London Computation Club - New
Turing Omnibus ¢.37: Public Key

Cryptography

Big Picture

Maths is required. Breaking is often assumed to be brute-forcing the key once you know the
algorithm, so you’re only as secure as advances in computational power make it easy to
make many guesses per second. However, as we see there’s another vector which is
identifying a weakness in the algorithm which mean our assumed NP-complete to solve
algorithm actually isn’t.

Not covered: weakness in key generation, shared keys, &c, &c, &c.

Codes in general

Interesting to note the assumption that secrets are for military and financial or industrial use,
whereas today we might think more about it for personal privacy.

The trivial code described in the opening is the Caesar Cipher
(http://practicalcryptography.com/ciphers/caesar-cipher/). There’s a throwaway comment
about cracking the code being simple even if you don’t know the algorithm. Cracking a
Caesar cipher is trivial enough that I'm sure I've encountered it several times in all the video
games I've played (most recently the iOS game Hundreds which includes a bunch of cipher
puzzles as “Easter eggs” between levels:
https://en.wikipedia.org/wiki/Hundreds_(video_game)). Cryptanalysis is probably worth a
chapter (or book!) on it's own. Essentially though we use the characteristics of the crypted
message to work out the algorithm and the expected contents of the message (e.g. the
language it’s in) to work out the key. If the algorithm is simple enough we might even be
able to brute force the key once we know the algorithm (e.g. Caesar Cipher has a finite
number of keys based on how many characters we rotate so we can easily try all the keys till
we get something approaching a result once we’'ve worked out that it's a Caesar Cipher).
Other ciphers betray similar characteristics, we just might need longer and longer to brute
force.

| guess that the realisation about PKC is that the algorithm is known to everyone, but the
keyspace is so massive that the only option is brute force, and that will take so long because
of the cunningness of the algorithm. As we see later, you do have to have a very cunning
algorithm though, as if there is a weakness you didn’t realise at first, a massive keyspace
doesn’t help and Maths will tear open your secrets (or better computers will brute force it).


http://practicalcryptography.com/ciphers/caesar-cipher/
https://en.wikipedia.org/wiki/Hundreds_(video_game)

Recent worries about the NSA in the past few years were that they’d either got a massive
quantum computer that could brute force the keys quicker than we’d expect (so we need to
increase our key-lengths) or that they’d magicked up some dark Maths that meant they could
exploit a hitherto unknown weakness in the algorithm. Either would be worrying. (FWIW |
think that current theory is that they’d brute-forced a few weak keys that happened to be
widely used).

Public Key Crypto

The mention that k (our public key) is easy to compute from k’ (our private key) but k’ is hard
to compute from k seems straightforward. What I'm not sure about is the statement that
from a given k’ we can easily generate new k (whenever people have talked about key
issues they’ve always said generate a new pair, not a new public key - | could just not
understand the relationship between public and private as it is used today though).

Subset-Sum Problem

Given n numbers: a,, a,, a,, ... a,_,, B; do any combination of a, sum to provide B?

A good opportunity here to work through the example in the book on the whiteboard. Maybe
even to see Chris Patuzzo’s solver? s it harder or easier that it just has to be a sum
problem? Is this what the numbers round in Countdown is? s it possible that Countdown
contestants are actually brute forcing keys for GCHQ?

Hellman-Merkle-Diffie

Talks about the public key as being a set of integers. This is not how | usually think of my
public key, is that an artefact of the HMD algorithm, or is it actually what my public key is |
just don’t know it?

Encrypting

Another good opportunity to explore the problem via the whiteboard:
1. Transform the message into a representation useful for the algorithm.
a. turn everything into binary
b. partition into blocks of length n (where n is the number of integers in our
public key)
2. convert each block into a number:
def crypt (block, key)
key.map.with index do |a, i
block[1] * a
end.reduce (:+)
end
where block is an integer and key is an array (of integers).
(TIL: Fixnum# [] in ruby gives the binary digit at that position (0 is the LSB).)
3. send each crypted number over insecure channels in order



4. this is safe because even with knowledge of the public key and the ciphertext finding

the set of numbers from the key that add up to the ciphertext number is non-trivial
(it's the subset sum problem).

The example uses a key of length 7 and thus converts each letter in the plaintext to 7-bit

ascii which is convenient. In reality much larger key lengths are used as 7 numbers only

leaves 128 possible combinations to try before we work out the set that add up to the

ciphertext. Even in 80’s this was trivial enough to brute force. A larger key means more

permutations, means it takes longer.

Interesting argument about why bother wasting 100 years of effort to decrypt something that
won’t be useful in 100 years. Is it still true that encrypted things are only useful for time
sensitive information?

Aside: generating k from k’

The ith digit of k is generated as follows: a,= w * a@’, mod m
It's not clear (to me) where w and m come from, if they are part of the private key, or some
part of the algorithm, or ... For now I'm taking it on faith that they JUST ARE.

Decrypting

Another place to do a worked example.

Given a ciphered digit B we push it through the same algorithm as we used to generate the
public key to get B’, with a notable exception. We use w’ not w, as follows:

B'=B*w'mod m
Where w'is such that w* w’ =1 mod m.

No, me neither. What we’re talking about is the Modular multiplicative inverse:
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse. It's complicated but there is a
process for working it out. Note that it states that there is only a w' for w if and only if w and
m are coprime. Ouir first hint so far that prime numbers are important to crypto. Not
mentioned directly in the book but perhaps our ‘80s Maths background would have told us
that. Maybe we can explain this on the board (given w=3 and m=12, a value of w' is 4) if
people want to know the maths, or maybe we can trust that there is a process and it's
important that there is the correct relationship between w and m (e.g. you can’t just pick two
random numbers and hope it'll work).

Anyway, now we have another subset sum problem to solve to tell us which digits of the
private key sum up to make this new B’. The nature of the private key means that this isn’t
as intractable as the standard subset sum, because each number in the key is greater than
the one before.

Following the provided algorithm we get an array of length n with true (1) or false (0) for each
number in the private key if it was used to add up to B’ or not. This can then be treated as a


https://en.wikipedia.org/wiki/Modular_multiplicative_inverse

n-bit binary number and lo-and-behold, it's the first block of our plaintext. Which in the
example’s case is a 7-bit ASCII letter. Hurrah!

Why? MATHS.

This is all classic algebra, but the key step that most of us (well, me anyway) probably didn’t
get immediately is the 2nd to 3rd lines of the B’ reduction. It relies on re-arranging to cancel
out the w mod m and w’ mod m because (w * w') = (1 mod m) or equivalently (w * w’) mod
m =1 (from
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/m
odular-inverses).

We should work this through on the board (might have to just agree that the cancellation
works, unless there are mathematicians in the room who have the explanation).

Breaking Hellman-Merkle-Diffie

| imagine the proof and algorithm found here is quite complex. We may have to take it on
face-value unless anyone in the room has special knowledge, but it comes down to what we
suggested before - the algorithm has a weakness that can be exploited.

RSA

Turns out my public and private keys are both pairs of integers. Not quite the array of
integers that we have in HMD, but still. TIL.

We should probably try another worked example here if we have time. We should use a
public / private key pair of tiny proportions though.

Nice final line: The NSA are trying.


https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/modular-inverses
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/modular-inverses

