
 CoolKey Applet Interface

(Based strongly on “MUSCLE Cryptographic Card Edge
Definition for Java1 Enabled SmartCards” by David Corcoran

and Tommaso Cucinotta)

The original document was provided on an as-is basis. Neither the authors nor Red Hat nor the MUSCLE
project are responsible for any mishaps that may occur from the use of this document. This document may
be distributed freely but modifications must be returned to the authors and the authors’ names must retain
on the document as original authors.

1 Java® and Java Card® are trademarks of Sun Microsystems, Inc

Change Log:
 [MUSCLE Cryptographic Card Edge Definition]
Version 1.0
November 22, 2000
Original writing, Dave Corcoran, corcoran@linuxnet.com
Version 1.0.1
July 16, 2001
Function clarification, added return code lookup table, Alex Russell, alex@netWindows.org
Version 1.1.0
Sept 10, 2001
Added ACLs, KeyBlob definitions.
Tommaso Cucinotta, cucinotta@sssup.it
David Corcoran, corcoran@linuxnet.com
Version 1.2.0
Sept 25, 2001
Allocated instruction codes
Added List commands
Added ISO Verify compatibility
Version 1.2.1
October 4, 2001
Modified some instruction bytes
Added GetStatus command
Fixed some global defines
First release with Alpha implementation

[CoolKey Applet Interface]
Version 1.0
March 3, 2004
Created AOLKey spec from original muscle spec, relyea@aol.net
Added RA Secure APDUs from “AOL NetKey Enrollment and Token Management Protocol”,
thayes0993@aol.com
Added Nelson’s AOLKey Object ID and Data format draft spec, misterSSL@aol.com

Version 1.0.1
April 27, 2004
Minor corrections found with document use. relyea@aol.net

Version 1.0.2
February 28, 2005
Convert to OpenOffice. Minor corrections, add new APDU definitions for KeyGen and Issuer information,
rrelyea@redhat.com

Version 1.02
March 30, 2005
Changed from AOLKey to CoolKey. Added support for PKCS 8.
rrelyea@rehat.com

 Version 1.03
August 19, 2005
Added description of the application initialization string.
rrelyea@rehat.com

2

mailto:relyea@aol.net
file:///home/kevinu/Documents/DesignDocs/rrelyea@rehat.com
file:///home/kevinu/Documents/DesignDocs/rrelyea@rehat.com
mailto:rrelyea@redhat.com
mailto:relyea@aol.net
mailto:misterSSL@aol.com
mailto:thayes0993@aol.com

Table of Contents
1 Context and conventions...5

1.1 Introduction..5
1.2 Security model...5
1.3 ACL for objects...6
1.4 ACL for keys...6
1.5 Default ACL settings for CoolKey..7

2 Functional declarations...9
2.1 Basic data types’ encoding..9
2.2 Key blobs...9
2.3 Summary of commands...15
2.4 Authentication..16
2.5 General return codes..16
2.6 APDU Reference...18

2.6.1 SecureStartEnrollment..19
2.6.2 SecureImportKeyEncrypted...22
2.6.3 CKYImportKey..25
2.6.4 CKYComputeCrypt..27
2.6.5 CKYListKeys...30
2.6.6 CKYCreatePIN...32
2.6.7 CKYVerifyPIN...34
2.6.8 CKYChangePIN...36
2.6.9 CKYListPINs..38
2.6.10 SecureSetPIN..39
2.6.11 CKYLogout..40
2.6.12 CKYCreateObject...41
2.6.13 CKYDeleteObject...43
2.6.14 CKYWriteObject..45
2.6.15 CKYReadObject...47
2.6.16 SecureReadIOBuffer...49
2.6.17 CKYListObjects...50
2.6.18 CKYGetStatus..52
2.6.19 CKYNoop...53
2.6.20 CKYGetRandom...54
2.6.21 CKYGetBuildID...55
2.6.22 CKYGetLifeCycle..56
2.6.23 CKYSeedRandom...57
2.6.24 CKYGetIssuerInfo..58
2.6.25 SecureSetIssuerInfo..59
2.6.26 CKYGetBuiltInACL...60
2.6.27 SecureSetLifeCycle..61
2.6.28 SecureSetBuiltInACL...62

3 CoolKey Object ID and Data Format...63
4 Glossary..66

3

Document Scope
The scope of this document is to provide a definition of command set to provide base
cryptographic functionality through and abstract interface using Java enabled SmartCards
and cryptographic tokens. This interface is restricted to applet supplied functions.

This specification was not written to encompass all the functionality
of the Java Card platform but rather the subset of calls provided by
the CoolKey applet. This is an evolving specification so future
commands and calls might be added to provide compatibility with other
standards such as PKCS-15 and existing infrastructures on other

platforms.

4

1 Context and conventions

1.1 Introduction
The Applet is capable of generating cryptographic keys on the card, and allows external
keys to be inserted onto the card. These keys can be used in cryptographic operations,
after proper user (or host application) authentication.

The Applet is capable of handling generic objects. An object is a sequence of bytes
whose meaning is determined by the application. The Applet allows a host application to
read and/or modify objects’ contents, after proper user (or host application)
authentication.

An object is identified by means of a 4-byte object identifier. Any object ID is available
from 0x00000000 to 0xFFFFFF00, Appendix A describes how the CoolKey
infrastructure uses these IDs. Other object IDs are reserved. IDs 0xFFFFFFFE and
0xFFFFFFFF are reserved, respectively, as import and export buffers for transporting
data to and from the card when it does not fit into a single APDU. The use of these
special objects allows large keys and cryptogram to be exchanged and alleviates the
problem of 255-byte maximum transfer size. For security reasons the applet stores these
buffers in volatile memory, which clears on applet deselect.

1.2 Security model
An identity number refers to one of 16 mechanisms (at maximum) by which the card can
authenticate external applications running on the host. Each mechanism can be:

• based on a PIN verification: identity numbers from 0 to 7 (PIN-identities) that are
associated to PIN numbers from 0 to 7

• based on Secure Channel verification: identity numbers 14
After an authentication mechanism has been run successfully, the corresponding identity
is said to be “logged in”. Each identity is associated a counter for the maximum number
of times an authentication mechanism can be run unsuccessfully for that identity. On a
successful authentication the counter is reset. On an unsuccessful authentication the
counter is decreased and, if it goes to zero, the corresponding identity is blocked and can
not be logged in anymore. PIN codes can only be reset by secure channel requests.

A PIN-identity login requires a PIN code verification. The PIN number is the same as the
identity number. Identity n.14 is only logged in during a secure channel operation.

Each key or object on the card is associated with an Access Control List (ACL) that
establishes which identities are required to be logged in to perform certain operations.
The security model is designed in such a way to allow at least four levels of protection
for card services:

• no protection: the operation is always allowed; in such a case the ACL requires
only the anonymous identity to be logged in for the operation

• PIN protection: the operation is allowed after a PIN verification; in such a case
the ACL requires a PIN-based identity to be logged in for the operation.

5

• strong protection: the operation is allowed only during a secure channel
operation.

• full protection: (operation disabled): the operation is never allowed.

The use of a private key on the SmartCard is usually PIN protected or not protected.
Reading of a private key is disabled. Public objects will always be readable, but their
modification could be PIN protected or strongly protected.

1.3 ACL for objects

Object related operations are:
• creation
• read object
• write object
• deletion

Only read, write, and delete are regulated on a per object basis. Every object is associated
with an ACL of three bytes, where each byte corresponds to reading, writing and deletion
permissions, respectively:

ObjectACL:
Short Read Permissions;
Short Write Permissions;
Short Delete Permissions;

A permission 2-bytes word has the following format:

Bit 16 (M.S. Bit) RFU
Bit 15 Identity #14 required (strong identity)
Bit 14 RFU
...
Bit 9 RFU
Bit 8 Identity #7 required (PIN identity)
...
Bit 2 Identity #1 required (PIN identity)
Bit 1 (L.S. Bit) Identity #0 required (PIN identity)

If all bits are set on a permission word, then no authentication is required for the
operation. If one or more bits are set, then at least one identity corresponding to set bits
must be logged in to perform the operation. If no bits are set then the operation is
disabled for all identities. Possibilities are clarified in the following examples:

Hex Value Meaning
0x0000 Operation never allowed
0x0004 Identity n.2 (PIN) required
0x4001 Either Identity n.0 (PIN) or identity

n.14 (strong) required
0xFFFF Operation always allowed

6

1.4 ACL for keys
Operations involving cryptographic keys are:

• creation (injection or on-board generation)
• read key
• write key
• computation (encrypt, decrypt, sign, verify)

Only read, write, and computation are regulated on a per key basis. A key creation is
always allowed after pin #0 verification, if the key does not exist yet. Every key is
associated with an ACL of three 2-bytes words, where each word corresponds to reading,
writing and using permissions, respectively:

KeyACL:
Short Read Permissions;
Short Write Permissions;
Short Use Permissions;

A permission word has the following format:

Bit 16 (M.S. Bit) RFU
Bit 15 Identity #14 required (strong identity)
Bit 14 RFU
...
Bit 9 RFU
Bit 8 Identity #7 required (PIN identity)
...
Bit 2 Identity #1 required (PIN identity)
Bit 1 (L.S. Bit) Identity #0 required (PIN identity)

If all bits are set on a permission word, then no authentication is required for the
operation. If one or more bits are set, then at least one identity corresponding to set bits
must be logged in to perform the operation. If no bits are set then the operation is
disabled for all identities.2 See Object ACL description for some examples.

Note that a key write operation overwrites the associated ACL, too.

1.5 Default ACL settings for CoolKey

2 Note that, when overwriting a key’s contents (if allowed to), the host application can also change the key
ACL.

7

In CoolKey deployments, only the RA holds the keys which enable secure channel
connections. The ACLs are initialized as follows:

ACL Value Set by
Create object 0x4000 (RA) Factory
Create key 0x4000 (RA) Factory
Create pin 0x4000 (RA) Factory
Private Key Read 0x0000 (No one) Applet
Private Key Write 0x4000 (RA) Applet
Private Key Use 0xffff or single bit between

0x0001 and 0x0080
Applet under direction of
the RA

Public Key Read 0xffff (Any one) Applet
Public Key Write 0x4000 (RA) Applet
Public Key Use 0xffff (Any one) Applet
Object Read 0xffff (Any one) RA
Object Write 0x4000 (RA) RA
Object Delete 0x4000 (RA) RA

The RA is free to modify the ACLs on objects it creates.

8

2 Functional declarations

This section describes which functions, values, parameters, and behavior are defined in
this document. Return codes for functions can be found at the end of this document.

2.1 Basic data types’ encoding
A byte is an unsigned integer number, ranging from 0 to 255. Inside APDUs a byte is
encoded with a byte.

A short is an unsigned integer number, ranging from 0 to 65535. Inside APDUs a short is
always encoded as a 2 consecutive bytes, most significant byte first.

A long is an unsigned integer number, ranging from 0 to 4,294,967,295. Inside APDUs a
short is always encoded as a 2 consecutive bytes, most significant byte first.

A big number is an unsigned integer number with a variable encoding size. A big number
is always encoded as follows:

• a short encoding the number’s total size (in bytes)
• the big number value’s bytes, most significant byte first

A key number uniquely identifies a cryptographic key inside the applet. Key numbers are
in the range from 0 to 15 and are always encoded as a single byte. Two cryptographic
keys can be the public and private keys of a key pair. It is up to the host application to
know and correctly handle such situations (see Error: Reference source not found (page
Error: Reference source not found) and Error: Reference source not found(Page
Error: Reference source not found) commands for further details).

2.2 Key blobs
A key blob is a sequence of bytes encoding a cryptographic key or key pair for
import/export purposes. Whenever a key or key pair is transferred to the card, the
application first transfers the corresponding key blob into the input temporary object then
invokes the ImportKey command referencing it. Conversely, on a key or key pair export
operation, the application first invokes an ExportKey operation, then retrieves the key blob
from the output temporary object.

A key blob has the following format:

KeyBlob:
Byte Blob Encoding;
Byte Key Type;
Short Key Size; // In bits
Byte[] Blob Data;

9

|----------Key Blob Header-----------|

Blob Enc Key Type Key Size

...
Blob
Data
...

Values for Blob Encoding:
0x00 BLOB_ENC_PLAIN;
0x01 BLOB_ENC_ENCRYPTED (RFU)

Values for Key Type:
RSA_PUBLIC 0x01 Public RSA key
RSA_PRIVATE 0x02 Private RSA key
RSA_PRIVATE_CRT 0x03 Private RSA CRT key
DSA_PUBLIC 0x04 Public DSA key
DSA_PRIVATE 0x05 Private DSA key
DES 0x06 Standard DES key
TRIPLE_DES 0x07 Standard Triple DES key
TRIPLE_DES_3KEY 0x08 Standard 3 key Triple DES key
RSA_PKCS8_PAIR 0x09 Private and Public RSA key encoded in pkcs8

Allowed Values for Key Size:
RSA 512, 768, 1024, 2048 …
DSA 512, 768, 1024, 2048 …
DES 64
3DES 128
3DES3 192

10

2.2.1.1 RSA KeyBlob Definitions

In the following Key Blob definitions, names of key components follow the same
conventions as specified in JavaCard 2.1.1 API.

Key Type RSA_PRIVATE_CRT

Blob

Header

P Size
. . .

P Value
. . .

Q Size
. . .

Q Value
. . .

PQ Size
. . .

PQ Value
. . .

DP1 Size
. . .

DP1 Value
. . .

DQ1 Size
. . .

DQ1 Value
. . .

Key Type RSA_PRIVATE

Blob

Header

Mod Size
. . .

Modulus Value
. . .

Prv Exp Size Private
. . .

Exponent
. . .

Value

11

Key Type RSA_PUBLIC

Blob

Header

Mod Size
. . .

Modulus Value
. . .

Pub Exp Size Public
. . .

Exponent
. . .

Value

2.2.1.2 DSA KeyBlob Definitions

In the following Key Blob definitions, names of key components follow the same
conventions as specified in JavaCard 2.1.1 API.

Key Type DSA_PRIVATE

Blob

Header

G Size
. . .

G Value
. . .

P Size
. . .

P Value
. . .

Q Size
. . .

Q Value
. . .

X Size
. . .

X Value
. . .

12

Key Type DSA_PUBLIC

Blob

Header

G Size
. . .

G Value
. . .

P Size
. . .

P Value
. . .

Q Size
. . .

Q Value
. . .

Y Size
. . .

Y Value
. . .

2.2.1.3 DES KeyBlob Definitions

Key Type DES

Blob

Header

0x00 08 8 byte
. . .
key
. . .

value

Key Type TRIPLE_DES

Blob

Header

0x00 10 16 byte
. . .
key
. . .

value

13

Key Type TRIPLE_DES_3KEY

Blob

Header

0x00 18 24 byte
. . .
key
. . .

value

14

2.3 Summary of commands
Command Name Au

th
S/R CLA

(hex)
INS
(hex)

P1 P2 P3 Data

Key Handling Commands
StartEnrollment S S 84 0C User/PrvKey Usage/PubKey Size Params
ImportKeyEncrypted S S 84 0A User/PrvKey Usage/Pubkey Size Params
ImportKey A S B0/84 32 Key N. 0x00 Size Import

Params
ComputeCrypt A S B0/84 36 Key N. Operation Size Ext Data
ListKeys N S B0 3A Seq Option 0x00 0x0B -
PIN related commands
CreatePIN A S B0/84 40 PIN N. Max Attempts Size New Pin
VerifyPIN X S/R B0 42 PIN N. 0x00 Size Params
ChangePIN X S B0 44 PIN N. 0x00 Size Params
ListPINs N R B0 48 0x00 0x00 0x02 -
SetPIN S S 84 04 PIN N. 0x00 Size Params
Logout P S B0 61 PIN N. 0x00 0x00 -
Object related commands
CreateObject A S B0/84 5A 0x00 0x00 0x0E Create

Params
DeleteObject A S B0/84 53 0x00 Zero Flag 0x04 Object

ID
WriteObject A S B0/84 54 0x00 0x00 Size Params
Read Object A S/R B0/84 56 0x00 0x00 Size Params
ReadIOBuffer S S/R 84 08 Data Len 0x00 0x02 Offset
ListObjects N R B0 58 Seq Option 0x00 0x0E -
Other
GetStatus N R B0 3C 0x00 0x00 Size -
Noop N S B0 71 0x00 0x00 0x00 -
GetBuildID N R B0 70 0x00 0x00 0x04 -
GetLifeCycle N R B0 F2 0x00 0x00 0x01 -
SetLifeCycle S S 84 F0 Life Cycle 0x00 0x00 -
SeedRandom N S B0 73 0x00 0x00 Size Data
GetRandom N R B0 72 0x00 0x00 Size -
GetIssuerInfo N R B0 F6 0x00 0x00 0xe0
SetIssuerInfo S S 84 F4 0x00 0x00 0xe0 Data
GetBuiltinACL N R B0 FA 0x00 0x00 0x07
SetBuiltinACL S S 84 F8 0x00 0x00 0x07 Data
Secure Channel Setup
InitializeUpdate X S/R 80 50 Key Set Key Index 0x08 Params
ExternalAuthenticate X S 84 82 Sec Level 0x00 0x0a Params

The Auth column is to be interpreted as follows:
• “A”: Either nonce or secure channel authentication required.
• “S”: Secure channel authentication required
• “P”: Nonce (PIN) authentication required
• “N”: No additional authentication needed for this command.

15

• “X”: This command is part of an authentication sequence, and special knowledge
will be required to complete this command (either a PIN or a key).

The S/R column is to be interpreted as follows:
• “S”: the command only sends data to the card with the APDU; the P3 parameter

specifies the amount of sent data
• “R”: the command only expects data to be returned from the card with the

response APDU; the P3 parameter specifies the maximum amount of expected data
• “S/R”: the command sends data to the card with the APDU and expects a response

to be retrieved with an ISO GET_RESPONSE command; the P3 parameter specifies
the amount of sent data

2.4 Authentication
Commands that require authentication modify their APDUs before sending them to the
applet. Secure channel authentication adds a MAC at then end of the APDU signed by
the Card Manager Auth Key. These commands may also be encrypted by the Card
Manager Encryption Key. In the CoolKey infrastructure only the RA holds these keys.
These commands are all set using the secure class (0x84). This authentication is
documented in the Java Global Platform spec.

CardEdge class commands (0xB0) that require authentication, modify their APDUs by
appending an 8-byte nonce, which is returned from VerifyPIN. This nonce is valid until
the card is reset, or the application calls Logout.

In both cases the P3 parameter is modified to include the size of the MAC or nonce.

Commands that are denoted ‘X’ above do not have an appended nonce or MAC, but have
authentication information embedded in the APDU or the response (a PIN or a signed
challenge).

2.5 General return codes
The following table shows all the possible status words returned from the Applet
commands, along with a symbolic name and a short description. More specific
information about the meaning of error codes is listed on individual function description
pages.

2.5.1.1 Return Codes (Status Words)
Value Symbolic Name Description
90 00 SW_SUCCESS (ISO) Operation successfully

completed
9C 01 SW_NO_MEMORY_LEFT Insufficient memory onto

the card to complete the
operation

9C 02 SW_AUTH_FAILED Unsuccessful
authentication. Multiple
consecutive failures cause

16

Value Symbolic Name Description
the identity to block

9C 03 SW_OPERATION_NOT_ALLOWED Operation not allowed
because of the internal
state of the Applet

9C 05 SW_UNSUPPORTED_FEATURE The requested feature is
not supported either by
the card or by the Applet

9C 06 SW_UNAUTHORIZED Logged in identities don’t
have enough privileges
for the requested
operation

9C 07 SW_OBJECT_NOT_FOUND An object either explicitly
or implicitly involved in
the operation was not
found

9C 08 SW_OBJ_EXISTS Object already exists
9C 09 SW_INCORRECT_ALG Input data to the

command contained an
invalid algorithm

9C 0B SW_SIGNATURE_INVALID The signature provided in
a verify operation was
incorrect

9C 0C SW_IDENTITY_BLOCKED Authentication operation
not allowed because
specified identity is
blocked

9C 0D SW_UNSPECIFIED_ERROR An error occurred. No
further information is
given.

9C 0E SW_INVALID_PARAMETER Input data provided either
in the APDU or by means
of the input object is
invalid

9C 10 SW_INCORRECT_P1 Incorrect P1 value
9C 11 SW_INCORRECT_P2 Incorrect P2 value
9C 12 SW_SEQUENCE_END No more data in list.
63 00 SW_INVALID_AUTH (ISO) Unsuccessful

authentication (for an ISO
Verify). Multiple
consecutive failures cause
the PIN to block

69 83 SW_AUTH_BLOCKED (ISO) The PIN referenced into
an ISO Verify command
is blocked

6A 86 SW_INCORRECT_P1P2 (ISO) Incorrect values of
either P1 or P2 parameter
or both of them

17

Value Symbolic Name Description
6D 00 SW_ERROR_INS (ISO) Instruction code

not recognized

2.6 APDU Reference
This section describes command APDUs to be exchanged between the card and the host
computer. For each command we specify what parameters are to be provided as input
and their format, and what parameters are to be expected as output and their format. For
each command we eventually specify error codes that the command can return in
addition to the general ones listed in the previous paragraph.

18

2.6.1 SecureStartEnrollment

2.6.1.1 Function Parameters

CLA 0x84
INS 0x0C
P1 <User><Prv Key number>
P2 <Usage><Pub Key number>
P3 KeyGenParams Size

DATA KeyGenParams
KeyGenParams:

Byte Algorithm Type (0x03 RSA Private CRT)
Short Key Size (in bits)
Byte Options (set if options are provided in the temporary

buffer)
WrappedKey MacKey

WrappedKey:
Byte Key Type - Mac (0x85)
Byte Key Size - key size in bytes
Byte[] Key Data - encrypted and padded to the correct 3DES

block boundary
Byte Key Check Size
Byte[] Key Check Data

2.6.1.2 Required Authentication
Secure Channel

2.6.1.3 Definition
This APDU generates a new signing key of the requested type and key size. Additional
parameters may be provided, such as PQG values for DSA or public exponent value for
RSA keys. These additional parameters are provided in the temporary buffer (see Write
Buffer). The public portion of the key is written into the temporary buffer along with the
a Mac value that is computed using SHA-1, the Mac key from the key blob, and the key
blob data for the public key.

P1 contains 2 parameters, the User in the upper 4 bits and the key index for the private
key in the lower 4 bits. User specifies which PIN user should be granted use privilege of
the generated private key, or 0xf if all users have use privilege for the private key.

P2 also contains 2 parameters, the Usage in the upper 4 bits and the key index for the
public key in the lower. Valid Usage values are:

0 default usage (Signing only for this APDU).
1 signing only
2 decryption only
3 signing and decryption

Usage only specifies the usage for the private key.

19

The MAC key data is encrypted using the token KEK in 3DES-ECB mode. Once the
data is decrypted it will contain data as defined by the following

MACKey:
Short Size
Byte[] Key Data

The public part of the newly generated key is placed in the temporary buffer using the
standard MUSCLE key blob format, where it may be read by using the Read Buffer
APDU.

2.6.1.4 Muscle Key Blob Format (RSA Public Key)
The key generation operation places the newly generated key into the output buffer
encoding in the standard Muscle key blob format. For an RSA key the data is as follows:

Byte Encoding (0 for plaintext)
Byte Key Type (1 for RSA public)
Short Key Length (1024 - high byte first)
Short Modulus Length
Byte[] Modulus
Short Exponent Length
Byte[] Exponent

2.6.1.5 Signature Format (Proof)
The key generation operation creates a proof-of-location for the newly generated key.
This proof is a signature computed with the new private key using the RSA-with-MD5
signature algorithm. The signature is computed over the Muscle Key Blob representation
of the new public key and the challenge sent in the key generation request. These two
data fields are concatenated together to form the input to the signature, without any other
data or length fields.

Byte[] Key Blob Data
Byte[] Challenge

2.6.1.6 Key Generation Result
The key generation command puts the key blob and the signature (proof) into the output
buffer using the following format:

Short Length of the Key Blob
Byte[] Key Blob Data
Short Length of the Proof
Byte[] Proof (Signature) Data

2.6.1.7 Notes

This APDU must be a part of a secure channel providing at least a MAC on the incoming
requests.

20

2.6.1.8 Return codes
Symbolic Name Description
SW_SUCCESS Success
SW_UNAUTHORIZED Security Requirement not satisfied
SW_XXX Other errors due to decryption problems and format errors

in the key that is being loaded or incorrect parameter
values

2.6.1.9 Returned data
MacData:

Byte[] Calculated Mac value

2.6.1.10Issues
Need to define errors for bad key formats and sizes.

21

2.6.2 SecureImportKeyEncrypted

2.6.2.1 Function Parameters
CLA 0x80
INS 0x0A
P1 <User><Prv Key number>
P2 <Usage><Pub Key number>
P3 Size of Data

DATA:
Long ObjectID
WrappedKey DesKey
Byte IV_Length
Byte[] IV_Data

WrappedKey:
Byte Key Type - DES3 ()
Byte Key Size - key size in bytes
Byte[] Key Data - encrypted and padded to the correct 3DES block

boundary
Byte Key Check Size
Byte[] Key Check Data

2.6.2.2 Required Authentication
Secure Channel

2.6.2.3 Definition
This APDU loads the applet encryption key and it’s related public key from the data
stored in Object ID.

P1 contains 2 parameters, the User in the upper 4 bits and the key index for the private
key in the lower 4 bits. User specifies which PIN user should be granted use privilege of
the generated private key, or 0xf if all users have use privilege for the private key.

P2 also contains 2 parameters, the Usage in the upper 4 bits and the key index for the
public key in the lower. Valid Usage values are:

0 default usage (decryption only for this APDU).
1 signing only
2 decryption only
3 signing and decryption

Usage only specifies the usage for the private key.

Data should already have been loaded into the token temporary buffer using the write
object. The data in the temporary buffer follows the MUSCLE blob format for keys as
defined in the following paragraphs.

22

KeyBlob:
Byte Blob Encoding - must be 0x01 (encrypted)
Byte Key Type - RSA Private CRT (0x03) or RSA Private (0x02)
Short Key Size - key size in bits
Byte[] Key Data - encrypted and padded to the correct 3DES

block boundary

The key data is encrypted using the DesKey and IV in 3DES-CBC mode. Once the data
is decrypted it will contain data as defined by one of the following structures (depending
on the key type).

RSAPrivate:
Short Modulus Size
Byte[] Modulus Data
Short Private Exponent Size
Byte[] Private Exponent Data

RSAPrivateCRT:
Short P Size
Byte[] P Data
Short Q Size
Byte[] Q Data
Short PQ Size
Byte[] PQ Data (PQ mod p)
Short DP1 Size
Byte[] DP1 Data
Short DP2 Size
Byte[] DP2 Data

RSAPKCS8Pair
 public and private key encoded with PKCS8.

The DesKey is wrapped with the KEK in 3DES-CBC mode.

2.6.2.4 Notes
This APDU must be a part of a secure channel providing at least a MAC on the incoming
requests.

When importing Private Keys, the corresponding public key should already be imported
using ImportKey, or the Private Key will not be usable. When importing
RSAPKCS8Pair, the public key is automatically imported

2.6.2.5 Return codes

Symbolic Name Description
SW_SUCCESS Success
SW_UNAUTHORIZED Security Requirement not satisfied
SW_XXX Other errors due to decryption problems and format

errors in the key that is being loaded

23

2.6.2.6 Returned data
None

2.6.2.7 Issues
Need to define errors for bad key formats and sizes.

24

2.6.3 CKYImportKey

2.6.3.1 Function Parameters

CLA 0x84 or 0xB0
INS 0x32
P1 Key Number (0x00-0x0F)
P2 0x00
P3 Import Parameters Length
DATA Import Parameters

2.6.3.2 Required Authentication
Secure Channel (class 0x84) or PIN nonce (class 0xB0)

2.6.3.3 Definition

This function allows the import of a key into the card by (over)-writing the Cardlet
memory. Object ID 0xFFFFFFFE needs to be initialized with a key blob before
invocation of this function so that it can retrieve the key from this object. The exact key
blob contents depend on the key’s algorithm, type and actual import parameters. The
key's number, algorithm type, and parameters are specified by arguments P1, P2, P3, and
DATA. Appropriate values for these are specified below:

[DATA]
Import Parameters:
 Long ObjectID

KeyACL ACL for the imported key;
KeyACL ACL for public key // only for RSA PKCS8 key pairs
Byte[] Additional parameters; // Optional

If KeyBlob’s Encoding is BLOB_ENC_PLAIN (0x00), there are no Additional
Parameters.

2.6.3.4 Notes

If the specified key number is not in use, then the operation is allowed only if identity n.0
has already been verified.

If the specified key number is already in use, the operation overwrites actual key values
only if current logged in identities have sufficient privileges to write key contents,
according to the actual key ACLs. Furthermore key overwriting could be forbidden if
new key parameters don’t match in type and size old ones. The exact behavior in these
cases depends on the particular implementation and is out of the scope of this document.

This function works identically to SecureImportKeyEncrypted, except the imported key
is in plaintext.

25

2.6.3.5 Return codes

2.6.3.6
The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description
SW_INCORRECT_P2 Key number is not valid
SW_UNAUTHORIZED Specified key already exists and logged in

identities don’t have sufficient privileges to
overwrite it

SW_OBJECT_NOT_FOUND Import object was not found
SW_OPERATION_NOT_ALLOWED Operation is not allowed due to the internal

state of the Applet. This could be returned
if trying to overwrite a key with different
parameters but the Applet does not allow
that.

SW_DATA_INVALID Key blob is not valid.

2.6.3.7

26

2.6.4 CKYComputeCrypt

2.6.4.1 Function Parameters

2.6.4.2
CLA 0x84 or 0xB0
INS 0x36
P1 Key Number (0x00 - 0x0F)
P2 Operation
P3 Data Length
DATA Extended Data

2.6.4.3 Required Authentication
Secure Channel (class 0x84) or PIN nonce (class 0xB0)

2.6.4.4 Definition

This function performs the required operation on provided data, using a key on the card.
It also allows proper initialization of the card cipher with custom data, if required by the
application. Usually, this function is called 1 time for cipher initialization
(CIPHER_INIT), 0 or more times for intermediate data processing (CIPHER_UPDATE) and 1
time for last data processing (CIPHER_FINAL). Alternately for single fixed block
operations, this function can be called with CIPHER_ONE_STEP, which is equivalent to
calling CIPHER_INIT and CIPHER_FINAL in one APDU.

Input and output data exchange can be arranged either directly in the command APDU
itself or, for bigger data chunks, using the I/O objects.

When encrypting or decrypting, the command outputs processed data both on UPDATE
and on FINAL operations. When signing the command outputs processed data (the
signature) only on the FINAL operation. When verifying there is never processed data
output and result is returned using the status word SW1, SW2. The FINAL verify
command must provide both last data chunk and the signature to be verified.

Appropriate values for input parameters are specified below:

Value of Operation:
0x01 CIPHER_INIT Initialize Cipher
0x02 CIPHER_PROCESS Process more data
0x03 CIPHER_FINAL Process last data chunk
0x04 CIPHER_ON_STEP Same as Initialize and Final in one step.

Extended data when Operation is CIPHER_INIT or CIPHER_ONE_STEP:
Byte cipher_mode;
Byte cipher_direction;
Byte data_location;

Values for Cipher Mode:

27

RSA or RSA_CRT key:
0x01 RSA_NO_PAD (No padding)
0x02 RSA_PAD_PKCS1

DSA key:
0x10 DSA_SHA

DES, 3DES or 3DES3 key:
0x20 DES_CBC_NOPAD
0x21 DES_ECB_NOPAD

Values for Cipher Direction:
0x01 DIR_SIGN Sign data
0x02 DIR_VERIFY Verify data
0x03 DIR_ENCRYPT Encrypt data
0x04 DIR_DECRYPT Decrypt data

Values for Data Location:
0x01 DL_APDU Initialization data in APDU;
0x02 DL_OBJECT Initialization data in input object;

Initialization data is a DataChunk (as defined below) and it either follows in the
APDU (if Data Location is DL_APDU) or is contained in the input object with ID
0xFFFFFFFE (if Data Location is DL_OBJECT). In order to provide no initialization
data the application must supply a DataChunk with the Size field set to 0.

Extended Data when Operation is CIPHER_PROCESS
Byte Data Location
DataChunk Input Data // If Location == APDU

Values for Data Location:
0x01 DL_APDU Input data contained in APDU;

Out data (if any) is returned in APDU
0x02 DL_OBJECT Input data in object 0xFFFFFFFE;

Out data (if any) in object 0xFFFFFFFF

Extended Data when Operation is CIPHER_FINAL and direction is not
DIR_SIGN:

Byte Data Location
DataChunk Input Data // If Location == APDU

When operation is CIPHER_FINAL and direction is DIR_VERIFY, last data chunk must be
followed by the signature data to be verified.

Extended Data when Operation is CIPHER_FINAL and direction is not
DIR_SIGN:

Byte Data Location
DataChunk Input Data // If Location == APDU
DataChunk Signature Data // If Location == APDU

Data must be provided and is returned in the following format:
DataChunk:

Short Size;
Byte[] Data; // exactly Size bytes of data;

28

2.6.4.5 Notes
When doing signing with RSA keys, the applet verifies the signature against the public
key before it returns the result. DSA keys are not supported.

2.6.4.6 Returns

If processed data must be returned to the host application, it is either placed into an
APDU or into the export object (with ID 0xFFFFFFFF), in the format defined above as
DataChunk:

2.6.4.7 Return codes
The following table shows how some error codes have to be interpreted when returned by
this function. These are to be considered in addition to the general ones in 0.

Symbolic Name Description
SW_INCORRECT_P1 Key number is not valid or specified key

does not exist
SW_INCORRECT_P2 Specified operation is not valid
SW_UNAUTHORIZED Logged in identities don’t have sufficient

privileges to use the key
SW_NO_MEMORY_LEFT There is not enough memory to complete

the operation
SW_DATA_INVALID Data supplied either in the APDU itself, or

in the input object, is not valid.
SW_SIGNATURE_INVALID Signature verify operation failed
SW_INCORRECT_ALG Algorithm does not match the key type
SW_OPERATION_NOT_ALLOWED Operation not allowed for this key type or

algorithm

29

2.6.5 CKYListKeys

2.6.5.1 Function Parameters

CLA 0xB0
INS 0x3A
P1 Sequence Option
P2 0x00
P3 0x0B
DATA

2.6.5.2 Required Authentication
None

2.6.5.3 Definition

This function returns a list of current keys and their properties including id, type, size,
partner, and access control. This function is initially called with the reset sequence set for
sequence type. The function only returns one object id at a time and must be called in
repetition until SW_SUCCESS is returned.

Values for Sequence Option:
0x00 Reset sequence and get first entry
0x01 Get next entry

2.6.5.4 Notes

The data will be trailed with SW_SUCCESS. When the list has no more entries just
SW_SEQUENCE_END will be returned.

Reset sequence can be called at any time to reset the key pointer to the first in the list.

2.6.5.5 Returned data

Returned data if a key was found:
Byte Key Number
Byte Key Type
Byte Key Partner
Short Key Size
KeyACL ACL for this key
Short Status Word

Key
Num

Key
type

Key
Part
n

Key Size

Key ACL Statu Word

30

R R W W U U s

If the key is part of a key pair and the other key is also stored on the card, the field Key
Partner can contain the key number of the other key. This information is optional, and
the special value 0xFF means that it is not available.

2.6.5.6 Return codes

The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description
SW_INCORRECT_P1 Sequence option is not valid
SW_SEQUENCE_END No more keys in the list

31

2.6.6 CKYCreatePIN

2.6.6.1 Function Parameters

2.6.6.2
CLA 0x84 or 0xB0
INS 0x40
P1 PIN Number
P2 PIN Maximum attempts
P3 Pin Length
Data

[Data]
Byte[] Pin Value

2.6.6.3 Required Authentication
Secure Channel (class 0x84) or PIN nonce (class 0xB0)

2.6.6.4 Definition

2.6.6.5
This function creates a PIN with parameters specified by the P1, P2 and DATA values.
P2 specifies the maximum number of consecutive unsuccessful verifications before the
PIN blocks.

PIN Number 0x00-0x07

2.6.6.6 Notes

2.6.6.7
Command succeeds and a new PIN code is initialized only if one of the identities
specified by the create PIN ACL is authenticated and specified PIN number is actually
unused.

Right after a PIN creation command the new PIN identity is not logged in.

2.6.6.8 Return codes

2.6.6.9
The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

32

Symbolic Name Description
SW_UNAUTHORIZED Identity n.0 is not actually logged in
SW_INCORRECT_P1 Specified PIN number is invalid or is

already in use
SW_DATA_INVALID Provided PIN or unblock code data is not

valid

33

2.6.7 CKYVerifyPIN

2.6.7.1 Function Parameters

2.6.7.2
CLA 0xB0
INS 0x42
P1 PIN Number
P2 0x00
P3 Data Length
DATA PIN Value

2.6.7.3 Required Authentication
Supplied PIN must be valid.

2.6.7.4 Definition

2.6.7.5
This function verifies a PIN number sent by the DATA portion. The length of this PIN is
specified by the value contained in P3.

On success the applet returns an 8 byte nonce used for all PIN authenticated operations.
This value is appended to all commands requiring nonce authenticated issued in
CardEdge class (0xB0).

2.6.7.6 Notes

2.6.7.7
Multiple consecutive unsuccessful PIN verifications will block the PIN. If a PIN blocks,
then a SetPIN command can be issued from the secure channel to reset it.

2.6.7.8 Return codes

2.6.7.9
The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description
SW_AUTH_FAILED PIN verification failed. Multiple

verification failures cause the PIN to block
SW_INCORRECT_P1 Specified PIN number is invalid or PIN

code does not exist

34

SW_IDENTITY_BLOCKED Specified PIN is actually blocked

2.6.7.10Returns
Returned data if Pin was valid.

byte[] 8-byte nonce.

35

2.6.8 CKYChangePIN

2.6.8.1 Function Parameters

2.6.8.2
CLA 0xB0
INS 0x44
P1 PIN Number
P2 0x00
P3 Data Length
DATA Pin Change Parameters

2.6.8.3 Required Authentication
Supplied Pin must be valid.

2.6.8.4 Definition

2.6.8.5
This function changes a PIN code. The DATA portion contains both the old and the new
PIN codes.

PIN creation parameters:
Byte Old PIN length
Byte[] Old PIN value
Byte New PIN length
Byte[] New PIN value

Pin
Size

Old
...
Pin
...

Value
Pin
Size

New
...
PIN
...

Value

2.6.8.6 Notes

2.6.8.7
Right after a successful PIN change command, the corresponding PIN identity is not
logged in for any application (all existing nonces are invalid).

2.6.8.8 Return codes

2.6.8.9
The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

36

Symbolic Name Description
SW_AUTH_FAILED PIN verification failed. Multiple

verification failures cause the PIN to block
SW_INCORRECT_P1 Specified PIN number is invalid or PIN

code does not exist
SW_IDENTITY_BLOCKED Specified PIN is actually blocked and

cannot be changed

37

2.6.9 CKYListPINs

2.6.9.1 Function Parameters

2.6.9.2
CLA 0xB0
INS 0x48
P1 0x00
P2 0x00
P3 0x02

2.6.9.3 Required Authentication
None

2.6.9.4 Definition

2.6.9.5
This function returns a 2 byte bit mask of the available PINs that are currently in use.
Each set bit corresponds to an active PIN, according to the following table.

Least significant byte:
Bit PIN Number Bitmask Value
1 Pin #0 0x01
2 Pin #1 0x02
3 Pin #2 0x04
… … …
8 Pin #7 0x80

Most significant byte is RFU.

Symbolic Name Description
SW_SUCCESS Success

38

2.6.10 SecureSetPIN

2.6.10.1Function Parameters
CLA 0x80
INS 0x04
P1 Pin number
P2 0x00
P3 <Pin length>

DATA Pin

Pin:
Byte[] New Pin value

2.6.10.2Required Authentication
Secure Channel

2.6.10.3Definition
This APDU sets or resets a PIN. It is used to allow the card management service to set
the PIN to a value chosen by the user. The invalid PIN verification counter on the token
is also reset to the initial value. The card management system verifies that the user is
authorized to request this change.

2.6.10.4Notes
This APDU must be a part of a secure channel providing at least a MAC on the incoming
requests.

2.6.10.5Return codes
Symbolic Name Description
SW_SUCCESS Success
SW_UNAUTHORIZED Security Requirement not satisfied

2.6.10.6Returned data
None

2.6.10.7Issues
It may be more appropriate to change this command into a “Reset PIN” command, which
simply removes the PIN from the applet. The client would then prompt the user for a
new PIN, and use the normal ChangePIN (SetPIN) interface to the applet to establish the
new PIN value.

39

2.6.11 CKYLogout

2.6.11.1Function Parameters

CLA 0xB0
INS 0x61
P1 Pin number
P2 0x00
P3 0x00

2.6.11.2Required Authentication
PIN nonce

2.6.11.3Definition
This function logs out the given identity. Application should discard their nonces once
Logout has been called. Other pins may still be valid

40

2.6.12 CKYCreateObject

2.6.12.1Function Parameters

2.6.12.2
CLA 0x84 or 0xB0
INS 0x5A
P1 0x00
P2 0x00
P3 0x0E
DATA Object Parameters

[DATA]
Object Parameters

Long Object ID;
Long Object Size;
ObjectACL ObjectACL;

Object ID Object Size

Object ACL
R R W W D D

2.6.12.3Required Authentication
Secure Channel (class 0x84) or PIN nonce (class 0xB0)

2.6.12.4Definition

2.6.12.5
This function creates an object that will be identified by the provided object ID. The
object’s space and name will be allocated until deleted using CKYDeleteObject.
The object will be allocated upon the card's memory heap. For object lookup purposes,
the Applet may allow up to a fixed amount of objects to reside on the card. The exact
amount is beyond the scope of this document.

After creation, an object has “random” contents. Applications cannot rely on any
particular contents right after an object creation.

41

2.6.12.6Notes

2.6.12.7
Object creation is only allowed if logged in identity(-ies) have sufficient privileges to
create objects. PIN identities may not create objects if the object ID already exists.

2.6.12.8Return codes

2.6.12.9
The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description
SW_UNAUTHORIZED Appropriate Identity has not been verified

yet
SW_OBJECT_EXISTS Specified object ID is already in use
SW_NO_MEMORY_LEFT There is not enough free space on the

card’s memory for the new object

42

2.6.13 CKYDeleteObject

2.6.13.1Function Parameters

CLA 0x84 or 0xB0
INS 0x52
P1 0x00
P2 Zero Flag
P3 0x04
DATA

[DATA]
Long Object ID

2.6.13.2Required Authentication
Secure Channel (class 0x84) or PIN nonce (class 0xB0)

2.6.13.3Definition

This function deletes the object identified by the provided object ID. The object’s space
and name will be removed from the heap and made available for other objects.

The zero flag denotes whether the object’s memory should be zeroed after deletion. This
kind of deletion is recommended if object was storing sensitive data.

2.6.13.4Parameters

Zero Flag
0x01 Write zeros to object memory before release
0x00 Memory zeroing not required

2.6.13.5Notes

Object will be effectively deleted only if logged in identity(ies) have sufficient privileges
for the operation, according to the object’s ACL.

Not setting the zero flag doesn’t guarantee future recovery of object data.

2.6.13.6Return codes

43

The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description
SW_UNAUTHORIZED Logged in identities don’t have sufficient

privileges to delete the specified object
SW_OBJECT_NOT_FOUND Specified object does not exist

44

2.6.14 CKYWriteObject

2.6.14.1Function Parameters

2.6.14.2
CLA 0x84 or 0xB0
INS 0x54
P1 0x00
P2 0x00
P3 Data Size + 9
DATA Parameters

[DATA]
Parameters:

Long Object ID
Long Offset
Byte Data Size
Byte[] Object Data

Object ID Off set

Data
Size

…
Object Data

…

2.6.14.3Required Authentication
Secure Channel (class 0x84) or PIN nonce (class 0xB0)

2.6.14.4Definition

2.6.14.5
This function (over-)writes data to an object that has been previously created with
 CKYCreateObject. Provided Object Data is stored starting from the byte specified by the
Offset parameter. The size of provided object data must be exactly (Data Length – 8)
bytes. Provided offset value plus the size of provided Object Data must not exceed object
size specified in create.

Up to 240 bytes can be transferred with a single APDU. If more bytes need to be
transferred, then multiple CKYWriteObject commands must be used with different
offsets.

45

2.6.14.6Notes

2.6.14.7
Object data will be effectively written only if logged in identity(ies) have sufficient
privileges for the operation, according to the object’s ACL.

2.6.14.8Return codes
The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description
SW_UNAUTHORIZED Logged in identities don’t have sufficient

privileges to overwrite object’s contents
SW_OBJECT_NOT_FOUND Specified object does not exist

46

2.6.15 CKYReadObject

2.6.15.1Function Parameters

2.6.15.2
CLA 0x84 or 0xB0
INS 0x56
P1 0x00
P2 0x00
P3 0x09
DATA Reading Parameters

[DATA]
Reading Parameters

Long Object ID
Long Offset
Byte Data Size

Object ID Off set
Data
Size

2.6.15.3Required Authentication
Secure Channel (class 0x84) or PIN nonce (class 0xB0)

2.6.15.4Definition

2.6.15.5
This function reads data from an object that has been previously created with
 CKYCreateObject. Object data is read starting from the byte specified by the Offset
parameter.

Up to 255 bytes can be transferred with a single APDU. If more bytes need to be
transferred, then multiple ReadObject commands must be used with different offsets.

2.6.15.6Notes

2.6.15.7
Object data will be effectively read only if logged in identity(ies) have sufficient
privileges for the operation, according to the object’s ACL.

47

2.6.15.8Return codes

2.6.15.9
The following table shows how some error codes have to be interpreted when returned by
this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description
SW_UNAUTHORIZED Logged in identities don’t have sufficient

privileges to read object’s contents
SW_OBJECT_NOT_FOUND Specified object does not exist

2.6.15.10Returned data
[DATA]

Byte[] readData;

Short Status Word;

48

2.6.16 SecureReadIOBuffer

2.6.16.1Function Parameters
CLA 0x80
INS 0x08
P1 <Data length>
P2 0x00
P3 0x02

DATA Parameters

Parameters:
Short Offset

2.6.16.2Required Authentication
Secure Channel

2.6.16.3Definition
This APDU reads data from a temporary buffer on the token. The temporary buffer
allows a data longer than can be handled in one APDU to be used in a token operation.
For example, an RSA 2048-bit public key is (at least) 256 bytes long, which is more than
the maximum data size of 255 bytes.

2.6.16.4Notes
This APDU must be a part of a secure channel providing at least a MAC on the incoming
requests.

2.6.16.5Return codes
Symbolic Name Description
SW_SUCCESS Success
SW_UNAUTHORIZED Security Requirement not satisfied
SW_INVALID_PARAM The offset and size are too large for the temporary

buffer

2.6.16.6Returned data
None

2.6.16.7Issues
Should the data length field be moved to the P1 parameter location? The P3 value would
then be 4.

This APDU is redundant now that ReadObject can be called on a secure channel.
It should be deprecated.

49

2.6.17 CKYListObjects

2.6.17.1Function Parameters

2.6.17.2
CLA 0xB0
INS 0x58
P1 Sequence Option
P2 0x00
P3 0x0E
DATA

2.6.17.3Required Authentication
None.

2.6.17.4Definition

2.6.17.5
This function returns a list of current objects and their properties including id, size, and
access control. This function must be initially called with the reset option. The function
only returns one object information at a time and must be called in repetition until
SW_SUCCESS is returned with no further data.

Applications cannot rely on any special ordering of the sequence of returned objects.

Values for Sequence Option:
0x00 Reset sequence and get first entry
0x01 Get next entry

2.6.17.6Notes

2.6.17.7
The data will be trailed with SW_SUCCESS. When the list has no more entries just
SW_SEQUENCE_END will be returned and no data.

Reset sequence can be called at any time to reset the file pointer to the first in the list.

2.6.17.8Return codes

Symbolic Name Description
SW_SUCCESS Success
SW_SEQUENCE_END No more objects in the list

50

2.6.17.9Returned data

2.6.17.10
Data returned if an object was found:

Object ID Object Size

Object ACL
R R W W D D

Statu
s

Word

When the Reset Sequence option is selected, the first entry is returned.

If last object’s information was already retrieved, then no data and a status word of
SW_SEQUENCE_END is returned.

51

2.6.18 CKYGetStatus

2.6.18.1Function Parameters

2.6.18.2
CLA 0xB0
INS 0x3C
P1 0x00
P2 0x00
P3 Size of expected data

2.6.18.3Required Authentication
None

2.6.18.4Definition

This function retrieves general information about the Applet running on the smart card,
and useful information about the status of current session, such as object memory
information, currently used number of keys and PIN codes, currently logged in identities,
etc.

2.6.18.5Return code

Returned data has the following format:
Byte Card Edge Major Version
Byte Card Edge Minor Version
Byte Software Major Version
Byte Software Minor Version
Long Total Object memory
Long Free Object Memory
Byte Number of used PINs
Byte Number of used Keys
Short Currently Logged in Identities

Card Edge Version reports the supported Card Edge command set version. Software
Version reports the version of the Java Applet or other software running on the card that
implements Card Edge command set. Currently Logged Identities is a word whose bits
are to be interpreted according to the following table:

Bit 16 (M.S. Bit) RFU
Bit 15 Identity #14 required (strong identity)
Bit 14 RFU
...
Bit 9 RFU
Bit 8 Identity #7 required (PIN identity)
...
Bit 2 Identity #1 required (PIN identity)
Bit 1 Identity #1 required (LSB)

52

2.6.19 CKYNoop

2.6.19.1Function Parameters
CLA 0xB0
INS 0x71
P1 0x00
P2 0x00
P3 0x00

2.6.19.2Required Authentication
None

2.6.19.3Definition
This function returns success if the applet is selected.

2.6.19.4Return codes

Symbolic Name Description
SW_SUCCESS Success

2.6.19.5Returned data
None

53

2.6.20 CKYGetRandom

2.6.20.1Function Parameters
CLA 0xB0
INS 0x73
P1 0x00
P2 0x00
P3 0x04

2.6.20.2Required Authentication
None

2.6.20.3Definition
This function returns size random bytes from the on card random number generator.

2.6.20.4Return codes

Symbolic Name Description
SW_SUCCESS Success

2.6.20.5Returned data
Returned Data has the following format:

Byte[] randomData

54

2.6.21 CKYGetBuildID

2.6.21.1Function Parameters
CLA 0xB0
INS 0x70
P1 0x00
P2 0x00
P3 size

2.6.21.2Required Authentication
None

2.6.21.3Definition
This function returns the unique applet build ID. Each applet build has it’s own unique
build ID calculated at build time.

2.6.21.4Return codes

Symbolic Name Description
SW_SUCCESS Success

2.6.21.5Returned data
Returned Data has the following format:

short Major Build ID
short Minor Build ID

55

2.6.22 CKYGetLifeCycle

2.6.22.1Function Parameters
CLA 0xB0
INS 0xF2
P1 0x00
P2 0x00
P3 0x01 or 0x04

2.6.22.2Required Authentication
None

2.6.22.3Definition
This function returns the applet life cycle as defined by the OpenPlatform spec. If P3 is
equal to 4, it also returns several pieces of status information as well.

2.6.22.4Return codes

Symbolic Name Description
SW_SUCCESS Success

2.6.22.5Returned data
Returned Data has the following format if P3 = 0x01:

byte current life cycle

Returned Data has the following format if P3 = 0x04:
byte current life cycle
byte pinenabled
byte major protocol version
byte minor protocol version

56

2.6.23 CKYSeedRandom

2.6.23.1Function Parameters
CLA 0xB0
INS 0x73
P1 Life Cycle
P2 0x00
P3 size

2.6.23.2Required Authentication
None

2.6.23.3Definition
Write size bytes to the on card random number generator as a seed value.

2.6.23.4Return codes

Symbolic Name Description
SW_SUCCESS Success

2.6.23.5Returned data
None

57

2.6.24 CKYGetIssuerInfo

2.6.24.1Function Parameters
CLA 0x84
INS 0xF6
P1 0x00
P2 0x00
P3 0xE0

2.6.24.2Required Authentication
None

2.6.24.3Definition
Read the free form Issuer Info from the card.

2.6.24.4Return codes

Symbolic Name Description
SW_SUCCESS Success
SW_WRONG_LENGTH P3 was not 0xE0

2.6.24.5Returned data
The issuer info:

byte[] issuerInfo

58

2.6.25 SecureSetIssuerInfo

2.6.25.1Function Parameters
CLA 0x84
INS 0xF4
P1 0x00
P2 0x00
P3 0xE0

Data:
byte[] issuerInfo

2.6.25.2Required Authentication
Secure Channel

2.6.25.3Definition
This function sets the free form issuerInfo field.

2.6.25.4Return codes

Symbolic Name Description
SW_SUCCESS Success
SW_WRONG_LENGTH P3 was not 0xE0

2.6.25.5Returned data
None

59

2.6.26 CKYGetBuiltInACL

2.6.26.1Function Parameters
CLA 0x84
INS 0xFA
P1 0x00
P2 0x00
P3 0x07

2.6.26.2Required Authentication
None

2.6.26.3Definition
Read built in ACL's from the token. The built in ACL's control who is allowed to create
objects, keys or pins.

2.6.26.4Return codes

Symbolic Name Description
SW_SUCCESS Success
SW_WRONG_LENGTH P3 was not 0xE0

2.6.26.5Returned data
The issuer info:

short create_object_ACL
short create_key_ACL
short create_pin_ACL
byte enable_ACL_change

60

2.6.27 SecureSetLifeCycle

2.6.27.1Function Parameters
CLA 0x84
INS 0xF0
P1 Life Cycle
P2 0x00
P3 0x00

2.6.27.2Required Authentication
Secure Channel

2.6.27.3Definition
This function sets the applet life cycle as defined by the OpenPlatform spec.

2.6.27.4Return codes

Symbolic Name Description
SW_SUCCESS Success
SW_WRONG_LENGTH P3 was not zero
SW_INVALID_PARAMETER
S

‘Life Cycle’ was not recognized by the
CardManager, or transition to this Life Cycle
state from the current state is not allowed by the
Card Manager.

2.6.27.5Returned data
None

61

2.6.28 SecureSetBuiltInACL

2.6.28.1Function Parameters
CLA 0x84
INS 0xF8
P1 0x00
P2 0x00
P3 0x07

Data:
short create_object_ACL
short create_key_ACL
short create_pin_ACL
byte enable_ACL_change

2.6.28.2Required Authentication
Secure Channel

2.6.28.3Definition
This function changes the global create ACL's for the token. These ACL's are initialized
at applet install time to be RA only. When the applet is installed, it is possible to tell the
applet to 'enable_ACL_change'. By default enable_ACL_change is set to false. Once
enable_ACL_change is set to false, the ACL's are locked and cannot be change. This
function will fail with SW_OPERATION_NOT_ALLOWED.

2.6.28.4Return codes

Symbolic Name Description
SW_SUCCESS Success
SW_WRONG_LENGTH P3 was not 0x07
SW_OPERATION_NOT_ALLOWED enable_ACL_change is set to false

2.6.28.5Returned data
None

62

3 CoolKey Object ID and Data Format

CoolKey tokens contain data "blobs" that are readable by an application using the
INS_READ_OBJECT request/response APDUs. Each such "object" is identified by a
32-bit "ObjectID". The objects are placed onto the token by the RA, and are read by
other applications.

The token itself does not interpret the ObjectIDs or the object contents. The format of the
ObjectIDs and the the Object blobs themselves is known only to the RA and the
applications that read and use the object blobs.

This chapter specifies the format and meaning of the ObjectIDs and of the object blobs.
This specification contains the proposed standard specification to be used by the time the
Thundekey tokens are first shipped.

ObjectIDs are 4 bytes long, format is as follows:

objectID byte[0], an ASCII letter, from the list below.
objectID bytes[2-4], big endian, 24-bit binary object number.

Letters for objectID[0]

• Lower case letters signify objects containing PKCS11 object attributes in
the format described below.

'c' An object containing PKCS11 attributes for a certificate.
'k' An object containing PKCS11 attributes for a public or private
key
'r' An object containing PKCS11 attributes for an CoolKey
"reader".

• Upper case letters are reserved.

The general format of all readable objects containing PKCS11 attributes is:

All data, beginning with byte 0, is in type, length, value triplets. Each triplet contains one
PKCS11 attribute. Each triplet has this form:

4-byte int, big endian, the CK_ATTRIBUTE_TYPE
2-byte short, big endian, "n", the number of bytes in the attribute value n bytes, the
attribute value, format and content as defined by the CK_ATTRIBUTE_TYPE.

All attribute values are big-endian, except for character strings and ASN.1 encoded
binary strings, which are stored in natural order (which some might also describe as big
endian).

63

All objects must have CKA_CLASS attributes, and CKA_TOKEN attributes.

The PKCS11 attributes stored in a 'c' object for a certificate are:

Attribute type Length Value
CKA_CLASS 4 CKO_CERTIFICATE (1)
CKA_TOKEN 1 1 (true)
CKA_LABEL Var nickname (a.k.a. "friendly

name")
CKA_CERTIFICATE_TYP
E

4 CKC_X_509 (zero)

CKA_SUBJECT Var DER subject name of
associated cert

CKA_ID 20 SHA-1 hash of cert's SPKI
CKA_ISSUER Var
CKA_SERIAL_NUMBER Var
CKA_VALUE Var DER encoded cert

The PKCS11 attributes stored in a 'k' object for an RSA public key are:

Attribute type Length value
CKA_CLASS 4 CKO_PUBLIC_KEY (2)
CKA_TOKEN 1 1 (true)
CKA_LABEL Var nickname (a.k.a. "friendly

name")
CKA_KEY_TYPE 4 CKK_RSA (zero)
CKA_ID 20 SHA-1 hash of cert's SPKI
CKA_DERIVE 1
CKA_SUBJECT Var
CKA_ENCRYPT 1
CKA_VERIFY 1
CKA_VERIFY_RECOVER 1
CKA_WRAP 1
CKA_MODULUS_BITS 2 number of significant bits

in CKA_MODULUS
CKA_MODULUS Var RSA public key modulus
CKA_PUBLIC_EXPONENT Var (typically 3 bytes, value

0x010001)

The PKCS11 attributes stored in a 'k' object for an RSA private key are:

 Attribute type Length value
CKA_CLASS 4 CKO_PRIVATE_KEY (3)
CKA_TOKEN 1 1 (true)
CKA_PRIVATE 1 1 (true)

64

CKA_LABEL var. nickname of associated
cert.

CKA_KEY_TYPE 4 CKK_RSA (zero)
CKA_ID 20 SHA-1 hash of cert's SPKI
CKA_DERIVE 1 0 or 1 (0 for signature-only

keys, 1 for others)
CKA_SUBJECT var. DER subject name of

associated certificate
CKA_SENSITIVE 1 1 (true)
CKA_DECRYPT 1
CKA_SIGN 1
CKA_SIGN_RECOVER 1
CKA_UNWRAP 1
CKA_MODULUS_BITS 2 number of significant bits

in CKA_MODULUS
CKA_MODULUS Var RSA public key modulus
CKA_PUBLIC_EXPONENT Var (typically 3 bytes, value

0x010001)

The PKCS11 module presently constructs the CKA_VALUE attribute for each
certificate from the content of the corresponding 'C' object.

The PKCS11 attributes stored in an 'r' object for a "reader" are:

Attribute type Length value
CKA_CLASS 4 CKO_MOZ_READER (1)
CKA_TOKEN 1 1 (true)
CKA_LABEL Var reader name string
CKA_MOZ_IS_Cool_KEY 1 1 (true)

Note: the reader object is currently not stored on the token, nor created by the RA. It is
created by the pkcs11 module itself. But it exists in the same ObjectID space as the
objects on the token.

65

4 Glossary
APDU Application Protocol Data Unit

Applet A Java application residing on a JavaCard compliant card

Applet Instance An instance of a Java application residing on a JavaCard compliant card

Applet Selection The process of selecting one of the Applet Instances residing onto a JavaCard
compliant SmartCard for processing further APDU commands.

Blocked PIN A PIN whose verification has been unsuccessfully tried multiple consecutive
times. Verification of a blocked PIN Code is not possible until unblocking.

External Authentication A challenge-response cryptographic protocol by which an Applet Instance
authenticates a host application.

Key Blob A byte sequence encoding a cryptographic key

Key Number A number from 0 to 7 that references a key on the Applet

Identity Number A number from 0 to 15 referencing one of the 16 methods available to the host
application to authenticate to an Applet Instance

Input Object Object with ID 0xFFFFFFFE. It is used to store input data for commands that
require large inputs.

Java Card ™ Java standard from Sun for Java enabled smart card interoperability. This
document refers to the version 2.1.1 of the standard

Output Object Object with ID 0xFFFFFFFF. It is used to store output data for commands that
provide large outputs.

PIN Code (or PIN) A byte sequence. Usually a PIN code is an ASCII character string. An Applet
Instance can store multiple PIN codes and use them to authenticate a user

PIN CodeVerification The process by which an Applet Instance authenticates a host application
comparing the host provided PIN Code with one of the on board stored ones.

PIN Number A number from 0 to 7 that references a PIN code on the Applet

PIN Unblock Code A code that, when entered successfully, unblocks a blocked PIN

Status Word (SW) A two byte code as defined in ISO-7816 as to the status of a SmartCard
command

T0/T1 Protocols Low level protocols used to communicate to a SmartCard.

66

	1 Context and conventions
	1.1 Introduction
	1.2 Security model
	1.3 ACL for objects
	1.4 ACL for keys
	1.5 Default ACL settings for CoolKey

	2 Functional declarations
	2.1 Basic data types’ encoding
	2.2 Key blobs
	2.2.1.1 RSA KeyBlob Definitions
	2.2.1.2 DSA KeyBlob Definitions
	2.2.1.3 DES KeyBlob Definitions

	2.3 Summary of commands
	2.4 Authentication
	2.5 General return codes
	2.5.1.1 Return Codes (Status Words)

	2.6 APDU Reference
	2.6.1 SecureStartEnrollment
	2.6.1.1 Function Parameters
	2.6.1.2 Required Authentication
	2.6.1.3 Definition
	2.6.1.4 Muscle Key Blob Format (RSA Public Key)
	2.6.1.5 Signature Format (Proof)
	2.6.1.6 Key Generation Result
	2.6.1.7 Notes
	2.6.1.8 Return codes
	2.6.1.9 Returned data
	2.6.1.10 Issues

	2.6.2 SecureImportKeyEncrypted
	2.6.2.1 Function Parameters
	2.6.2.2 Required Authentication
	2.6.2.3 Definition
	2.6.2.4 Notes
	2.6.2.5 Return codes
	2.6.2.6 Returned data
	2.6.2.7 Issues

	2.6.3 CKYImportKey
	2.6.3.1 Function Parameters
	2.6.3.2 Required Authentication
	2.6.3.3 Definition
	2.6.3.4 Notes
	2.6.3.5 Return codes

	2.6.4 CKYComputeCrypt
	2.6.4.1 Function Parameters
	2.6.4.3 Required Authentication
	2.6.4.4 Definition
	2.6.4.5 Notes
	2.6.4.6 Returns
	2.6.4.7 Return codes

	2.6.5 CKYListKeys
	2.6.5.1 Function Parameters
	2.6.5.2 Required Authentication
	2.6.5.3 Definition
	2.6.5.4 Notes
	2.6.5.5 Returned data
	2.6.5.6 Return codes

	2.6.6 CKYCreatePIN
	2.6.6.1 Function Parameters
	2.6.6.3 Required Authentication
	2.6.6.4 Definition
	2.6.6.6 Notes
	2.6.6.8 Return codes

	2.6.7 CKYVerifyPIN
	2.6.7.1 Function Parameters
	2.6.7.3 Required Authentication
	2.6.7.4 Definition
	2.6.7.6 Notes
	2.6.7.8 Return codes
	2.6.7.10 Returns

	2.6.8 CKYChangePIN
	2.6.8.1 Function Parameters
	2.6.8.3 Required Authentication
	2.6.8.4 Definition
	2.6.8.6 Notes
	2.6.8.8 Return codes

	2.6.9 CKYListPINs
	2.6.9.1 Function Parameters
	2.6.9.3 Required Authentication
	2.6.9.4 Definition

	2.6.10 SecureSetPIN
	2.6.10.1 Function Parameters
	2.6.10.2 Required Authentication
	2.6.10.3 Definition
	2.6.10.4 Notes
	2.6.10.5 Return codes
	2.6.10.6 Returned data
	2.6.10.7 Issues

	2.6.11 CKYLogout
	2.6.11.1 Function Parameters
	2.6.11.2 Required Authentication
	2.6.11.3 Definition

	2.6.12 CKYCreateObject
	2.6.12.1 Function Parameters
	2.6.12.3 Required Authentication
	2.6.12.4 Definition
	2.6.12.6 Notes
	2.6.12.8 Return codes

	2.6.13 CKYDeleteObject
	2.6.13.1 Function Parameters
	2.6.13.2 Required Authentication
	2.6.13.3 Definition
	2.6.13.4 Parameters
	2.6.13.5 Notes
	2.6.13.6 Return codes

	2.6.14 CKYWriteObject
	2.6.14.1 Function Parameters
	2.6.14.3 Required Authentication
	2.6.14.4 Definition
	2.6.14.6 Notes
	2.6.14.8 Return codes

	2.6.15 CKYReadObject
	2.6.15.1 Function Parameters
	2.6.15.3 Required Authentication
	2.6.15.4 Definition
	2.6.15.6 Notes
	2.6.15.8 Return codes
	2.6.15.10 Returned data

	2.6.16 SecureReadIOBuffer
	2.6.16.1 Function Parameters
	2.6.16.2 Required Authentication
	2.6.16.3 Definition
	2.6.16.4 Notes
	2.6.16.5 Return codes
	2.6.16.6 Returned data
	2.6.16.7 Issues

	2.6.17 CKYListObjects
	2.6.17.1 Function Parameters
	2.6.17.3 Required Authentication
	2.6.17.4 Definition
	2.6.17.6 Notes
	2.6.17.8 Return codes
	2.6.17.9 Returned data

	2.6.18 CKYGetStatus
	2.6.18.1 Function Parameters
	2.6.18.3 Required Authentication
	2.6.18.4 Definition
	2.6.18.5 Return code

	2.6.19 CKYNoop
	2.6.19.1 Function Parameters
	2.6.19.2 Required Authentication
	2.6.19.3 Definition
	2.6.19.4 Return codes
	2.6.19.5 Returned data

	2.6.20 CKYGetRandom
	2.6.20.1 Function Parameters
	2.6.20.2 Required Authentication
	2.6.20.3 Definition
	2.6.20.4 Return codes
	2.6.20.5 Returned data

	2.6.21 CKYGetBuildID
	2.6.21.1 Function Parameters
	2.6.21.2 Required Authentication
	2.6.21.3 Definition
	2.6.21.4 Return codes
	2.6.21.5 Returned data

	2.6.22 CKYGetLifeCycle
	2.6.22.1 Function Parameters
	2.6.22.2 Required Authentication
	2.6.22.3 Definition
	2.6.22.4 Return codes
	2.6.22.5 Returned data

	2.6.23 CKYSeedRandom
	2.6.23.1 Function Parameters
	2.6.23.2 Required Authentication
	2.6.23.3 Definition
	2.6.23.4 Return codes
	2.6.23.5 Returned data

	2.6.24 CKYGetIssuerInfo
	2.6.24.1 Function Parameters
	2.6.24.2 Required Authentication
	2.6.24.3 Definition
	2.6.24.4 Return codes
	2.6.24.5 Returned data

	2.6.25 SecureSetIssuerInfo
	2.6.25.1 Function Parameters
	2.6.25.2 Required Authentication
	2.6.25.3 Definition
	2.6.25.4 Return codes
	2.6.25.5 Returned data

	2.6.26 CKYGetBuiltInACL
	2.6.26.1 Function Parameters
	2.6.26.2 Required Authentication
	2.6.26.3 Definition
	2.6.26.4 Return codes
	2.6.26.5 Returned data

	2.6.27 SecureSetLifeCycle
	2.6.27.1 Function Parameters
	2.6.27.2 Required Authentication
	2.6.27.3 Definition
	2.6.27.4 Return codes
	2.6.27.5 Returned data

	2.6.28 SecureSetBuiltInACL
	2.6.28.1 Function Parameters
	2.6.28.2 Required Authentication
	2.6.28.3 Definition
	2.6.28.4 Return codes
	2.6.28.5 Returned data

	3 CoolKey Object ID and Data Format
	4 Glossary

