii Start)

5. Stop the measurement using Stop Data Collection in the Nortek SW. Alternatively,

the measurement can be stopped by sending a soft break followed by the characters MC

(Mode Command). Note that there is no storage of data to the internal recorder when

data are output in ASCII format.

The parameters are variable in size, but space delimited.

6.2.1 AQUADOPP PROFILER AND AWAC (NON-AST)

The format is as follows:

Header Line

Name Units

Month (1-12)

Day (1-31)

Year

Hour (0-23)

Minute (0-59)

Second (0-59)

Error Code

Status Code

Battery voltage V

Soundspeed m/s

Heading degrees

Pitch degrees

Roll degrees

Pressure dbar

Temperature degrees C

Analogue input 1 Counts (0 - 65536)

Analogue input 2 Counts (0 - 65536)

51

Data Line

Name Units

CellNo (1-128)

Speed mm/s

Direction tenth of degrees

Here is an example with one data set with three cells

11 11 2010 16 25 11 129 33 13.6 1429.9 128.3 0.3 -0.4 1.113 -6.98 6204 6205

1 1289 3102
2 544 393
3 1178 2852

6.2.2 CONTINENTAL

The format is as follows:

Header Line

Name Units

Serial No.

Year

Month (1-12)

Day (1-31)

Hour (0-23)

Minute (0-59)

Second (0-59)

Temperature degrees C

Spare

Data Line

Name Units

CellNo (1-128)

Speed mm/s

Direction tenth of degrees

Here is an example with one data set with three cells

CNH5689 2010 12 1 10 26 46 2328 0

 1 2163 2305

 2 2847 3577

 3 4884 3244

52

6.2.3 AQUADOPP

The format is as follows:

Name Units

Month (1-12)

Day (1-31)

Year

Hour (0-23)

Minute (0-59)

Second (0-59)

Error Code

Status Code

Velocity (Beam1/X/East) m/s

Velocity (Beam2/Y/North) m/s

Velocity (Beam3/Z/Up) m/s

Amplitude (Beam1) counts

Amplitude (Beam2) counts

Amplitude (Beam3) counts

Battery volt

Soundspeed m/s

Heading degrees

Pitch degrees

Roll degrees

Pressure dbar

Temperature degrees C

Analogue input 1 Counts (0 - 65536)

Analogue input 2 Counts (0 - 65536)

Speed m/s

Direction Degrees

Example:

12 1 2010 11 21 47 0 160 -0.600 1.147 0.496 29 26 36 13.2 1531.8 140.0 -0.3 -13.4 108.422 23.93 0 0 1.294 332.4

53

6.3 NMEA OUTPUT

Aquadopp, Aquadopp DW, Aquadopp Profiler and the AWAC are currently supporting

the NMEA format.

The diagnostic samples for the Aquadopp are output in the same way as an other

measurement.

For the AWAC this is configured in the deployment planning while for the rest it must

be started by the NM/NS commands.

Data with variants of -9 (-9.00, -999…) are invalid data.

Empty files are fields not used.

$PNORC,073010,050000,1,0.10,-0.11,-0.01,0.15,137.2,C,88,83,87,,,*37

Correlation is not used for the AWAC

The checksum calculation is part of the NMEA standard. It is the representation of two

hexadecimal characters of an XOR if all characters in the sentence between – but not

including – the $ and the * character.

Information (configuration)

Field Description Form

0 Identifier “$PNORI”

1 Instrument type 0=Aquadopp, 2= Aquadopp Profiler

3=AWAC

2 Head ID aaannnn

3 Number of beams N

4 Number of cells N

5 Blanking (m) dd.dd

6 Cell size (m) dd.dd

7 Coordinate system ENU=0, XYZ=1,Beam=2

8 Checksum *hh

Example:

$PNORI,3,WAV6103,3,20,0.51,2.00,0*16

54

Sensor Data

Field Description Form

0 Identifier “$PNORS”

1 Date MMDDYY

2 Time hhmmss

3 Error code (hex) hh

4 Status code (hex) hh

5 Battery voltage (V) dd.d

6 Sound speed (m/s) dddd.d

7 Heading (deg) ddd.d

8 Pitch (deg) dd.d

9 Roll (deg) dd.d

10 Pressure (dbar) ddd.ddd

11 Temperature (deg C) dd.dd

12 Analog input #1 (counts) nnnnn

13 Analog input #2 (counts) nnnnn

14 Checksum (hex) *hh

Example:

$PNORS,073010,050000,00,B0,13.4,1520.6,114.9,-0.5,1.6,22.314,18.92,1039,0*0B

Current velocity data

Field Description Form

0 Identifier “$PNORC”

1 Date MMDDYY

2 Time hhmmss

3 Cell number N

4 Velocity 1 (m/s) dd.dd

5 Velocity 2 (m/s) dd.dd

6 Velocity 3 (m/s) dd.dd

7 Speed (m/s) dd.dd

8 Direction (deg) ddd.d

9 Amplitude units ”C” counts

10 Amplitude 1 Nnn

11 Amplitude 2 Nnn

12 Amplitude 3 Nnn

13 Correlation 1 (%) Nn

14 Correlation 2 (%) Nn

55

15 Correlation 3 (%) Nn

16 Checksum (hex) *hh

Example:

$PNORC,073010,050000,1,0.10,-0.11,-0.01,0.15,137.2,C,88,83,87,,,*37

$PNORC,073010,050000,2,0.15,-0.16,-0.02,0.22,138.1,C,76,71,74,,,*3D

Wave parameters

Field Description Form

0 Identifier “$PNORW”

1 Date MMDDYY

2 Time hhmmss

3 Spectrum basis type (0-pressure,

1-Velocity, 3-AST)

n

4 Processing method (1-PUV, 2-

SUV, 3-MLM, 4-MLMST)

n

5 Hm0 (m) dd.dd

6 H3 (m) dd.dd

7 H10 (m) dd.dd

8 Hmax (m) dd.dd

9 Tm02 (s) dd.dd

10 Tp (s) dd.dd

11 Tz (s) dd.dd

12 DirTp (deg) ddd.dd

13 SprTp (deg) ddd.dd

14 Main Direction (deg) ddd.dd

15 Unidirectivity Index dd.dd

16 Mean pressure (dbar) dd.dd

17 Number of no detects n

18 Number of bad detects n

19 Near surface Current speed (m/s) dd.dd

20 Near surface Current direction

(deg)

ddd.dd

21 Error Code hhhh

22 Checksum (hex) *hh

Example:

$PNORW,073010,051001,3,4,0.55,0.51,0.63,0.82,2.76,3.33,2.97,55.06,78.91,337.62,
0.48,22.35,0,1,0.27,129.11,0000*4E

56

Wave energy density spectrum

Field Description Form

0 Identifier “$PNORE”

1 Date MMDDYY

2 Time hhmmss.s

3 Spectrum basis type

(0-pressure, 1-Velocity, 3-AST)

n

4 Start Frequency (Hz) d.dd

5 Step Frequency (Hz) d.dd

6 Number of Frequencies N nnn

7 Energy Density [frequency 1]

(cm2/Hz)

dddd.ddd

8 Energy Density [frequency 2]

(cm2/Hz)

dddd.ddd

N+6 Energy Density [frequency N]

(cm2/Hz)

dddd.ddd

N+7 Checksum (hex) *hh

Example:

$PNORE,073010,051001,3,0.02,0.01,98,0.000,0.000,0.000,0.001,0.001,0.001,0.001,

0.001,0.001,0.001,0.001,0.001,0.002,0.002,0.002,0.002,0.002,0.002,0.003,0.003,0.00

4,0.006,0.010,0.023,0.049,0.091,0.162,0.176,0.213,0.179,0.160,0.104,0.097,0.072,0.

056,0.036,0.032,0.034,0.040,0.032,0.028,0.021,0.017,0.017,0.014,0.012,0.009,0.011,

0.010,0.012,0.009,0.010,0.009,0.007,0.006,0.007,0.007,0.008,0.007,0.006,0.005,0.00

4,0.004,0.003,0.003,0.003,0.003,0.002,0.003,0.003,0.002,0.002,0.002,0.002,0.002,0.

001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,

0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001*7E

Wave band parameters

Field Description Form

0 Identifier “$PNORB”

1 Date MMDDYY

2 Time hhmmss.s

3 Spectrum basis type (0-pressure,

1-Velocity, 3-AST)

n

4 Processing method (1-PUV, 2-

SUV, 3-MLM, 4-MLMST)

n

5 Frequency Low d.dd

6 Frequency High d.dd

7 Hm0 (m) dd.dd

8 Tm02 (s) dd.dd

9 Tp (s) dd.dd

10 DirTp (deg) ddd.dd

11 SprTp (deg) ddd.dd

57

11 Main Direction (deg) ddd.dd

12 Error Code hhhh

13 Checksum (hex) *hh

Example:

$PNORB,073010,051001,3,4,0.02,0.20,0.06,7.06,5.00,262.39,80.27,23.39,0000*62

$PNORB,073010,051001,3,4,0.21,0.49,0.52,3.06,3.33,57.06,78.91,24.66,0000*50

Fourier coefficient spectra

Field Description Form

0 Identifier “$PNORF”

1 Fourier coefficient flag

[A1/B1/A2/B2]

“CC”

2 Date MMDDYY

3 Time hhmmss.s

4 Spectrum basis type (0-pressure,

1-Velocity, 3-AST)

n

5 Start Frequency (Hz) d.dd

6 Step Frequency (Hz) d.dd

7 Number of Frequencies N nn

8 Fourier Coefficient CC [frequency

1]

d.dddd

9 Fourier Coefficient CC [frequency

2]

d.dddd

N+7 Fourier Coefficient CC [frequency

N]

d.dddd

N+8 Checksum (hex) *hh

Example:

$PNORF,A1,073010,051001,3,0.02,0.01,48,-0.0216,-0.0521,-0.0563,-0.0565,-

0.0287,-0.0149,-0.0099,-0.0531,-0.0445,-0.0431,-0.0204,-

0.0141,0.0697,0.0833,0.0540,0.0190,-0.0195,-0.0367,-0.0025,-0.0143,0.0318,-

0.0307,-

0.0051,0.0041,0.0440,0.0114,0.0831,0.0527,0.0284,0.0104,0.0040,0.0030,0.0049,-

0.0005,0.0001,-0.0007,0.0018,0.0011,0.0012,0.0008,0.0029,0.0035,0.0021,-9.0000,-

9.0000,-9.0000,-9.0000,-9.0000*0B

58

7 MAKING A NORTEK FILE – EXAMPLE .VEC

When data is collected in an integrated system it is not necessary readable by our

software. Our different software is reading files as they are stored and downloaded by

our software setup software (as Vector).

The requirement for a complete Nortek file is a the following content

- Hardware configuration (A5 05)

- Head configuration (A5 04)

- User configuration (A5 00)

- Measurement data

All three configurations may be made or retrieved from the instrument by the GA

command. Each of the configurations may be made or retrieved by GP for the hardware

configuration, GH for the head configuration and GC for the user configuration.

Example .VEC file

A complete Vector file contains

- Hardware configuration (A5 05)

- Head configuration (A5 04)

- User configuration (A5 00)

- Probe check data (A5 07)

- Vector Velocity data header (A5 10)

- Vector System Data (A5 11)

- Probe check data (A5 07)

59

8 OVERVIEW OF THE IDS

A5 00 User Configuration

A5 01 Aquadopp Velocity Data

A5 02 Vectrino distance data

A5 04 Head Configuration

A5 05 Hardware Configuration

A5 06 Aquadopp Diagnostics Data Header

A5 07 Vector and Vectrino Probe Check data

A5 10 Vector Velocity Data

A5 11 Vector System Data

A5 12 Vector Velocity Data Header

A5 20 AWAC Velocity Profile Data

A5 21 Aquadopp Profiler Velocity Data

A5 24 Continental Data

A5 2a High Resolution Aquadopp Profiler Data

A5 30 AWAC Wave Data

A5 31 AWAC Wave Data Header

A5 36 AWAC Wave Data SUV

A5 42 AWAC Stage Data

A5 50 Vectrino velocity data header

A5 51 Vectrino velocity data

A5 60 Wave parameter estimates

A5 61 Wave band estimates

A5 62 Wave energy spectrum

A5 63 Wave Fourier coefficient spectrum

A5 65 Cleaned up AST time series

A5 6a Awac Processed Velocity Profile Data

A5 80 Aquadopp Diagnostics Data

60

9 INDUCTIVE MODEM INTEGRATION
The following options are available for deployment planning in the Aquadopp software:

• enabling the IMM

• setting the device ID in the IMM

• setting the transmit power level

• selecting ASCII or binary format

The parameters are not set in the modem until the deployment is started. During the deployment

process the IMM configuration is stored in the deployment log file by the Aquadopp software,

and the complete configuration of the Aquadopp is stored in the Host File in the IMM. This

enables the surface inductive modem (SIM/IMM) to retrieve the Aquadopp configuration

through the command HostFileGetData. These data are only stored in binary format, so if this

command is used the SIM must be configured for binary data. This is also the case if Aquadopp

binary format is selected for storage in the IMM. The following commands are the most relevant

for use in the SIM for retrieving data from the Aquadopp:

• !iiSampleGetList

• !iiSampleGetData:

• !iiSampleGetLast

• !iiSampleEraseAll

• !iiHostFileGetData

The file example.log on the following page is an example SIM session for binary data transfer.

A corresponding example for ASCII data is shown in the file data01.log. The corresponding

converted Aquadopp file data01.dat shows the converted data from the internal recorder in the

Aquadopp. –

example.log

IMM>captureline

<Executing/>

!15HostFileGetData

<RemoteReply><Executing/>

<HostData Len='784' CRC='0x43FFA2E2'>

Binary data returned:

61

62

</HostData>

<Executed/>

</RemoteReply>

<Executed/>

IMM>releaseline

<Executing/>

<Executed/>

IMM>

 4 <TIMEOUT msg='HostService 2 min timeout'/>

IMM>

IMM>

<Executed/>

IMM>captureline

<Executing/>

<Executed/>

IMM>!15samplegetsummary

<RemoteReply><Executing/>

<SampleDataSummary NumSamples='8' TotalLen='336' FreeMem='16006'/>

<Executed/>

</RemoteReply>

<Executed/>

IMM>!15samplegetlist

<RemoteReply><Executing/>

<SampleList>

<Sample ID='0x0000024c' Len='42' CRC='0xC7589EDD'/>

<Sample ID='0x0000024b' Len='42' CRC='0x4C593F18'/>

<Sample ID='0x0000024a' Len='42' CRC='0x457FCB04'/>

<Sample ID='0x00000249' Len='42' CRC='0xD6C60EE2'/>

<Sample ID='0x00000248' Len='42' CRC='0x8AFE5C1A'/>

<Sample ID='0x00000247' Len='42' CRC='0x2301B4DB'/>

<Sample ID='0x00000246' Len='42' CRC='0xB3B4B2D4'/>

<Sample ID='0x00000245' Len='42' CRC='0x0BCBBDE2'/>

</SampleList>

<Executed/>

</RemoteReply>

<Executed/>

IMM>!15SAMPLEGETDATA:245

<RemoteReply><Executing/>

<SampleData ID='0x245' LEN='42' CRC='0xbcbbde2'>

Binary data returned:

<Executed/>

</RemoteReply>

<Executed/>

IMM>!15SAMPLEGETDATA:246

<RemoteReply><Executing/>

<SampleData ID='0x246' LEN='42' CRC='0xb3b4b2d4'>

63

Binary data returned:

<Executed/>

</RemoteReply>

<Executed/>

IMM>!15SAMPLEGETDATA:247

<RemoteReply><Executing/>

<SampleData ID='0x247' LEN='42' CRC='0x2301b4db'>

Binary data returned:

<Executed/>

</RemoteReply>

<Executed/>

IMM>!15SAMPLEGETDATA:248

<RemoteReply><Executing/>

<SampleData ID='0x248' LEN='42' CRC='0x8afe5c1a'>

Binary data returned:

<Executed/>

<Executed/>

IMM>!15SAMPLEGETDATA:249

<RemoteReply><Executing/>

<SampleData ID='0x249' LEN='42' CRC='0xd6c60ee2'>

Binary data returned:

<Executed/>

</RemoteReply>

<Executed/>

IMM>!15SAMPLEGETDATA:24A

<RemoteReply><Executing/>

<SampleData ID='0x24a' LEN='42' CRC='0x457fcb04'>

Binary data returned:

64

<Executed/>

</RemoteReply>

<Executed/>

IMM>!15SAMPLEGETDATA:24B

<RemoteReply><Executing/>

<SampleData ID='0x24b' LEN='42' CRC='0x4c593f18'>

Binary data returned:

<Executed/>

</RemoteReply>

 6 <Executed/>

IMM>!15SAMPLEGETDATA:24C

<RemoteReply><Executing/>

<SampleData ID='0x24c' LEN='42' CRC='0xc7589edd'>

Binary data returned:

<Executed/>

</RemoteReply>

<Executed/>

IMM>!15SAMPLEERASEALL

<RemoteReply><Executing/>

<Executed/>

</RemoteReply>

<Executed/>

IMM>releaseline

<Executing/>

<Executed/>

IMM>

data01.log

IMM>

<Executed/>

IMM>CaptureLine

<Executing/>

<Executed/>

IMM>!12SampleGetSummary

<RemoteReply><Executing/>

<SampleDataSummary NumSamples='5' TotalLen='550' FreeMem='15792'/>

<Executed/>

65

</RemoteReply>

<Executed/>

IMM>!12SampleGetList

<RemoteReply><Executing/>

<SampleList>

<Sample ID='0x00000254' Len='109' CRC='0x45326FC3'/>

<Sample ID='0x00000253' Len='110' CRC='0x74E6ED95'/>

<Sample ID='0x00000252' Len='109' CRC='0x0D7F6C29'/>

<Sample ID='0x00000251' Len='111' CRC='0x9175F508'/>

<Sample ID='0x00000250' Len='111' CRC='0x42E806B9'/>

</SampleList>

<Executed/>

</RemoteReply>

<Executed/>

IMM>!12SAMPLEGETDATA:250

<RemoteReply><Executing/>

<SampleData ID='0x250' LEN='111' CRC='0x42e806b9'> 4 7 2009 13 35 0 0 177 -0.708 0.799

0.154 14 14 14 12.5 0.0 338.3 -1.9 -3.1 14.403 -6.96 65535 0 1.067 318.5

</SampleData>

<Executed/>

</RemoteReply>

<Executed/>

IMM>!12SAMPLEGETDATA:251

<RemoteReply><Executing/>

<SampleData ID='0x251' LEN='111' CRC='0x9175f508'> 4 7 2009 13 45 0 0 177 -0.744 1.434

0.975 14 14 14 12.5 0.0 338.3 -1.9 -3.1 14.412 -6.96 65535 0 1.615 332.6

</SampleData>

<Executed/>

</RemoteReply>

<Executed/>

IMM>!12SAMPLEGETDATA:252

<RemoteReply><Executing/>

<SampleData ID='0x252' LEN='109' CRC='0xd7f6c29'> 4 7 2009 13 55 0 0 177 0.292 0.669

0.810 14 14 14 12.5 0.0 338.3 -1.9 -3.1 14.371 -6.96 65535 0 0.730 23.6

</SampleData>

<Executed/>

</RemoteReply>

 8 <Executed/>

IMM>!12SAMPLEGETDATA:253

<RemoteReply><Executing/>

<SampleData ID='0x253' LEN='110' CRC='0x74e6ed95'> 4 7 2009 14 5 0 0 177 -0.732 0.830

0.805 14 14 14 12.5 0.0 338.3 -1.9 -3.1 14.603 -6.96 65535 0 1.107 318.6

</SampleData>

<Executed/>

</RemoteReply>

<Executed/>

IMM>!12SAMPLEGETDATA:254

<RemoteReply><Executing/>

<SampleData ID='0x254' LEN='109' CRC='0x45326fc3'> 4 7 2009 14 15 0 0 177 0.343 0.964

0.796 14 14 14 12.5 0.0 337.9 -1.9 -3.1 14.493 -6.96 65535 0 1.023 19.6

</SampleData>

<Executed/>

66

</RemoteReply>

<Executed/>

IMM>!12SampleEraseAll

<RemoteReply><Executing/>

<Executed/>

</RemoteReply>

<Executed/>

IMM>releaseline

<Executing/>

<Executed/>

data01.dat

04 07 2009 13 35 00 00000000 10110001 -0.708 0.799 0.154 14 14 14 12.5

1414.6 338.3 -1.9 -3.1 14.403 -6.96 65535 0 1.068 318.46

04 07 2009 13 45 00 00000000 10110001 -0.744 1.434 0.975 14 14 14 12.5

1414.6 338.3 -1.9 -3.1 14.412 -6.96 65535 0 1.616 332.58

04 07 2009 13 55 00 00000000 10110001 0.292 0.669 0.810 14 14 14 12.5

1414.6 338.3 -1.9 -3.1 14.371 -6.96 65535 0 0.730 23.58

04 07 2009 14 05 00 00000000 10110001 -0.732 0.830 0.805 14 14 14 12.5

1414.6 338.3 -1.9 -3.1 14.603 -6.96 65535 0 1.107 318.59

04 07 2009 14 15 00 00000000 10110001 0.343 0.964 0.796 14 14 14 12.5

1414.6 337.9 -1.9 -3.1 14.493 -6.96 65535 0 1.023 19.59

67

10 EXAMPLE PROGRAM

For your convenience, we are pleased to provide a few example programs.

The following examples are provided:

• Generating a break

• Decoding the data structures – using Aquadopp as an example

• Structure definitions

10.1 GENERATING A BREAK

///

// Sample code using the Microsoft Win32 API to open a handle to COM1,

// configure the serial port and send a break signal to wake up the instrument.

.

.

.

DCB dcb;

HANDLE hComm;

DWORD dwError;

DWORD nBytesWritten;

char cCommand[10];

// Open a handle to COM1

hComm = CreateFile(“COM1”,GENERIC _ READ|GENERIC _ WRITE,0,NULL,OPEN _

EXISTING,0,NULL);

if (hComm == INVALID _ HANDLE _ VALUE) {

dwError = GetLastError();

// Handle the error.

}

// Omit the call to SetupComm to use the default queue sizes.

// Get the current configuration.

if (!GetCommState(hComm,&dcb)) {

dwError = GetLastError();

// Handle the error.

}

// Fill in the DCB: baud=9600, 8 data bits, no parity, 1 stop bit.

dcb.BaudRate = 9600;

dcb.ByteSize = 8;

dcb.Parity = NOPARITY;

dcb.StopBits = ONESTOPBIT;

if (!SetCommState(hComm, &dcb)) {

dwError = GetLastError();

// Handle the error.

}

// Send a soft break signal

memset(cCommand,64,6); // @@@@@@

if (!WriteFile(hComm,cCommand,6,&nBytesWritten,NULL))

dwError = GetLastError();

// Handle the error.

}

Sleep(100);

strcpy(cCommand,”K1W%!Q”);

if (!WriteFile(hComm,cCommand,6,&nBytesWritten,NULL))

68

dwError = GetLastError();

// Handle the error.

}

// Send a hard break signal

// Place the transmission line in a break state for 500 milliseconds

SetCommBreak(hComm);

Sleep(500);

ClearCommBreak(hComm);

.

.

.

10.2 DECODING OF DATA STRUCTURES

///

// Sample code for decoding the Aquadopp data structure

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification (0x01=normal, 0x80=diag)

unsigned short hSize; // size of structure (words)

PdClock clock; // date and time

short hError; // error code

short hSpare;

unsigned short hBattery; // battery voltage (0.1 V)

unsigned short hSoundSpeed; // speed of sound (0.1 m/s)

short hHeading; // compass heading (0.1 deg)

short hPitch; // compass pitch (0.1 deg)

short hRoll; // compass roll (0.1 deg)

unsigned char cMSB; // pressure MSB

char cStatus; // status code

unsigned short hLSW; // pressure LSW

short hTemperature; // temperature (0.01 deg C)

short hVel[3]; // velocity (mm/s)

unsigned char cAmp[3]; // amplitude (counts)

char cFill;

short hChecksum; // checksum

} PdMeas;

{

.

.

.

PdMeas meas;

SYSTEMTIME st;

double dVel[3];

double dAmp[3];

short hChecksum;

double dPressure;

double dBattery;

double dHeading;

double dPitch;

double dRoll;

double dTemperature;

// Assuming three beams

// Checksum control

if (meas.hChecksum != Checksum((short *)&meas,meas.hSize - 1)) {

// Handle the error.

69

}

st = ClockToSystemTime(meas.clock);

dVel[0] = (double)meas.hVel[0] * 0.001;

dVel[1] = (double)meas.hVel[1] * 0.001;

dVel[2] = (double)meas.hVel[2] * 0.001;

dAmp[0] = (double)meas.cAmp[0];

dAmp[1] = (double)meas.cAmp[1];

dAmp[2] = (double)meas.cAmp[2];

dPressure = (65536.0*(double)meas.cMSB + (double)meas.hLSW)*0.001;

dBattery = (double)meas.hBattery * 0.1;

dHeading = (double)meas.hHeading * 0.1;

dPitch = (double)meas.hPitch * 0.1;

dRoll = (double)meas.hRoll * 0.1;

dTemperature = (double)meas.hTemperature * 0.01;

.

.

}///

// Convert from BCD time to system time

SYSTEMTIME ClockToSystemTime(PdClock clock)

{

SYSTEMTIME systime;

WORD wYear;

wYear = (WORD)BCDToChar(clock.cYear);

if (wYear >= 90) {

wYear += 1900;

}

else {

wYear += 2000;

}

systime.wYear = wYear;

systime.wMonth = (WORD)BCDToChar(clock.cMonth);

systime.wDay = (WORD)BCDToChar(clock.cDay);

systime.wHour = (WORD)BCDToChar(clock.cHour);

systime.wMinute = (WORD)BCDToChar(clock.cMinute);

systime.wSecond = (WORD)BCDToChar(clock.cSecond);

systime.wMilliseconds = 0;

return systime;

}

///

// Convert from BCD to char

unsigned char BCDToChar(unsigned char cBCD)

{

unsigned char c;

cBCD = min(cBCD,0x99);

c = (cBCD & 0x0f);

c += 10 * (cBCD >> 4);

return c;

}

///

// Compute checksum

short Checksum(short *phBuff,int n)

{

int i;

70

short hChecksum = 0xb58c;

for (i=0; i<n; i++)

hChecksum += phBuff[i];

return hChecksum;

}

10.3 STRUCTURE DEFINITIONS

#define PD _ MAX _ BEAMS 3

#define PD _ MAX _ BINS 128

#define PD _ MAX _ STAGECELLS 1024

#pragma pack(push)

#pragma pack(1) // 1 byte struct member alignment used in firmware

//

// Clock data (6 bytes) NOTE! BCD format

typedef struct {

unsigned char cMinute; // minute

unsigned char cSecond; // second

unsigned char cDay; // day

unsigned char cHour; // hour

unsigned char cYear; // year

unsigned char cMonth; // month

} PdClock;

//

// Aquadopp diagnostics header data

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification = 0x06

unsigned short hSize; // total size of structure (words)

unsigned short nRecords; // number of diagnostics samples to follow

unsigned short nCell; // cell number of stored diagnostics data

unsigned char cNoise[4]; // noise amplitude (counts)

PdClock clock; // date and time

unsigned short hSpare1;

unsigned short hDistance[4]; // distance

unsigned short hSpare[3];

short hChecksum; // checksum

} PdDiagHead;

//

// Aquadopp velocity data 3 beams

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification (0x01=normal, 0x80=diag)

unsigned short hSize; // size of structure (words)

PdClock clock; // date and time

short hError; // error code:

// bit 0: compass (0=ok, 1=error)

// bit 1: measurement data (0=ok, 1=error)

// bit 2: sensor data (0=ok, 1=error)

// bit 3: tag bit (0=ok, 1=error)

// bit 4: flash (0=ok, 1=error)

// bit 5:

// bit 6: serial CT sensor read (0=ok, 1=error)

unsigned short hAnaIn1; // analog input 1

unsigned short hBattery; // battery voltage (0.1 V)

union {

71

unsigned short hSoundSpeed; // speed of sound (0.1 m/s)

unsigned short hAnaIn2; // analog input 2

} u;

short hHeading; // compass heading (0.1 deg)

short hPitch; // compass pitch (0.1 deg)

short hRoll; // compass roll (0.1 deg)

unsigned char cPressureMSB; // pressure MSB (0.001 dbar)

char cStatus; // status:

// bit 0: orientation (0=up, 1=down)

// bit 1: scaling (0=mm/s, 1=0.1mm/s)

// bit 2: pitch (0=ok, 1=out of range)

// bit 3: roll (0=ok, 1=out of range)

// bit 4: wakeup state:

//bit 5:(00=bad power,01=break,10=power applied,11=RTC alarm)

// bit 6: power level:

// bit 7: (00=0(high), 01=1, 10=2, 11=3(low))

unsigned short hPressureLSW; // pressure LSW

short hTemperature; // temperature (0.01 deg C)

short hVel[3]; // velocity

unsigned char cAmp[3]; // amplitude

char cFill;

short hChecksum; // checksum

} PdMeas;

//

// Vector velocity data header (18 bytes)

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification = 0x12

unsigned short hSize; // total size of structure (words)

PdClock clock; // date and time

unsigned short nRecords; //number of velocity samples to follow

unsigned char cNoise[4]; // noise amplitude (counts)

unsigned char cCorr[4]; // noise correlation

unsigned short hSpare[10]; // spare values

short hChecksum; // checksum

} PdVecHead;

//

// Vector velocity data 3 beams

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification = 0x10

unsigned char cAnaIn2LSB; // analog input 2 LSB

unsigned char cCount; // ensemble counter

unsigned char cPressureMSB; // pressure MSB

unsigned char cAnaIn2MSB; // analog input 2 MSB

unsigned short hPressureLSW; // pressure LSW

unsigned short hAnaIn1; // analog input 1 (fast)

short hVel[3]; // velocity

unsigned char cAmp[3]; // amplitude

unsigned char cCorr[3]; // correlation (0-100)

short hChecksum; // checksum

} PdVecVel;

//

// Vector system data (28 bytes)

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification = 0x11

unsigned short hSize; // size of structure (words)

PdClock c lock; // date and time

72

unsigned short hBattery; // battery voltage (0.1 V)

unsigned short hSoundSpeed; // speed of sound (0.1 m/s)

short hHeading; // compass heading (0.1 deg)

short hPitch; // compass pitch (0.1 deg)

short hRoll; // compass roll (0.1 deg)

short hTemperature; // temperature (0.01 deg C)

char cError; // error code

char cStatus; // status

unsigned short hAnaIn; // analog input (slow)

short hChecksum;

} PdVecSys;

//

// Aquadopp velocity profile data

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification (0x21 = 3 beams, 0x22 = 2 beams, 0x21= 1

beam)

unsigned short hSize; // size of structure (words)

PdClock clock; // date and time

short hError; // error code

unsigned short hAnaIn1; // analog input 1

unsigned short hBattery; // battery voltage (0.1 V)

union {

unsigned short hSoundSpeed;// speed of sound (0.1 m/s)

unsigned short hAnaIn2; // analog input 2

} u;

short hHeading; // compass heading (0.1 deg)

short hPitch; // compass pitch (0.1 deg)

short hRoll; // compass roll (0.1 deg)

union {

struct {

unsigned char cMSB; // pressure MSB

char cStatus; // status

unsigned short hLSW; // pressure LSW

} Pressure; // (0.001 dbar)

struct {

unsigned char cQuality;// distance quality

char cStatus; // status

unsigned short hDist; // distance (mm)

} Distance;

} u1;

short hTemperature; // temperature (0.01 deg C)

// actual size of the following = nBeams*nBins*3 + 2

short hVel[PD _ MAX _ BEAMS][PD _ MAX _ BINS];

 short hVel[nBeams][nCells]; //velocity

unsigned char cAmp[PD _ MAX _ BEAMS][PD _ MAX _ BINS]; // char

 cAmp[nBeams][nCells]; //amplitude

char cFill //

if nCells % 2 != 0

short hChecksum; // checksum

} PdAqdProf;

//

// Continental velocity profile data (variable length)

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification (0x24 = 3 beams, 0x25 = 2 beams, 0x26= 1

beam)

unsigned short hSize; // size of structure (words)

PdClock clock; // date and time

73

short hError; // error code

unsigned short hAnaIn1; // analog input 1

unsigned short hBattery; // battery voltage (0.1 V)

union {

unsigned short hSoundSpeed;// speed of sound (0.1 m/s)

unsigned short hAnaIn2; // analog input 2

} u;

short hHeading; // compass heading (0.1 deg)

short hPitch; // compass pitch (0.1 deg)

short hRoll; // compass roll (0.1 deg)

unsigned char cPressureMSB; // pressure MSB

char cStatus; // status

unsigned short hPressureLSW; // pressure LSW

short hTemperature; // temperature (0.01 deg C)

short hSpare[44];

// actual size of the following = nBeams*nBins*3 + 2

short hVel[PD _ MAX _ BEAMS][PD _ MAX _ BINS]; // short

 hVel[nBeams][nCells]; //velocity

unsigned char cAmp[PD _ MAX _ BEAMS][PD _ MAX _ BINS]; // char

 cAmp[nBeams][nCells]; //amplitude

char cFill //

if

nCells % 2 != 0

short hChecksum; // checksum

} PdFarProf;

//

// AWAC velocity profile data (variable length)

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification (0x20)

unsigned short hSize; // size of structure (words)

PdClock clock; // date and time

short hError; // error code

unsigned short hAnaIn1; // analog input 1

unsigned short hBattery; // battery voltage (0.1 V)

union {

unsigned short hSoundSpeed; // speed of sound (0.1 m/s)

unsigned short hAnaIn2; // analog input 2

} u;

short hHeading; // compass heading (0.1 deg)

short hPitch; // compass pitch (0.1 deg)

short hRoll; // compass roll (0.1 deg)

unsigned char cPressureMSB; // pressure MSB

char c Status; // status

unsigned short hPressureLSW; // pressure LSW

short hTemperature; // temperature (0.01 deg C)

short hSpare[44];

// actual size of the following = nBeams*nBins*3 + 2

short hVel[PD _ MAX _ BEAMS][PD _ MAX _ BINS]; // short

 hVel[nBeams][nCells]; //velocity

unsigned char cAmp[PD _ MAX _ BEAMS][PD _ MAX _ BINS]; // char

 cAmp[nBeams][nCells]; //amplitude

char cFill //

if

nCells % 2 != 0

short hChecksum; // checksum

} PdProf;

//

74

// Wave header data (60 bytes)

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification = 0x31

unsigned short hSize; // total size of structure (words)

PdClock clock; // date and time

unsigned short nRecords; // number of wave data records to follow

unsigned short hBlanking; // T2 used for wave data measurements (counts)

unsigned short hBattery; // battery voltage (0.1 V)

unsigned short hSoundSpeed; // speed of sound (0.1 m/s)

short hHeading; // compass heading (0.1 deg)

short hPitch; // compass pitch (0.1 deg)

short hRoll; // compass roll (0.1 deg)

unsigned short hMinPress; // minimum pressure value of previous profile (dbar)

unsigned short hMaxPress; // maximum pressure value of previous profile (dbar)

short hTemperature; // temperature (0.01 deg C)

unsigned short hCellSize; // cell size in counts of T3

unsigned char cNoise[4]; // noise amplitude (counts)

unsigned short hProcMagn[4]; // processing magnitude

unsigned short hWindRed; // number of samples of AST window past boundary

unsigned short hASTWindow; // AST window size (# samples)

short Spare[5]; // spare values

short hChecksum; // checksum

} PdWaveHead;

//

// Wave data (24 bytes)

typedef struct {

unsigned char cSync; // sync = 0xa5

unsigned char cId; // identification (0x30)

unsigned short hSize; // size of structure (words)

unsigned short hPressure; // pressure (0.001 dbar)

unsigned short hDistance; // AST distance1 on vertical beam (mm)

unsigned short hAnaIn; // analog input

short hVel[4]; // velocity, hVel[3] = AST distance2 on

vertical beam (mm)

unsigned char cAmp[4]; // amplitude, cAmp[3] = AST quality (counts)

short hChecksum; // checksum

} PdWave;

//

// Wave Parameter Data (80 bytes)

typedef struct {

unsigned char cSync; // A5 (hex)

unsigned char cId; // 60 (hex)

unsigned short hSize; // size in words

PdClock clock; // date and time

unsigned char cSpectrumType; // spectrum used for calculation

unsigned char cProcMethod; // processing method used in actual calculation

unsigned short hHm0; // Spectral significant wave height [mm]

unsigned short hH3; // AST significant wave height (mean of largest 1/3) [mm]

unsigned short hH10; // AST wave height(mean of largest 1/10) [mm]

unsigned short hHmax; // AST max wave height in wave ensemble [mm]

unsigned short hTm02; // Mean period spectrum based [0.01 sec]

unsigned short hTp; // Peak period [0.01 sec]

unsigned short hTz; // AST mean zero-crossing period [0.01 sec]

unsigned short hDirTp; // Direction at Tp [0.01 deg]

unsigned short hSprTp; // Spreading at Tp [0.01 deg]

unsigned short hDirMean; // Mean wave direction [0.01 deg]

unsigned short hUI; // Unidirectivity index [1/65535]

75

long lPressureMean; // Mean pressure during burst

[0.001 dbar]

unsigned short hNumNoDet; // Number of ST No detects [#]

unsigned short hNumBadDet; // Number of ST Bad detects [#]

unsigned short hCurSpeedMean; // Mean current speed - wave cells [mm/sec]

unsigned short hCurDirMean; // Mean current direction - wave cells [0.01 deg]

unsigned long lError; // Error Code for bad data

unsigned short hSpares[14];

unsigned short hChecksum; // checksum

} PdWaveParData

//

// Wave Band data (48 bytes)

typedef struct {

unsigned char cSync; // A5 (hex)

unsigned char cId; // 61 (hex)

unsigned short hSize; // size in words

PdClock clock; // date and time

unsigned char cSpectrumType; // spectrum used for calculation

unsigned char cProcMethod; // processing method used in actual calculation

unsigned short hLowFrequency; // low frequency in [0.001 Hz]

unsigned short hHighFrequency; // high frequency in [0.001 Hz]

unsigned short hHm0; // Spectral significant wave height [mm]

unsigned short hTm02; // Mean period spectrum based [0.01 sec]

unsigned short hTp; // Peak period [0.01 sec]

unsigned short hDirTp; // Direction at Tp [0.01 deg]

unsigned short hDirMean; // Mean wave direction [0.01 deg]

unsigned short hSprTp; // Spreading at Tp [0.01 deg]

unsigned long lError; // Error Code for bad data

unsigned short hSpares[7];

unsigned short hChecksum; // checksum

} PdWaveBandsData;

//

// Wave Spectrum data (Variable size)

typedef struct {

unsigned char cSync; // A5 (hex)

unsigned char cId; // 62 (hex)

unsigned short hSize; // size in words

PdClock clock; // date and time

unsigned char cSpectrumType; // spectrum used for calculation

unsigned char cSpare;

unsigned short hNumSpectrum; // number of spectral bins (default 98)

unsigned short hLowFrequency; // low frequency in [0.001 Hz]

unsigned short hHighFrequency; // high frequency in [0.001 Hz]

unsigned short hStepFrequency; // frequency step in [0.001 Hz]

unsigned short hSpares[9];

unsigned long lEnergyMultiplier; // AST energy spectrum multiplier [cm^2/Hz]

unsigned short hEnergy[PD _ MAX _ WAVEFREQST];

// AST Spectra [0 - 1/65535] -

unsigned short hChecksum; // checksum

} PdWaveSpectrumData; // variable size (hNumSpectrum)

//

// Wave Fourier Coefficients (Variable size)

typedef struct {

unsigned char cSync; // A5 (hex)

unsigned char cId; // 63 (hex)

unsigned short hSize; // size in words

76

PdClock clock; // date and time

unsigned char cSpare;

unsigned char cProcMethod; // processing method used in actual calculation

unsigned short hNumSpectrum; // number of spectral bins (default 49)

unsigned short hLowFrequency; // low frequency in [0.001 Hz]

unsigned short hHighFrequency; // high frequency in [0.001 Hz]

unsigned short hStepFrequency; // frequency step in [0.001 Hz]

unsigned short hSpares[5];

short hA1[PD _ MAX _ WAVEFREQ];

// Fourier coefficients in [+/- 1/32767]

short hB1[PD _ MAX _ WAVEFREQ];

// 0 - hNumSpectrum-1

short hA2[PD _ MAX _ WAVEFREQ];

short hB2[PD _ MAX _ WAVEFREQ];

unsigned short hChecksum; // checksum

} PdWaveFourierCoeff;

77

11 APPENDIX A: INSTRUMENT STATES

