
 

Copyright © OSGi Alliance 2005 and Richard S. Hall 
This contribution is made to the OSGi Alliance as MEMBER LICENSED MATERIALS pursuant to the terms of the OSGi Member Agreement 

and specifically the license rights and warranty disclaimers as set forth in Sections 3.2 and 12.1, respectively. 
All company, brand and product names contained within this document may be trademarks that are the sole property of the respective owners. 

The above notice must be included on all copies of this document that are made.

 

 

 

 

RFC-0112 Bundle Repository 

Confidential, Draft 
 
 

38 Pages 
Abstract 

This RFC describes a bundle repository for the OSGi Alliance. This repository consists of a web site 
(bundles.osgi.org) that hosts an XML resource that describes a federated repository under the control of the OSGi 

Alliance. This repository can be browsed on the web site. Additionally, the repository can be used directly from 
any OSGi Framework to deploy bundles from the repository (if the bundles do not require licensing). This RFC 

defines the format of the XML and the OSGi Framework service to access and use the repository. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 2 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

0 Document Information 

0.1 Table of Contents 

0 Document Information............................................................................................................2 
0.1 Table of Contents...........................................................................................................2 
0.2 Terminology and Document Conventions .......................................................................4 
0.3 Revision History .............................................................................................................5 

1 Introduction ............................................................................................................................5 
1.1 Acknowledgements ........................................................................................................5 
1.2 Introduction ....................................................................................................................5 

2 Application Domain ................................................................................................................5 

3 Problem Description...............................................................................................................7 

4 Requirements .........................................................................................................................7 
4.1 Functional ......................................................................................................................7 
4.2 Discovery .......................................................................................................................7 
4.3 Dependency Resolution .................................................................................................7 
4.4 Security..........................................................................................................................8 
4.5 Non Functional...............................................................................................................8 

5 Technical Solution..................................................................................................................8 
5.1 Entities...........................................................................................................................8 
5.2 Overview......................................................................................................................10 

5.2.1 Resource ...........................................................................................................11 
5.2.2 Capabilties.........................................................................................................12 
5.2.3 Requirements ....................................................................................................12 
5.2.4 Extends .............................................................................................................13 

5.3 Repository Admin.........................................................................................................13 
5.3.1 Discovery...........................................................................................................13 
5.3.2 Resolving...........................................................................................................13 
5.3.3 Admin................................................................................................................14 

5.4 Resolving.....................................................................................................................14 
5.5 XML Schema ...............................................................................................................14 

5.5.1 Namespace .......................................................................................................14 
5.5.2 The XML Structure.............................................................................................14 
5.5.3 Repository .........................................................................................................14 
5.5.4 Referral..............................................................................................................15 
5.5.5 Resource ...........................................................................................................15 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 3 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

5.5.6 Category............................................................................................................15 
5.5.7 Require..............................................................................................................16 
5.5.8 Extend ...............................................................................................................16 
5.5.9 Capability...........................................................................................................17 

5.6 Filter Extensions...........................................................................................................17 
5.6.1 Greater and Less Operators...............................................................................17 
5.6.2 Set Arithmetic ....................................................................................................17 
5.6.3 Version Ranges .................................................................................................18 

5.7 Sample XML File..........................................................................................................18 
5.8 Querying a Web Service Based Repository ..................................................................19 
5.9 Bundle Manifest Header Mapping.................................................................................19 

5.9.1 Bundle...............................................................................................................19 
5.9.2 Import and Export Package: ‘package’ ...............................................................20 
5.9.3 Require-Bundle..................................................................................................20 
5.9.4 Fragment-Host...................................................................................................21 
5.9.5 Import- and Export-Service ................................................................................21 
5.9.6 Declarative Services ..........................................................................................22 
5.9.7 Bundle-ExecutionEnvironment ...........................................................................22 

6 Open Issues..........................................................................................................................22 
6.1 Uses Constraint............................................................................................................22 
6.2 Query protocol .............................................................................................................22 
6.3 Licensing......................................................................................................................22 

7 Java Documentation.............................................................................................................23 
7.1 Package org.osgi.servicex.obr......................................................................................23 
7.2 org.osgi.servicex.obr  Interface Resource.....................................................................23 

7.2.1 LICENSE_URI ...................................................................................................25 
7.2.2 DESCRIPTION..................................................................................................25 
7.2.3 DOCUMENTATION_URI ...................................................................................25 
7.2.4 COPYRIGHT .....................................................................................................25 
7.2.5 SOURCE_URI ...................................................................................................25 
7.2.6 SYMBOLIC_NAME............................................................................................26 
7.2.7 PRESENTATION_NAME...................................................................................26 
7.2.8 ID ......................................................................................................................26 
7.2.9 VERSION ..........................................................................................................26 
7.2.10 URI..................................................................................................................26 
7.2.11 SIZE ................................................................................................................26 
7.2.12 KEYS...............................................................................................................26 
7.2.13 getProperties ...................................................................................................26 
7.2.14 getSymbolicName............................................................................................27 
7.2.15 getPresentationName ......................................................................................27 
7.2.16 getVersion .......................................................................................................27 
7.2.17 getId ................................................................................................................27 
7.2.18 getURI .............................................................................................................27 
7.2.19 getRequirements .............................................................................................27 
7.2.20 getRequests ....................................................................................................27 
7.2.21 getExtends.......................................................................................................27 
7.2.22 getCapabilities .................................................................................................27 
7.2.23 getCategories ..................................................................................................27 
7.2.24 getRepository...................................................................................................27 

7.3 org.osgi.servicex.obr  Interface Resolver ......................................................................28 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 4 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

7.3.1 add ....................................................................................................................28 
7.3.2 getUnsatisfiedRequirements ..............................................................................28 
7.3.3 getOptionalResources........................................................................................29 
7.3.4 getReason .........................................................................................................29 
7.3.5 getResources ....................................................................................................29 
7.3.6 getRequiredResources ......................................................................................29 
7.3.7 getAddedResources ..........................................................................................29 
7.3.8 resolve...............................................................................................................29 
7.3.9 deploy................................................................................................................29 

7.4 org.osgi.servicex.obr  Interface Requirement................................................................29 
7.4.1 getName............................................................................................................30 
7.4.2 getFilter .............................................................................................................30 
7.4.3 isMultiple ...........................................................................................................30 
7.4.4 isOptional ..........................................................................................................30 
7.4.5 getComment......................................................................................................30 
7.4.6 isSatisfied..........................................................................................................31 

7.5 org.osgi.servicex.obr  Class RepositoryPermission.......................................................31 
7.5.1 RepositoryPermission ........................................................................................32 

7.6 org.osgi.servicex.obr  Interface RepositoryAdmin .........................................................32 
7.6.1 discoverResources ............................................................................................33 
7.6.2 resolver..............................................................................................................33 
7.6.3 addRepository ...................................................................................................33 
7.6.4 removeRepository..............................................................................................34 
7.6.5 listRepositories ..................................................................................................34 
7.6.6 getResource ......................................................................................................34 

7.7 org.osgi.servicex.obr  Interface Repository ...................................................................34 
7.7.1 getURL ..............................................................................................................35 
7.7.2 getResources ....................................................................................................35 
7.7.3 getName............................................................................................................35 
7.7.4 getLastModified .................................................................................................35 

7.8 org.osgi.servicex.obr  Interface CapabilityProvider........................................................35 
7.8.1 getCapabilities ...................................................................................................36 

7.9 org.osgi.servicex.obr  Interface Capability.....................................................................36 
7.9.1 getName............................................................................................................37 
7.9.2 getProperties .....................................................................................................37 

8 Security Considerations.......................................................................................................37 
8.1 Repository Permission..................................................................................................37 

9 Document Support ...............................................................................................................38 
9.1 References ..................................................................................................................38 
9.2 Author’s Address..........................................................................................................38 
9.3 Acronyms and Abbreviations ........................................................................................38 
9.4 End of Document .........................................................................................................38 

 

0.2 Terminology and Document Conventions 
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", 
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as 
described in [1]. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 5 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

Source code is shown in this typeface. 

0.3 Revision History 
The last named individual in this history is currently responsible for this document. 

 

Revision Date Comments 

Initial DEC 22 2005 Peter Kriens, aQute, Initial draft 

 

1 Introduction 

1.1 Acknowledgements 
This RFC is based on the excellent work done by Richard S. Hall with the Oscar Bundle Repository. 

1.2 Introduction 
The sudden uptake of the OSGi Specifications by the open source communities like Eclipse, Apache, and 
Knopflerfish has multiplied the number of available bundles. This is causing a confusing situation for end users 
because it is hard to find suitable bundles; there is currently no central repository. 

This RFC addresses this lack of a repository. Not only describes it a concrete implementation of the OSGi 
Alliance’s repository (which will link member’s repositories), it also provides an XML format and service interface. 

2 Application Domain 

OSGi specifications are being adopted at an increasing rate. The number of bundles available world wide is likely 
in the thousands, if not low ten thousands. Although many of these bundles are proprietary and not suitable for 
distribution, there are a large number of distributable bundles available. The current situation is that vendors have 
proprietary bundle repositories. However, in the open source community, the Oscar Bundle Repository allows end 
users to discover bundles using a command line tool that runs on any OSGi Framework. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 6 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

Besides enabling bundle discovery, a repository can be used to simplify bundle provisioning by making it possible 
to create mechanisms to automate processing of deployment-related bundle requirements. The OSGi Framework 
already handles bundle requirement processing, such as resolving imported packages, required bundles, host 
bundles, and execution environments. However, the framework can only reason about and manage these 
requirements after bundles have been installed locally.  

Since bundles explicitly declare requirements in their manifest file, it is possible to define a bundle repository 
service that provides access to this metadata to enable remote reasoning about bundle provisioning.  

In general, bundle requirements are satisfied by capabilities provided by other bundles, the environment, or other 
resources. Resolving bundle requirements to provided capabilities is a constraint solving process. Some 
constraints are of a simple provide/require nature, while other constraints can include notions of versions and 
version ranges. One of the more complex constraints is the uses directive, which is used by package exporters to 
constrain package importers. 

 

When a bundle is installed, all its requirements must be fulfilled. If its requirements can not be resolved, the 
bundle will fail to install or resolve. The missing requirements can potentially be resolved by installing other 
bundles; however, these bundles not only provide new capabilities, but they can also add new requirements that 
need to be resolved. This is a recursive process. 

The OSGi specification defines numerous types of bundle requirements, such as Import Package, Require 
Bundle, Fragment Host, and Execution Environment. However, it is expected that new types of requirements and 
capabilities for resolving them will be defined in the future. Additionally, not all capabilities will be provided by 
bundles; for example, screen size or available memory could be capabilities. 

Conceptually, capabilities can simply be viewed as the properties or characteristics of a bundle or the 
environment and requirements can be viewed as a selection constraint over these capabilities. On the whole, 
requirements are more complex than capabilities. The selection constraint of a requirement has two orthogonal 
aspects: multiple and  optional. For example, an imported package is not optional and not multiple, while an 
imported service could have multiple cardinality. Likewise, imported packages or services can be mandatory or 
optional. 

Further, extends relationships allow a provider to extend another bundle. For example, a bundle fragment defines 
an extends relationship between a bundle and a host. Specifically, a given bundle requirement is a relationship 
that the bundle knows about in advance, as opposed to an extension, which may not have been known in 
advance by the bundle.  

The process of resolving bundle requirements is complicated because it is non-trivial to find optimal solutions.  
The OSGi framework defines a run-time resolution process, which is concerned with many of the aspects 
described above. However, a provisioning resolution process for bundle discovery and deployment is also 
necessary, which is similar to the framework resolution process, but more generic. 

Downloaded bundles are usually licensed. Licensing issues are complex and dependent on the vendor of the 
bundle. The way a bundle is licensed may seriously affect the way the bundle can be downloaded. Many 
organizations require their employees to read the license before they download the actual artifact because many 
licenses contain an implicit agreement. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 7 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

3 Problem Description 

The problem this RFC addresses is that end users can not discover and deploy available bundles from a single, 
trusted, point of access.  

4 Requirements 

4.1 Functional 
• Provide browsing access to a bundle repository via a web server 

• Provide access to a bundle repository so that bundles can be directly installed after discovery 

• Handle dependency resolution so that bundles can be deployed without generating errors 

• Allow repositories to be linked, creating a federated repository 

• Provide programmatic (service) access to the repository 

4.2 Discovery 
• Search bundles by keywords 

• Search by category 

• Provide filtering capabilities on execution environment 

• Licensing conditions must be available before downloading the artifacts 

4.3 Dependency Resolution 
• Must be able to find bundles that can solve any unresolved requirements 

• Must be able to provide a list of cooperative bundles. 

• Cooperative capabilities must be possible to select by a bundle or to be offered by a provider. 

• Must handle all the requirements/capabilities and their directives as defined in the OSGi R4 specifications 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 8 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

4.4 Security 
• A repository provider must be able to control the members of a federated repository. 

4.5 Non Functional 
• The repository must be able to scale to ten thousand bundles 

• Compliant with other OSGi services 

• Easy to use  

• It must be possible to implement a repository with a simple file. That is, a server must not be required 

5 Technical Solution 

5.1 Entities 
• Repository Admin – A service that provides access to a federation of repositories. 

• Repository – Provides access to a set of resources that are defines in a repository file 

• Resource – A description of a bundle or other artifact that can be installed on a device. A resource 
provides capabilities and requires capabilities of other resources or the environment. 

• Capability – A named set of properties 

• Requirement – An assertion on a resource’s capabilities. 

• Extend – A resource can act as an extension to another resource. 

• Resolver – An object that can be used to find dependent and extension resources, as well as install them. 

• Repository File – An XML file that can be referenced by a URL. The content contains meta data of 
resources and referrals to other repository files. It can be a static file or generated by a server. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 9 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

5.1.1.1 Domain Object Model 

 

Resource 

Capability Require- 
ment 

Extend 

Repository 

contains 
1

0..n 

1

0..n 

1

0..n 

1

0..n 

provides requires 

extends 

Repository 
Files 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 10 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

5.1.1.2 Service Model 

 

5.2 Overview 
The key architecture of the OSGi Repository is a generic description of a resource and its dependencies. A 
resource is a bundle, but can potentially also be something else, for example, a certificate or configuration file. 
The purpose of the resource description is to discover applicable resources and deploy these resources without 
causing install errors due to missing dependencies. 

For this purpose, each resource description has a list of requirements on other resources or the environment, a 
list capabilities that are used to satisfy the requirements, and a list of extends, which are used to extend the 
capabilities of other resources. This is depicted (except for the extend) in the following picture. 

 

Bundle B 

Bundle A 

Requirement 

Resource C 

Capability 

Environment 

Repository 
Admin 

Resolver Capability 
Provider 

Repository 
Admin Impl 

Resolver 
Impl 

Capability 
Prov. Impl 

Repository 
Client Impl 

resolves with 

Implements 

uses 

Adds capabilities 

0..n 

1 

0..n 

1 

0..n 
1 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 11 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

5.2.1 Resource 
The resource is identified by the following methods: 

• getName – A name for the resource that is globally unique for the function of the resource. There can 
exists multiple resources with the same name but a different version. Two resources with the same name 
and version are considered to be identical. For a bundle, this is normally mapped to the Bundle-
SymbolicName manifest header. 

• getVersion – A version for the resource. This must be a version usable by the OSGi Framework version 
class. For a bundle this is mapped to the Bundle-Version manifest header. 

• getId – A local repository admin which is a handle to the resource object. This can not be used as a 
persistent id. Use name + version + repository URL for this. 

The resource can contain any user defined properties. The properties can be obtained with the getProperties 
method. Properties are case sensitive. The following properties are predefined: 

1. id – The id of the resource. This id is also available from the getId method and is automatically managed 
by the repository; it is not possible to override this property. 

2. version – The version of the resource, managed by the repository; it is not possible to override this 
property. 

3. name – The name of the resource. Managed by the repository; it is not possible to override this property. 

4. license – A URI to the license file. This element is derived from the Bundle-License manifest header. 

5. description – A textual description of the bundle. This must be unformatted text. This element is derived 
from the Bundle-Description manifest header. 

6. documentation – A URI to the documentation. This element is derived from the Bundle-DocURL manifest 
header. 

7. copyright – A copyright statement. This element is derived from the Bundle-Copyright manifest header. 

8. source – A URI to a source distribution of the resource. This element is derived from the Bundle-Source 
manifest header. 

9. size – The size of the resource in bytes. 

Property names must follow the rules for bundle symbolic names. 

The type of the property can be one of the following: 

• string – Java String object 

• version – org.osgi.framework.Version 

• uri – Java URI object 

• long – 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 12 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

• double -   

• set – A comma separated list of values. White space around the commas must be discarded. The values 
cannot contain commas. 

Properties that are of a specific type are compared and filtered according to their type. For versions, this must 
included checking for version ranges. That is, version=(1,2] must match any version that lies in the range (1,2]. 

5.2.2 Capabilties 
A capability is anything that can be described with a set of properties. Examples of capabilities are: 

• A package export 

• A service export 

• A fragment host 

• A bundle 

• A certificate 

• A configuration record 

• A group 

• An Execution Environment 

• A Display type 

• Memory size 

• Accessories 

Capabilities are named. The reason they are named is so that they can only be provided to requirements with the 
same name. This is necessary because a property from two capabilities could have different meanings but still 
use the same name. To prevent these name clashes, the capabilities (and the requirements that they can resolve) 
are named. This specification defines names necessary to handle the capability/requirements of the OSGi Bundle 
Manifest. 

Capabilities can originate from other resources, but they can also be innate in the environment. This specification 
allows any bundle to dynamically provide capabilities to the environment. 

5.2.3 Requirements 
A requirement expressed as a filter on a resource. Just like a capability, a requirement is named. The filter must 
only be matched to capabilities with the same name. A requirement matches a capability when its filter matches 
any of the properties defined in that capability. 

The syntax of the filter is the OSGi filter syntax. A filter was chosen because it allows the specification of arbitrary 
complex assertions. The disadvantage is that a filter is more or less opaque for the software, making it harder to 
provide assistance to the end user why certain resources are included and other not. A requirement can therefore 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 13 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

optionally contain a reason. A reason is a short description that is applicable when a requirement is the cause for 
the selection of a resource. 

For example, a package import is translated to a requirement for a package capability. If a bundle exports this 
package and it is selected, then the reason is the requirement for the import package. 

Requirements can be optional and/or multiple.  

Optional Multiple Cardinality Description 

False False 1..1 One and only one solution is required. 

False True 1..* At least one solution is required, but multiple solutions are useful 

True False 0..1 Optional, zero or one solution is required 

True True 0..* Optional, but multiple solutions are useful 

 

Multiple requirements are satisfied when there are one ore more solutions, all solutions are usable. Package 
imports are for example are neither optional nor multiple. When there are multiple capabilities provided, the 
resolver must choose one of the applicable solutions. This is further discussed in the resolver section. 

5.2.4 Extends 
Requirements select a set of useful or required resources, the Extend reverses this model; an Extend selects 
resources for which it might be useful. For example, a fragment can extend its host or a bundle can act as a 
plugin for another bundle by providing a certain service. In both cases, the bundle that provides the extension is 
aware of the host but the host not of the providers.  

5.3 Repository Admin 
The Repository Admin service provides access to one or more repository files. That is, it represents a repository 
of federations. The Repository Admin service must ensure that a given resource is included only once and handle 
any circular references between repositories. 

5.3.1 Discovery 
The federated repository can be searched with an OSGi filter string. This filter can use any of the resource 
properties. The return is an array of Resource objects. 

A specific Resource object can be found with the getResource method. This method takes the repository local id 
as parameter. 

5.3.2 Resolving 
Resolving can be an iterative process that takes as input a set of bundles and delivers a set of required bundles 
and a set of optional bundles. A special Resolver object is used to simplify the API significantly. The resolving 
process is further described in 5.4.  

The resolver method creates a new resolver. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 14 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

5.3.3 Admin 
The maintenance of set of included repositories is handled by the following methods: 

• addRepository – Add a new repository from a URL. This method will read the repository and any referred 
repositories. 

• removeRepository – Remove a repository and all its referred repositories. 

• listRepositories – Provide an array of Repository objects. These are only the top level repositories, 
referred repositories are not visible. 

5.4 Resolving 
The Resolver is an object that takes as input a set of bundles that should be added to a system. From this set, it 
can calculate the set of required bundles, choosing appropriate bundle when necessary. It also tracks a set of 
optional bundles. Optional bundles can be added to the input list. 

The resolver is a complicated process requiring difficult choices that likely require user intervention and/or 
policies. The implementation of the Resolver object can provide this intelligence.  

### resolver api 

The Repository resolver is in many ways similar to the Framework resolver. Implementations should therefore 
strife to use the same code. However, the problem that the Framework resolver solves is subtly different from 
what the Repository resolver solves. First, the Repository resolver is more generic; it handles more than 
packages and bundles. This is the reason for the generic requirement/capability model instead of using the 
manifest directly. Second, the Framework creates a wiring between a set of installed bundles. In contrast, the 
Repository resolver installs a set of bundles. Despite these subtle differences, the logic behind these resolvers is 
very similar and can clearly share implementation code. 

5.5 XML Schema 
5.5.1 Namespace 
The XML namespace is: 

    http://www.osgi.org/xmlns/obr/v1.0.0 
 
    <obr:repository name='Untitled' time='20051210072623.031' 
      xmlns:obr="http://www.osgi.org/xmlns/scr/v1.0.0"> 
             … 

5.5.2 The XML Structure 
The following BNF describes the element structure of the XML file: 

  repository ::= (referral | resource) * 
  resource ::= ANY * category * require * extend * capability *  
  capability ::= p * 

5.5.3 Repository 
The <repository> tag is the outer tag of the XML document. It must contains the following attributes: 

1. name – The name of the repository. The name may contain spaces and punctuation. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 15 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

2. time – The time the repository file was created. Time must be in YYYYMMDDHHmmSS.FFF. Where 
YYYY is 4 digits for the year [2005,<infinity>], MM is the 2 digit number of the month in the Gregorian 
Calendar [1..12], DD the  2 digit number of the day in the month [1..31], HH is the  2 digit hour of the day 
in 24 hour format [00..23], mm is the  2 digit number of minutes [00..59], SS are the  2 digit number of 
seconds [0..59], and FFF is the 3 digit fraction of a second [000,999].  

The repository element can only contain referral and resource elements. 

    <obr:repository name='Untitled' time='20051210072623.031' 
      xmlns:obr="http://www.osgi.org/xmlns/scr/v1.0.0"> 
    </obr:repository> 

5.5.4 Referral 
A referral points to another repository XML file. The purpose of this element is to create a federation of 
repositories that can be accessed as a single repository. The referral element can have the following attributes: 

1. depth – The depth of referrals this repository acknowledges. If the depth is 1, the referred repository must 
included but it must not follow any referrals from the referred repository. If the depth is more than one, 
referrals must be included up to the given depth. Depths of referred repositories must also be obeyed. For 
example, if the top repository specifies a depth of 5, and the 3 level has a depth of 1, then a repository 
included on level 5 must be discarded, even though the top repository would have allowed it. 

2. url – The URL to the referred repository. The URL can be absolute or relative from the given repository’s 
URL. 

For example: 

   <referral depth=”1” url=http://www.aqute.biz/bundles/repository.xml/> 

5.5.5 Resource 
The <resource> element describes a general resource with properties, categories, requirements, extends, and 
capabilities. The resource element has the following attributes. 

1. name – The name of the resource. In case of a bundle, this is the Bundle Symbolic Name. 

2. version – The version of the resource. Version must follow the major, minor, micro, qualifier format as 
used the Framework’s version class. 

The elements of the resource element can use arbitrarily named elements. These elements can use any tag 
name but must put the value in the text part of an element. Elements must not be repeated. The element may 
contain the following attribute: 

1. type – One of the type strings given in: ###. The default is String. URI’s are relative to the repository file. 

For example: 

   <source type=”uri”>http://www.aqute.biz/bundles/console.src.jar</source> 

5.5.6 Category 
The <category> element defines a category. The purpose is to easy the discovery. Multiple category elements 
may be may be provided. The category element has the following attributes: 

• id – The id of the category. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 16 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

For example: 

   <category id=”osgi”/> 

   <category id=”test”/> 

5.5.7 Require 
The <require> element describes one of the requirement that the enclosing resource has on its environment. A 
requirement is of a specific named type and contains a filter that is applied to all capabilities of the given type. 
Therefore, the requirement element has the following attributes: 

• name – The name of the requirement. The filter must only be applied to capabilities that have the same 
name. 

• filter – The filter expression. The syntax must follow the OSGi filter syntax. The filter must correctly 
compare versions. 

• multiple – If this requirements selects more than one candidate, then this is useful. The value is true or 
false. 

• optional – If this requirement is necessary to satisfy the resource. The value is true or false. 

The content of the require element is a description of the requirement. It can be used to explain to the user why a 
particular resource was selected. 

For example: 

   <require optional='false'  multiple='false' name='package'                
      filter='(&amp;(package=org.osgi.test.cases.util)(version&gt;=1.1.0))'> 
 Import package org.osgi.test.cases.util;version=1.1.0 
   </require> 
This example requires that there is at least one exporter of the org.osgi.test.cases.util package with a version 
higher than 1.1.0 

5.5.8 Extend 
The <extend> element is used for cooperative resources. A resource can “offer” itself to another resource as a 
useful cooperation. For example, a fragment with native code for a specific environment can offer itself to a host 
bundle. The extend element has exactly the same syntax as the requirement element. If this requirement matches 
a capability, then the resource of that capability is extended with the given resource. 

 For example: 

   <extend optional='false'  multiple='false'  name='bundle' 
      filter='(&amp;(symbolicname=org.eclipse.core.resources)(version&gt;=0.0.0))'> 
      Required host for Fragment 
    </extend> 
This example is for a fragment that belongs to the bundle with the symbolic name 
org.eclipse.core.resources. If the org.eclipse.core.resources bundle is selected to be deployed, 
then the given fragment must be offered for inclusion. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 17 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

5.5.9 Capability 
The capability element is a named set of type properties. A capability can be used to resolve a requirement if the 
resource is included. A capability has the following attribute: 

• name – Name of the capability. Only requirements with the same name must be able to match this 
capability. 

Only the <p> element is allowed to be contained in the capability element. The <p> element has the following 
attributes: 

• n – The name of the property 

• v – The value of the property 

• t – The type of the property. This must be one of: 

o string – A string value, which is the default. 

o version – An OSGi version as implemented in the OSGi Version class. 

o uri – A URI 

o long –  

o double –  

o set – A comma separated list of values. White space must be discarded, the values can not 
contain commas. 

The following example shows a package export: 

    <capability name='package'> 
      <p v='org.eclipse.core.internal.resources' n='package'/> 
      <p v='0.0.0' t='version' n='version'/> 
      <p v='true' n='x-internal:'/> 
    </capability> 

5.6 Filter Extensions 
The OSGi filter language is based on LDAP. For this specification, the filter is extended with new capabilities. 

5.6.1 Greater and Less Operators 
The filter supports now all comparison operators: <, >, >=, <=. The absence of the < and > operators should have 
been fixed in R4. 

5.6.2 Set Arithmetic 
The Filter must support SUBSET and SUPERSET capabilities. The set operators are: 

  key *> 1,2 SUPERSET <key> must contain at least 1 and 2  
  but may contain more. 
  key <* 1,2 SUBSET                 All of <key> must be in {1,2}. For a  
  single property, this is a member  



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 18 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

 
  test. 
 
The value part of the filter must use a comma separated list of tokens. White-space must be ignored around the 
commas. The value must not contain a comma. If the property is a collection, the appropriate action is clear. If the 
property is a single value, it is translated to a set with a single element before the operator is executed. 

If the value does not exist, then it is still possible to match a subset. A non-existent property is a proper subset of 
any set. A non-existent property is a superset if the list is empty. 

  (mandatory:<*vendor,var)             Mandatory must contain vendor, 
  var, both or be empty. 

5.6.3 Version Ranges 
The filter must support range checking for filters. The range syntax is equal to the Version range defined in the 
OSGi Manifest for Import-Package and Require-Bundle. If open ranges are used, the parentheses must be 
escaped with a backslash (use 2 backslashes in a Java string). This match must only be used if the property is a 
version. 

  (version=\(1,2]) does not match 1.0.0, matches 1.1, 2, 2.0.0.qualifier 
 
  

5.7 Sample XML File 
<repository name='Untitled' time='20051210072623.031'> 
  <resource version='3.0.0' name='org.osgi.test.cases.tracker'  
     uri='org.osgi.test.cases.tracker-3.0.0.jar'> 
    <size> 
      44405 
    </size> 
    <documentation> 
      http://www.osgi.org/ 
    </documentation> 
    <copyright> 
      Copyright (c) OSGi Alliance (2000, 2005). All Rights Reserved. 
    </copyright> 
    <category id='osgi'/> 
    <category id='test'/> 
    <capability name='bundle'> 
      <p v='1' n='manifestversion'/> 
      <p v='org.osgi.test.cases.tracker' n='symbolicname'/> 
      <p v='3.0.0' t='version' n='version'/> 
    </capability> 
    <capability name='package'> 
      <p v='org.osgi.test.cases.tracker' n='package'/> 
      <p v='0.0.0' t='version' n='version'/> 
    </capability> 
    <require optional='false'  multiple='false'  name='package' 
        filter='(&amp;(package=org.osgi.test.cases.util)(version&gt;=1.1.0))'> 
      Import package org.osgi.test.cases.util ;version=1.1.0 
    </require> 
  </resource> 
</repository> 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 19 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

5.8 Querying a Web Service Based Repository 
The repository can become quite large in certain cases. So large that small environments cannot handle the full 
repository anymore. For scalability reasons, it is therefore necessary to query the repository to only receive 
smaller chunks. Server based repositories are recommended to support the following query parameters after the 
URL: 

• keywords – A space separated (before URL encoding) list of keywords. This command must return all 
resources that match a keyword in the description, category, copyright, etc, case insensitive. 

• requirement – A structured field. The first part is the name of the requirement, followed by a legal filter 
expression. 

• category – A category 

All fields can be repeated multiple times. The server should return the subset of the resources that match all 
fields. That is, all fields are anded together. However, the receiver must be able to handle resources that were not 
selected, that is, no assumption can be made the selection worked. The purpose of the selection criteria is a 
potential optimization. 

As a further optimization, it is allowed to specify the resources that are already received. This a comma separated 
lost of repository ids. The server should not send these resources again. The name of this parameter is knows. 

For example 

  http://www.aqute.biz/bundles/repository.xml?requirement=package:(\ 
     package=org.osgi.util.measurement)&knows=1,2,3,4,9,102,89 

5.9 Bundle Manifest Header Mapping 
The following sections describe how the Bundle-Manifest sections are mapped to the generic 
Requirement/Extend and Capability model. 

5.9.1 Bundle 
Every bundle must include a ‘bundle’ capability with the following properties: 

• symbolicname – Bundle Symbolic Name. Must be set, type string. 

• version – Version, must be set, type version. 

• manifestversion – Version of the Manifest. Must be set, type version.  

• fragment-attachment – If the fragment-attachment directive on the Bundle-SymbolicName is set. One of 
“always”, “never”, “resolve-time”. 

• singleton – If the singleton directive is set. True or false, string type. 

Example: 

    <capability name='bundle'> 
      <p v='1' n='manifestversion'/> 
      <p v='aQute.eclipse.osgi' n='symbolicname'/> 
      <p v='1.0.1' t='version' n='version'/> 
    </capability> 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 20 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

 

5.9.2 Import and Export Package: ‘package’ 
An Export-Package header must be split into clauses and mapped to a capability.  

• The type name is ‘package’. 

• The ‘package’ property must be the name of the package. This property must be set and of type string. 

• The ‘version’ property is the version. This property must be set and of type string. 

• Add bundle-symbolic-name and bundle-version attributes 

• Remaining attributes should be added to the capability. The directives must be suffixed with a ‘:’. 

• Mandatory attributes must be put in a ‘set’ typed property with the name mandatory:. If no mandatory 
attributes are defined, an empty property must be defined. 

   
For example: 
 
  <capability name="package"> 
    <p v="org.osgi.test.cases.tracker" n="package" />  
    <p v="0.0.0" t="version" n="version" />  
    <p v=’vendor,var’ n=’mandatory:’ type=’set’/> 
  </capability> 
An Import-Package clause is mapped to a Requirement.  

• The type name is ‘package’ 

• The filter must assert: 

o package – Name of the package, e.g. (package=org.osgi.framework) 

o version – Version or version range (the filter supports the version range syntax). E.g. 
(version=[1,2\) 

o Any custom attributes for equality 

o That the mandatory: attribute is a proper subset of the asserted custom attributes. E.g 
(mandatory:<* attr1, attr2, attr3). 

If the clause has a directive of resolution=optional, then the Requirement is set to OPTIONAL, otherwise to 
UNARY. For example: 

<require optional='false'  multiple='false'  name="package"  
  filter="(&(package=org.osgi.test.cases.util)(version=1.1.0))"/> 
 

5.9.3 Require-Bundle 
Require-Bundle is translated to a Requirement with the following aspects. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 21 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

• Type is ‘bundle’ 

Assert: 

• symbolicname – The name of the bundle, e.g., (symbolicname=org.acme.xyx) 

• version – Version range of the required bundle. (version=[1,2]) 

 
If resolution directive is true, the requirement is UNARY, otherwise OPTIONAL. 

For example: 

 
  <require optional='false'  multiple='false' name="bundle"  
      filter="(&(symbolicname=org.eclipse.ui)(version>=0.0.0))"/> 

5.9.4 Fragment-Host 
The Fragment-Host is an Extend with the following filter assertions: 

• symbolicname – The name of the bundle, e.g., (symbolicname=org.acme.xyx) 

• version – Version range of the required bundle. (version=[1,2]) 

   
  <extend optional='false'  multiple='false'  name="bundle"  
     filter="(&(symbolicname=org.eclipse.core.resources)(version>=0.0.0))"/> 
 

5.9.5 Import- and Export-Service 
The Import-Service and Export-Service are deprecated, however, they are still useful for management purposes. 
Therefore, they are mapped to the generic requirement model. 

Export-Service is mapped to a capability with the name ‘service’. The following properties are used. 

• service – name of the service interface 

For example 

  <capability name="service"> 
    <p v="com.ibm.wsn.resource.adapter.base.ResourceAdapterSubscriptionManagerIfc"  
       n="service" />  
    <p v="0.0.0" t="version" n="version" />  
  </capability> 
 
Import-Service is mapped to an MULTIPLE requirement with the following assertions: 

• service – Name of the service 

<require optional='false'  multiple='true'  name="service"  
  filter="(&(service=com.ibm.osg.webcontainer.WebContainer)(version=0.0.0))"/> 

 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 22 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

5.9.6 Declarative Services 
Declarative services also use the ‘service’ name. Each provided service interface must be listed as a capability. 
Each reference must be mapped to a requirement with the given cardinality (optional/multiple). 

TBD. 

5.9.7 Bundle-ExecutionEnvironment 
The Bundle Execution Environment header is mapped to a requirement. The capabilities of this requirement must 
be set by the environment. Each support environment is an element of a multi-valued property called ‘ee’ in a 
‘ee’capability. 

The filter must assert on ‘ee’ with the defined names for ee’s. For example, if the bundle can run on J2SE 1.4: 

  <require optional='false'  multiple='false'  name="ee" filter="(|(ee=J2SE-1.4))"/> 

This requirement is UNARY. 

6 Open Issues 

6.1 Uses Constraint 
The current specification does not address the uses directive on exported packages. The lack of handling this 
constraint makes it theoretically possible that a set of bundles is found that is resolved by the Repository resolver 
but can not be resolved by the Framework resolver. The following case demonstrates such a case: 

A: import p;version=1,q;version=1 
B: export p;version=1;uses:=q 
   import q;version=2 
C: export q;version=1 
D: export q;version=2 
A.p must be wired to B.p, however, B.q can only be wired to D.q which is not suitable for A. The uses constraint 
however requires B.q == A.q.  

This issue should be further discussed. Maybe this is a generic problem that has a generic solution? 

6.2 Query protocol 
Richard thinks the query protocol is not necessary 

6.3 Licensing 
The value of the repository would be greatly enhanced if we would support a licensing model. Currently, certain 
bundles require the authentication so they can not be directly downloaded. This makes OBR like solutions 
impossible. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 23 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

7 Java Documentation 

skip-navbar_top 
 Package  Class  Deprecated  Help   

 PREV PACKAGE   NEXT PACKAGE FRAMES    NO FRAMES     All Classes   
 

 

7.1 Package org.osgi.servicex.obr  
Interface Summary 
Capability A named set of properties representing some capability that is provided by its owner. 

CapabilityProvider This service interface allows third parties to provide capabilities that are present on the 
system but not encoded in the bundle's manifests. 

Repository Represents a repository. 
RepositoryAdmin Provides centralized access to the distributed repository. 
Requirement A named requirement specifies the need for certain capabilities with the same name. 
Resolver   
Resource A resource is an abstraction of a downloadable thing, like a bundle. 
   

Class Summary 
RepositoryPermission TODO Implement 

   
 

skip-navbar_bottom 
 Package  Class  Deprecated  Help   

 PREV PACKAGE   NEXT PACKAGE FRAMES    NO FRAMES     All Classes   
 

 
skip-navbar_top 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 

7.2 org.osgi.servicex.obr  
Interface Resource 

 
public interface Resource 

A resource is an abstraction of a downloadable thing, like a bundle. Resources have capabilities and 
requirements. All a resource's requirements must be satisfied before it can be installed.  



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 24 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

Version: 
$Revision: 1.5 $ 

 

Field Summary 
static java.lang.String COPYRIGHT  

            
static java.lang.String DESCRIPTION  

            
static java.lang.String DOCUMENTATION_URI  

            
static java.lang.String ID  

            
static java.lang.String[] KEYS  

            
static java.lang.String LICENSE_URI  

            
static java.lang.String PRESENTATION_NAME  

            
static java.lang.String SIZE  

            
static java.lang.String SOURCE_URI  

            
static java.lang.String SYMBOLIC_NAME  

            
static java.lang.String URI  

            
static java.lang.String VERSION  

            

   

Method Summary 
 Capability[] getCapabilities()  

            
 java.lang.String[] getCategories()  

            
 Requirement[] getExtends()  

            
 java.lang.String getId()  

            
 java.lang.String getPresentationName()  

            
 java.util.Map getProperties()  



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 25 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

            
 Repository getRepository()  

            
 Requirement[] getRequests()  

            
 Requirement[] getRequirements()  

            
 java.lang.String getSymbolicName()  

            
 java.net.URI getURI()  

            
 org.osgi.framework.Version getVersion()  

            

   

Field Detail 
7.2.1 LICENSE_URI 
 
public static final java.lang.String LICENSE_URI 
See Also: 

Constant Field Values 
 

7.2.2 DESCRIPTION 
 
public static final java.lang.String DESCRIPTION 
See Also: 

Constant Field Values 
 

7.2.3 DOCUMENTATION_URI 
 
public static final java.lang.String DOCUMENTATION_URI 
See Also: 

Constant Field Values 
 

7.2.4 COPYRIGHT 
 
public static final java.lang.String COPYRIGHT 
See Also: 

Constant Field Values 
 

7.2.5 SOURCE_URI 
 
public static final java.lang.String SOURCE_URI 
See Also: 

Constant Field Values 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 26 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

 

7.2.6 SYMBOLIC_NAME 
 
public static final java.lang.String SYMBOLIC_NAME 
See Also: 

Constant Field Values 
 

7.2.7 PRESENTATION_NAME 
 
public static final java.lang.String PRESENTATION_NAME 
See Also: 

Constant Field Values 
 

7.2.8 ID 
 
public static final java.lang.String ID 
See Also: 

Constant Field Values 
 

7.2.9 VERSION 
 
public static final java.lang.String VERSION 
See Also: 

Constant Field Values 
 

7.2.10 URI 
 
public static final java.lang.String URI 
See Also: 

Constant Field Values 
 

7.2.11 SIZE 
 
public static final java.lang.String SIZE 
See Also: 

Constant Field Values 
 

7.2.12 KEYS 
 
public static final java.lang.String[] KEYS 

Method Detail 
7.2.13 getProperties 
 
public java.util.Map getProperties() 

 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 27 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

7.2.14 getSymbolicName 
 
public java.lang.String getSymbolicName() 

 

7.2.15 getPresentationName 
 
public java.lang.String getPresentationName() 

 

7.2.16 getVersion 
 
public org.osgi.framework.Version getVersion() 

 

7.2.17 getId 
 
public java.lang.String getId() 

 

7.2.18 getURI 
 
public java.net.URI getURI() 

 

7.2.19 getRequirements 
 
public Requirement[] getRequirements() 

 

7.2.20 getRequests 
 
public Requirement[] getRequests() 

 

7.2.21 getExtends 
 
public Requirement[] getExtends() 

 

7.2.22 getCapabilities 
 
public Capability[] getCapabilities() 

 

7.2.23 getCategories 
 
public java.lang.String[] getCategories() 

 

7.2.24 getRepository 
 
public Repository getRepository() 

 
skip-navbar_bottom 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 28 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

Package   Class  Deprecated  Help   
 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 
skip-navbar_top 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 

7.3 org.osgi.servicex.obr  
Interface Resolver 

 
public interface Resolver 

 

Method Summary 
 void add(Resource resource)  

            
 void deploy()  

            
 Resource[] getAddedResources()  

            
 Resource[] getOptionalResources()  

            
 Requirement[] getReason(Resource resource)  

            
 Resource[] getRequiredResources()  

            
 Resource[] getResources(Requirement requiremen)  

            
 Requirement[] getUnsatisfiedRequirements()  

            
 boolean resolve()  

            

   

Method Detail 
7.3.1 add 
 
public void add(Resource resource) 

 

7.3.2 getUnsatisfiedRequirements 
 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 29 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

public Requirement[] getUnsatisfiedRequirements() 
 

7.3.3 getOptionalResources 
 
public Resource[] getOptionalResources() 

 

7.3.4 getReason 
 
public Requirement[] getReason(Resource resource) 

 

7.3.5 getResources 
 
public Resource[] getResources(Requirement requiremen) 

 

7.3.6 getRequiredResources 
 
public Resource[] getRequiredResources() 

 

7.3.7 getAddedResources 
 
public Resource[] getAddedResources() 

 

7.3.8 resolve 
 
public boolean resolve() 

 

7.3.9 deploy 
 
public void deploy() 

 
skip-navbar_bottom 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 
skip-navbar_top 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 

7.4 org.osgi.servicex.obr  
Interface Requirement 

 
public interface Requirement 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 30 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

A named requirement specifies the need for certain capabilities with the same name.  
Version: 

$Revision: 1.5 $ 
 

Method Summary 
 java.lang.String getComment()  

            
 java.lang.String getFilter()  

          Return the filter. 
 java.lang.String getName()  

          Return the name of the requirement. 
 boolean isMultiple()  

            
 boolean isOptional()  

            
 boolean isSatisfied(Capability capability)  

            

   

Method Detail 
7.4.1 getName 
 
public java.lang.String getName() 

Return the name of the requirement.  
 

7.4.2 getFilter 
 
public java.lang.String getFilter() 

Return the filter.  
 

7.4.3 isMultiple 
 
public boolean isMultiple() 

 

7.4.4 isOptional 
 
public boolean isOptional() 

 

7.4.5 getComment 
 
public java.lang.String getComment() 

 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 31 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

7.4.6 isSatisfied 
 
public boolean isSatisfied(Capability capability) 

 
skip-navbar_bottom 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 
skip-navbar_top 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 

7.5 org.osgi.servicex.obr  
Class RepositoryPermission 

 
java.lang.Object 
  java.security.Permission 
      java.security.BasicPermission 
          org.osgi.servicex.obr.RepositoryPermission 
All Implemented Interfaces:  

java.security.Guard, java.io.Serializable 
 

public class RepositoryPermission 
extends java.security.BasicPermission 

TODO Implement  
Version: 

$Revision: 1.1 $ 
See Also: 

Serialized Form 
 

Constructor Summary 
RepositoryPermission(java.lang.String name)  
             

   

Methods inherited from class java.security.BasicPermission 
equals, getActions, hashCode, implies, newPermissionCollection 

   

Methods inherited from class java.security.Permission 
checkGuard, getName, toString 

   



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 32 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

Methods inherited from class java.lang.Object 
getClass, notify, notifyAll, wait, wait, wait 

   

Constructor Detail 
7.5.1 RepositoryPermission 
 
public RepositoryPermission(java.lang.String name) 

 
skip-navbar_bottom 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 
skip-navbar_top 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 

7.6 org.osgi.servicex.obr  
Interface RepositoryAdmin 

 
public interface RepositoryAdmin 

Provides centralized access to the distributed repository. A repository contains a set of resources. A 
resource contains a number of fixed attributes (name, version, etc) and sets of:  

1. Capabilities - Capabilities provide a named aspect: a bundle, a display, memory, etc. 

2. Requirements - A named filter expression. The filter must be satisfied by one or more Capabilties with the 
given name. These capabilities can come from other resources or from the platform. If multiple resources 
provide the requested capability, one is selected. (### what algorithm? ###) 

3. Requests - Requests are like requirements, except that a request can be fullfilled by 0..n resources. This 
feature can be used to link to resources that are compatible with the given resource and provide extra 
functionality. For example, a bundle could request all its known fragments. The UI associated with the 
repository could list these as optional downloads. 
Version: 
$Revision: 1.2 $ 

 

Method Summary 
 Repository addRepository(java.net.URL repository)  

          Add a new repository to the federation. 
 Resource[] discoverResources(java.lang.String filterExpr)  

          Discover any resources that match the given filter. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 33 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

 Resource getResource(java.lang.String respositoryId)  
            

 Repository[] listRepositories()  
          List all the repositories. 

 boolean removeRepository(java.net.URL repository)  
            

 Resolver resolver()  
          Create a resolver. 

   

Method Detail 
7.6.1 discoverResources 

 
public Resource[] discoverResources(java.lang.String filterExpr) 
Discover any resources that match the given filter. This is not a detailed search, but a first scan of 
applicable resources. ### Checking the capabilities of the filters is not possible because that requires a 
new construct in the filter. The filter expression can assert any of the main headers of the resource. The 
attributes that can be checked are:  

1. name 

2. version (uses filter matching rules) 

3. description 

4. category 

5. copyright 

6. license 

7. source 
Parameters: 
filterExpr - A standard OSGi filter  
Returns: 
List of resources matching the filters. 

 

7.6.2 resolver 
 
public Resolver resolver() 
Create a resolver.  
Returns: 

 

7.6.3 addRepository 
 
public Repository addRepository(java.net.URL repository) 
                         throws java.lang.Exception 
Add a new repository to the federation. The url must point to a repository XML file.  
Parameters: 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 34 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

repository -  
Returns: 
Throws:  
java.lang.Exception 

 

7.6.4 removeRepository 
 
public boolean removeRepository(java.net.URL repository) 

 

7.6.5 listRepositories 
 
public Repository[] listRepositories() 
List all the repositories.  
Returns: 

 

7.6.6 getResource 
 
public Resource getResource(java.lang.String respositoryId) 

 
skip-navbar_bottom 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 
skip-navbar_top 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 

7.7 org.osgi.servicex.obr  
Interface Repository 

 
public interface Repository 

Represents a repository.  
Version: 

$Revision: 1.2 $ 
 

Method Summary 
 long getLastModified()  

            
 java.lang.String getName()  

          Return the name of this reposotory. 
 Resource[] getResources()  

          Return the resources for this repository. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 35 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

 java.net.URL getURL()  
          Return the associated URL for the repository. 

   

Method Detail 
7.7.1 getURL 
 
public java.net.URL getURL() 

Return the associated URL for the repository.  
 

7.7.2 getResources 
 
public Resource[] getResources() 

Return the resources for this repository.  
 

7.7.3 getName 
 
public java.lang.String getName() 

Return the name of this reposotory.  
Returns: 
a non-null name 

 

7.7.4 getLastModified 
 
public long getLastModified() 

 
skip-navbar_bottom 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 
skip-navbar_top 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 

7.8 org.osgi.servicex.obr  
Interface CapabilityProvider 

 
public interface CapabilityProvider 

This service interface allows third parties to provide capabilities that are present on the system but not 
encoded in the bundle's manifests. For example, a capability provider could provide:  

1. A Set of certificates 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 36 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

2. Dimensions of the screen 

3. Amount of memory 

4. ... 
Version: 

$Revision: 1.1 $ 
 

Method Summary 
 Capability[] getCapabilities()  

          Return a set of capabilities. 

   

Method Detail 
7.8.1 getCapabilities 
 
public Capability[] getCapabilities() 

Return a set of capabilities. These capabilities are considered part of the platform. Bundles can require 
these capabilities during selection. All capabilities from different providers are considered part of the 
platform.  
Returns: 
Set of capabilities 

 
skip-navbar_bottom 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 
skip-navbar_top 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 

7.9 org.osgi.servicex.obr  
Interface Capability 

 
public interface Capability 

A named set of properties representing some capability that is provided by its owner.  
Version: 

$Revision: 1.2 $ 
 

Method Summary 
 java.lang.String getName()  

          Return the name of the capability. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 37 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

 java.util.Map getProperties()  
          Return the set of properties. 

   

Method Detail 
7.9.1 getName 
 
public java.lang.String getName() 

Return the name of the capability.  
 

7.9.2 getProperties 
 
public java.util.Map getProperties() 

Return the set of properties. Notice that the value of the properties is a list of values.  
Returns: 
a Map 

 
skip-navbar_bottom 
Package   Class  Deprecated  Help   

 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes   
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD  

 

 
 

8 Security Considerations 

8.1 Repository Permission 
The Repository Permission protects the methods of the Repository Admin. The following actions are supported: 

• admin – Protects addRepository and removeRepository. 

• browse – Protects listRepositories, getResource, and searchResources 

• resolve – Protects the Resolver method resolve 

• deploy – Protects the Resolver method deploy 

The name of this permission is irrelevant. 



A
ll P

age w
ithin this B

ox 

 RFC-0112 Bundle Repository Page 38 of 38 
 
 Confidential, Draft  February 23, 2006 

Copyright © OSGi Alliance 2006 and Richard S. Hall  All Rights Reserved 

A
ll P

age W
ithin This B

ox 

9 Document Support 

9.1 References 
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997. 

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0 
 

[3]. JSR 124 J2EE Client Provisioning http://www.jcp.org/en/jsr/detail?id=124 

9.2 Author’s Address 
 

Name Peter Kriens 

Company aQute 

Address 9c, Avenue St. Drezery, Beaulieu, France 

Voice +33 467542167 

e-mail Peter.Kriens@aQute.biz 

Name Richard S. Hall 

Company  

Address Saginaw, Mi, USA 

Voice +1  

e-mail Heavy@ungoverned.org 

 

9.3 Acronyms and Abbreviations 
 

9.4 End of Document 


