Let []b be a mapping that maps OWL 2 DL axioms (and OWL expressions that are part of axioms) to (sets of) FOL
expressions. It has two (optional) parameters p, ¢, which we will use to keep track of substitutions that need to be made. When
the translation function is called on an axiom, the parameters are empty, i.e. p = ¢ = (). If a parameter is empty, we omit it
and, for example, write [E]P instead of [E]g The OWL expressions are based on the specification of the OWL 2 functional syntax
(OWLFS)*.

We use A, B as symbols for class expressions, and R for object property expressions (with and without indices). Ann are
annotations.

Axioms highlighted in [green' are already implemented and tested successfully. Yellow axioms are implemented, but not

tested satisfactorily. - axioms are not implemented yet.

1 Background Axioms

Va(owl:Thing(z) V rdfs:Literal(z)) | our domain consists of objects and data

Vrzowl: Thing — —rdfs:Literal Object domain and data domain are disjunct

Jzowl: Thing(x) There are things

Jxrdfs: Literal(x) The data domain is nonempty, too

Vo (C(x) — owl:Thing(x)) for root class C (i.e., a class that is not a subclass of anything)

Vay(P(z,y) — owl:Thing(x)
Vay(P(z,y) = owl: Thing(y)
Vay(P(z,y) = owl: Thing(x)
Vay(P(x,y) — rdfs:Literal(y
Vay(F(z,y) — rdfs:Literal(
Vay(F(z,y) — rdfs:Literal(
owl: Thing(a) for every individual a (redundant if a occurs in a class assertion / positive object property / positive data property
rdfs:Literal(l) for every literal I (redundant if [occurs in a positive data property axiom _)

) for every object property P (redundant if there is a domain axiom for P)
) for every object property P (redundant if there is a range axiom for P)

) for every data property P (redundant if there is a domain axiom for P)

) for every data property P (redundant if there is a range axiom for P)

)
x)) for every facet F' that occurs in the text

Y)) for every facet F' that occurs in the text

The following axioms need only to be added, if the corresponding owl keyword is used.

owl:Nothing Va—owl:Nothing(x)

owl:topObjectProperty Vxy(owl:topObjectProperty(x,y) < (owl: Thing(x) A owl:Thing(y))
owl:bottomObjectProperty | Yxy—owl:bottomObject Property(x,y)

owl:topDataProperty Vay(owl:topObject Property(x,y) <> (owl:Thing(x) A rdfs:Literal(y))

owl:bottomDataProperty Vay—owl:bottomDataProperty(x,y)

Thttps://wuw.w3.org/TR/owl2-syntax/

The following axioms need only to be added, if the datatype DT is used.
V(DT (x) — rdfs:Literal(x))

The OWL standard allows user-defined datatypes (Datatypes are just IRIs), but the datatypes that are explicitly supported by
OWL (and, thus, are commonly used) are: owl:real, owl:rational, xsd:decimal, xsd:integer, xsd:nonNegativelnteger, xsd:nonPositivelnteger,
xsd:positivelnteger, xsd:negativelnteger, xsd:long, xsd:int, xsd:short, xsd:byte, xsd:unsignedLong, xsd:unsignedInt, xsd:unsignedShort,
xsd:unsignedByte, rdf:PlainLiteral, xsd:string, xsd:normalizedString, xsd:token, xsd:language, xsd:Name, xsd:NCName, xsd:NMTOKEN,
xsd:boolean, xsd:hexBinary, xsd:base64Binary, xsd:anyURI, xsd:dateTime, xsd:dateTimeStamp, rdf: XMLLiteral.

There are relationships between these datatypes that may be expressed as first-order axioms (e.g., owl:rational is a subclass
of owl:real). We can add these later.

2 Logical Axiom Visitor

2.1 Class Expression Axioms

Corresponds to section 9.1. in OWLFS.

Name ‘ E ‘ [E]P
Subclass Axiom SubClassOf(Ann, A,B) Vz([A]* — [B]*) new variable x; skip Ann for now
Equivalent Classes | EquivalentClasses(Ann, A, B) Vz([A]* < [B]*) new variable x; skip Ann for now
Disjoint Classes DisjointClasses(Ann,A,B) Vz—([A]" A [B]®) new variable x; skip Ann for now
Disjoint Union DisjointUnion(Ann, A, By, ..., B,) | removed by OWL API during preprocessing

For Disjoint Classes, we only need the Binary Case, because the OWL API is able to map DisjointClasses(Ann, A1, ..., 4,)

to a set of pairwise DisjointClasses- Axioms.

2.2 Object Property Axioms
Corresponds to section 9.2. in OWLFS.

E(OWL...Azxiom)

[ETg

q

Note on Functional Object Properties: We chose not to translate them as functions in FOL, but instead treat them as binary
predicates (as with any other object property). This is because mapping all functional roles to functions in FOL would be

SubObjectPropertyOf(Ann, Ry, Ra)

R; and Ry can be Object Properties or...
EquivalentObjectProperties(Ann, Ry, Rs)
DisjointObjectProperties(Ann, Ry, Ro)
InverseObjectProperties(Ann, Ry, Rs)

ObjectPropertyDomain(Ann, R, A)
ObjectPropertyRange(Ann, R, A)
FunctionalObjectProperty(Ann, R)
InverseFunctionalObjectProperty(Ann, R)

ReflexiveObjectProperty(Ann, R)
IrreflexiveObjectProperty (Ann, R)
SymmetricObjectProperty(Ann, R)
AsymmetricObjectProperty(Ann, R)
TransitiveObjectProperty(Ann, R)

Vo, y([Ri]y — [Raly)

Property Expression Chains

Va, y([Ri]y < [Rely)

Vo, y=([Ra]y A [Rey)

[Equivalent Properties(Ann, (Ry),
ObjecthwerseOf(Rg))]}17

va, y([Rly — [A]")

Va, y([R]y — [A]Y)

Va,y, 2(([Rly A [R]D) =y = 2)
[FunctionalObject Property(Ann,

ObjectInverseO f(R))]b

v ([R])

Ve ([R];)

v, y([Rly — [R])

Ve, y=([Bly A [RI)
v, y, z(([R]y A [R]Y) = [R])

Y

incorrect, since in standard FOL functions are total, but in OWL functional roles do not need to be total.

If R is a total functional role in some OWL ontology and the user wishes to link it to some function f, which occurs in FOL

annotations, this may be achieved by adding the following FOL axiom as annotation:

(forall x (forall y (iff R xy) (= (fx) ¥y)))))

2.3 Data Property Axioms
Corresponds to section 9.3. in OWLFS.

skip Ann for now

skip Ann for now

skip Ann for now

skip Ann for now
skip Ann for now

skip Ann for now

skip Ann for now
skip Ann for now
skip Ann for now
skip Ann for now

skip Ann for now

E

(BT

SubDataPropertyOf(Ann, Ry, Ra)
EquivalentDataProperties(Ann, Ry, Rg)
DisjointDataProperties(Ann, Ry, R2)
DataPropertyDomain(Ann, R, A)
DataPropertyRange(Ann, R, DR)
FunctionalDataProperty(Ann, R)

2.4 Assertions Axioms

Corresponds to section 9.6. in OWLFS.

Vz,y([Raly = [Raly)
vz, y([Raly < [Raly)
Va,y=([Raly A [Raly)
vV, y([R]y — [A]")

v, y([R]; — [DR])

Va,y,2(([R]3 A [RIE) = y =

z)

skip Ann for now
skip Ann for now
skip Ann for now
skip Ann for now
skip Ann for now

skip Ann for now

Name

2.5 Other Axioms

Name

E

Samelndividual Axiom(a,b)
DifferentIndividualsAxiom(a,b)
ClassAssertionAxiom(Ann,A,b)

ObjectPropertyAssertionAxiom(Ann,R,a,b)
NegativeObjectProperty AssertionAxiom(Ann,R,a,b)
DataPropertyAssertionAxiom(Ann,R,a,l)
NegativeDataPropertyAssertionAxiom(Ann,R,a,l)

[E]? oder rekursiv owl

a=Db

al=b

[A]b skip Ann for now
[R]¢ skip Ann for now
-[R]g skip Ann for now
[R]}! skip Ann for now
—[R]f skip Ann for now

E [E]D

HasKey(A (By...Bm) | V&,4, 21,y Zm, W1, - . ., Wi (([A]" A[A]Y A [Bl]”zc1 AN [Bm]fm A

(Dy...Dy)) [B1]Y, A ... ABnlY A [Dilg, Ao A[Dpls, A D18, Ao A
[Dn]%un) —z=y)

DatatypeDefinition(Ann, | Vz([DT]* < [DR]")

DT, DR)

in OWLFS.
skip for now

skip for now, section 9.4

3 Class Expression Visitor

Corresponds to section 8 in OWLFS.

3.1 Individuals

Name

E [E]]
ObjectIntersectionOf (Ay1,..., A,) | ([A1]h A ... A[AL]D)
ObjectUnionOf (4;,...,4,)

ObjectComplementOf(A)
ObjectOneOf(ay, ..., a,)

3.2 Object Property Restrictions

Name

| E

| [E]E |

ObjectHasValue(R,a)
ObjectHasSelf(R)

Remark: owl: Thing has been added to ObjectAllValuesFrom in PR

ObjectSomeValuesFrom(R,A)
ObjectAllValuesFrom(R,A)

Jz([R]E A [A]F) new variable
Va(owl:Thing(p) A ([R]E2 — [A]*))
R
R

new variable x

—~

AShS ISR]

19

=

3.3 Object Property Cardinality Restrictions

Name

E

[E]P oder rekursiv owl

ObjectMinCardinality(n,R,A)
ObjectMaxCardinality(n,R,A)

ObjectExactCardinality(n,R,A)

Fzq, .., xp(Tr F oA AT F Ty AT F X3 N AN Ty F Ty
AAF AN TA] A[REAN N R]E)

Yoy, T (([A] A A TAJP AR AL A [R]E L)

= (1 F oA NI F Ty 1 ATy FX3N ATy F Tg1))
[ObjectIntersectionOf(ObjectMinCardinality (n,R,A),
ObjectMaxCardinality(n,R,A))]?

3.4 Data Property Restrictions

Name | E | [E] |

DataSome ValuesFrom DataSomeValuesFrom(DPE,DR) | 3z([DPE]2 A [DR]") new variable x, see remark below
DataAllValuesFrom DataAllValuesFrom(DPE DR) Va(owl:Thing(p) A ([DPE® — [DR]*)) | new variable x, see remark below
Literal Value Restriction | DataHasValue(DPE,]) [DPEY

Remark: owl:Thing has been added to DataAllValuesFrom in PR #19.
Technically, OWL 2 allows more than one data property expressions to occur, i.e., DataSomeValuesFrom(DPE;. .. ,DPE,, ,DR)
is valid. But since in OWL 2 data ranges are unary, this feature is not supported by OWL 2 DL.

3.5 Data Property Cardinality Restrictions
Name E (£

Minimum Cardinality | |DataMinCardinality(n, DPE, DR) Fzq, . xp(Tr F e A AT ATy AT F X3N AT F Ty

ADR]* A ... N[DR]*™ N[DPER A...N[DPE,)

Maximum Cardinality | | DataMaxCardinality(n, DPE, DR) Vi, .. 21 (DRI AL A [DR]* 2 A[DPEJR A...A[DPEJ)

=1 #F T2 N AT F Tl AT A T3 A ATy F Tpy1))

Exact Cardinality DataExactCardinality(n, DPE, DR) | [DataMinCardinality(n, DPE, DR)]? A [DataM axCardinality(n, DPE, DR]?

4 Property Expressions

Corresponds to section 6 in OWLFS.
This is translated by the Property Expression Translator.
Name ‘ E ‘ [E]D ‘
InverseObjectProperty ‘ inverse P ‘ [P]] ‘

5 Data Ranges

Corresponds to section 7 in OWLFS.

E [E;
DatalntersectionOf(DRy, ..., DR;,) [DR1]DA ... N[DR,JB
DataUnionOf(DRy,...,DR,) [DRyJ)V ...V [DR,]?

DataComplementOf(DR)
DataOneOf(ly, ..., 1)
DatatypeRestriction(DT, Fy Iy ... Fy, 1,)

—[DR]} Ardfs : Literal(p)

(DT A[EFL] A AT

6 Entities, Literals, and Anonymous Literals

Corresponds to section 5 in OWLFS.
Name

individual names and anonymous individual names are mapped to individual constants.

Example:

Class: Frog
SubClassOf:

Green and hasPart some Leg

[SubClassO f(Frog, OIntersectionO f(Green, OSomeV aluesFrom(hasPart, Leg)))]
<=> Vz([Frog]* — [OIntersectionO f(Green, OSomeV aluesFrom(hasPart, Leg))]*)

E [ETg
C C(p)
DT DT(p)
P P(p,q)
propertyExpressionChain(Ry, ...R,) | 3x1,22,...,2n_1([R1]5, A [Ra]7} | can be used instead of object
A AR properties for a subObjectProperty Axiom

P P(p,q)

skip for now
F F(p,q)
a
a a
1 1

skip for now, used for background axioms

Class names are mapped to unary predicates (on objects), object property names to binary predicates (on objects). Both

/\/\/”\/\/\
V VYV VYV

OlIntersectionO f(Green, OSomeV aluesFrom(hasPart, Leg))]*)
[Green])® A [OSomeV aluesFrom(hasPart, Leg)]”))

Green(z) A [OSomeV aluesFrom(hasPart, Leg)]*))

Green(z) A Jy([hasPart]; A [Leg]¥)))

Green(z) A Jy(hasPart(x,y) A Leg(y))))

