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Executive Summary 
The paper proposes extensions to cryptographic hash algorithms, such as 

SHA, that add support for parallel processing of a single message.  The 

goal is to take concepts from tree hashing and apply the parallel 

performance benefits to a single data buffer in a single threaded core of a 

modern microprocessor. Additionally, a method for applying the Multi-

Hash concept to HMAC is suggested. 

 The paper describes the overall design of the Multi-Hash extensions, 

delves into details of a proposed implementation, and presents a 

summary of the performance of some versions of the code. With our 

implementation, a single core of an Intel® Core™ i7 processor 2600 

with Intel® HT Technology can compute Multi-Hash SHA-256 of a 

1MB buffer at the rate of ~5 cycles/byte1 , which is over 2X faster 

than the best known SHA-256 single buffer implementations. 

The Intel® Embedded Design Center provides qualified developers with 

web-based access to technical resources. Access Intel Confidential design 

materials, step-by step guidance, application reference solutions, training, 

Intel’s tool loaner program, and connect with an e-help desk and the 

embedded community. Design Fast. Design Smart. Get started today. 

http://www.intel.com/p/en_US/embedded.  

                                                     
1 Software and workloads used in performance tests may have been optimized for 
performance only on Intel microprocessors.  Performance tests, such as SYSmark and 
MobileMark, are measured using specific computer systems, components, software, 
operations and functions.  Any change to any of those factors may cause the results to 
vary.  You should consult other information and performance tests to assist you in 
fully evaluating your contemplated purchases, including the performance of that 
product when combined with other products.   
Configurations: Refer to the Performance of Multi-Hash section on page 9.  For 
more information go to http://www.intel.com/performance. 
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Overview 
Cryptographic hashes such as MD5, SHA1, SHA256 and SHA512 [1] are 
expensive in terms of computation on general purpose processors. They work 
on a single buffer of data sequentially, updating a hash digest state with the 
computations derived from each data block, using a number of rounds of 
processing that are dependent on each other. The sequential processing of 
the blocks of a single buffer seriously limits the performance on modern 
processors. Methods such as multi-buffer processing using vector Single 
Instruction Multiple Data (SIMD) units have been proposed [2] for better 
performance on usages where it is possible to work on multiple independent 
data buffers. However these are not applicable to usages of hashing a single 
buffer.  Tree hashing has been around for many years [3], however, its usage 
has generally evolved to be thought of across multiple cores or engines.  We 
aim to take the concepts of tree hashing and apply them to the goal of the 
highest possible performance on a single buffer in a single thread of a single 
core of a modern microprocessor.  

In this paper, we describe a set of extensions to existing or future 
cryptographic hash algorithms that can achieve multi-buffer performance on 
a single buffer at comparable security strengths of the underlying hash 
algorithm, and generate a (different) digest of the same size as the original 
hash algorithm. The performance gains will be roughly proportional to the 
SIMD data-path width of the processor.  

Some critical usages that require fast hashing of a single buffer are: 

• Secure loading of files during boot/resume of a system 

• Streaming applications where it is infeasible to buffer many streams for 
later processing 

The basic idea behind Multi-Hash is to treat the single buffer as a set of 
interleaved independent buffers, which we call segments, and generate a 
number of independent hash digests for those segments in parallel. We use 
the notation xi to denote treating the data buffer as a set of i interleaved 
segments, where i > 0. It is expected that for efficiency i will be a power of 2. 
The set of digests from the parallel segments are then hashed to form a final 
digest of the same size as the original underlying hash algorithm.  The 
method of interleaving the data at a fine granularity is one of the main 
differences of Multi-Hash and current tree-hashing implementations, which 
tend to break buffers down into blocks or greater. 

This technique is meant to accelerate processing of hashing a single data 
buffer on a single thread of a single core of a modern microprocessor.  
However, the technique can easily be defined to be across multiple cores of a 
microprocessor for a second level of parallelism and performance. 
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Definition of Multi-Hash 
We define Multi-Hash extensions formally in this section. One of the 
considerations in defining these extensions is how to hash a data buffer of 
any arbitrary length, given that the underlying hash algorithm works on 
blocks of a specific size (e.g. 64 Bytes). The standards that define these 
algorithms specify a padding scheme, whereby the buffer is typically 
extended with some bytes comprising a fixed pattern and the length of the 
buffer, to make the padded buffer the smallest multiple of the block-size. 

Let us denote the hash algorithm as H, the number of parallel segments as S, 
the block-size as B bytes, digest-size as D bytes and width of the data words 
specified in the algorithm as W bytes (where B is a multiple of W). 

The following proposed schemes can be considered: 

1. Pad the buffer with the fixed pattern concatenated with length until the 
total length is a multiple of B*S. Now we can process this buffer efficiently 
with S-way SIMD processing, generating S digests. We treat the set of 
digests as another data buffer of length S*D, and then generate a final hash 
of size D. 

2. We hash the largest region of the buffer whose length is a multiple of 
B*S, in parallel, generating S digests. We treat the set of digests 
concatenated with the rest of the buffer as a new data buffer, and then 
generate a final hash of size D. 

3. We pad each segment to its nearest multiple of B bytes, and then process 
that buffer with S-way SIMD processing, generating S digests. Here the per-
segment padding is done with the standard padding.  One downfall with this 
approach is some segments may have a different padded length than other 
segments. We treat the set of digests as another data buffer of length S*D, 
and then generate a final hash of size D in a single buffer fashion. 

Other variations are possible, but not as efficient as option 1. Option 1 is 
therefore our primary proposal for Multi-Hash.  

 

 

 



Multi-Hash: A Family of Cryptographic Hash Algorithm Extensions 

6    

Multi-Hash Scheme to Extend Hash 
Algorithm H 

Consider a hash algorithm H that is defined to work on an integral number of 
blocks of size B bytes each. Let us denote the associated padding function as 
PadH (Message, Length of Message, Block-size B), which extends the message 
with a pre-determined pattern and a concatenation of the message length, to 
the smallest length that is a multiple of B bytes. 

For a message M0 of length L to be hashed with a given level of parallelism S, 
we formally define the process of Multi-Hash as follows (where the || symbol 
denotes concatenation): 

1. Apply PadH(M0, L, B*S) to message M0, generating M0’of length L’. L’ is 
the smallest length that we can extend M0 to, that is a multiple of B*S bytes. 

2. Divide the padded message M0’ from step 1 into S segments each of 
length L’/S.  The padded message M0’ is divided in an interleaved fashion 
such that every word size W-bits of M0’ is assigned to a different segment.  
Each segment is represented as an array of W-bit words:   

Seg0 = M0’[0] || M0’[S] || M0’[2S] || … 

Seg1 = M0’[1] || M0’[S+1] || M0’[2S+1] || … 

… 

SegS-1 = M0’[S-1] || M0’[(2S-1)] || M0’[(3S-1)] || … 

Where each M0’[n] is a word size W index into the padded message. 

3. Generate S leaf-level digests on the segments as Dk = H(Segk) for 
k=0…(S-1) 

4. Create a new message M1 by interleaving the resultant digests from step 
3 by every word size W-bits.  Let M1 = D0 [0] || D1[0] … || D(S-1)[0]  || D1[1]  
… || D(S-1)[(D/W)-1]. Where each Dk[n] is a word size W index into a 
segment’s digest.  Generate padded M1’ as PadH(M1, S*D, B) 

5. Return H(M1’) 

For example, SHA-1 on a SIMD capable microprocessor with 128-bit registers 
would have the following parameter settings: B=64 Bytes, W=4 Bytes, S=4, 
D=20 Bytes.  
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Figure 1. x4 (S=4) Multi-Hash Segmentation of Message M0 

 

 

Figure 2. x4 (S=4) Multi-Hash depiction of digests with padding into M1’ for 
final hash 

 

The method defined has benefits that tree hashing across 
buffers/cores/engines misses. For instance, the data aligned in memory is 
read directly into SIMD registers without the need for transposing.  The 
method also allows data being streamed (i.e. from a network connection) to 
be fed directly into the Multi-Hash function without the need for knowing the 
length of the buffer at start time.  One large advantage is that single thread 
applications do not have to be modified (other than at the hash algorithm 
level) to take advantage of greater performance due to parallelism. 
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Picking a Specific Multi-Hash 
Function in the Family of Extensions 

The new hash functions can be ordered based on compute/security 
considerations, and the current (possibly ordered) list of cryptographic hash 
algorithms in various protocols/standards can be augmented with these 
extensions (e.g. SHA1x4,  SHA1x8,  SHA256x4,  SHA256x8, …). 

For usages of verifying signatures of files that are securely loaded, the 
signing entity has to replace the current cryptographic hashing algorithm of 
the chosen security (e.g. SHA256), with one of the compatible extensions 
that is most efficient to compute for verification. For instance, if the verifying 
entity has a 128-bit SIMD data-path execution unit in its processor core, and 
if we wanted a SHA256 strength digest, it would ideally prefer SHA256x4 (as 
the SHA256 algorithm is 32-bit based, on a 128-bit SIMD execution unit we 
can process 128/32 = 4 segments, in parallel). Thus instead of using one of 
the currently used 32-bit algorithms {MD5, SHA1, SHA256}, the verifying 
entity would prefer {MD5 x8, SHA1 x4, SHA256 x4} respectively. MD5 is a bit 
unique in the sense that although we need only 4 segments from a 128-bit 
SIMD perspective, the algorithm has a very constrained data-dependency 
chain which makes it difficult to get the best throughput of execution units 
without additional parallelism. 

One interesting challenge that arises is that there may be many verifying 
devices of different computation strengths, and the signing entity has to find 
the level of parallelism that works for the majority of its verifying devices. 
Our scheme does not require the server to estimate this very accurately, as 
we can always create a larger level of parallelism while signing, and have the 
verifying agents perform a multi-pass approach during verification if their 
SIMD or hardware capability cannot process as many segments as specified, 
all at once.  For example, a signer can use a x4 scheme while a verifying 
agent could do two passes of a x2. 

There could be some loss of efficiency if too many passes are needed, due to 
managing multiple state variables of the digests. Note that data can still be 
brought in efficiently in a streaming manner just once, however, the 
application will need to cycle though the sets of state variables. For instance, 
assume a client device does not have a SIMD unit at all, and needs to 
perform simple scalar operations to process a SHA256x4 hash. Instead of 
working with 1 set of SHA256 state variables (32 Bytes), it will 
simultaneously work on 4 such copies of state variables (128 Bytes), cycling 
through them as it processes words from the data buffer. This increase in 
state size is very small. A possible concern would be the working-set size 
increase associated with message schedules for a block (for SHA). If this 
increase in working-set size is problematic, one could choose to store 4 
blocks of data and strictly work on one interleaved block at a time. Many 
other variations are possible, and we believe these methods will permit any 
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device to process a parallel hash signature efficiently without undue burden.  
The exception in these scenarios would be using a fixed hardware engine 
designed to perform the entire hash function, including padding, on a given 
buffer/length input. Unless the padding designed in the parallel Multi-Hash 
implementation was exactly the same as the hardware, the same result could 
not be calculated. However, if the hardware engine works on a per block 
basis or has a mode that does not include padding, then it can be used to 
perform multi-hash. 

Based on the above considerations, we do not recommend always picking a 
very large number, such as x32 or x64. For instance, if most current devices 
are capable of x4, it would be reasonable to pick something like x8 to take 
advantage of the future possibility of increased SIMD data-path. 

Performance of Multi-Hash 
Multi-Hash provides a several factor performance gain for large message 
sizes.  For workloads with buffers typically below 1KB, the parallelization 
benefits of Multi-Hash will start to diminish.  Application or secure protocol 
designers can consider using the underlying hash function for small messages 
and use Multi-Hash for larger messages to achieve optimal performance. 

The Multi-Hash implementation was run on an Intel® Core™ i7 processor 
2600. The tests were run with Intel® Turbo Boost Technology off. 

Methodology 
We measured the performance of the functions on data buffers of size 1 MB. 
We called the functions to hash the same buffer a large number of times, 
collecting many timing measurements. We discarded the first and last 1/8th 
samples, sorted the timings, and then discarded the largest/smallest quarter, 
leaving the remaining quarter to be averaged.  

The timing was measured using the rdtsc() function which returns the 
processor time stamp counter (TSC). The TSC is the number of clock cycles 
since the last reset. The ‘TSC_initial’ is the TSC recorded before the function 
is called. After the function is complete, the rdtsc() was called again to 
record the new cycle count ’TSC_final’. The effective cycle count for the called 
routine is computed using  

# of cycles = (TSC_final-TSC_initial). 

A large number of such measurements were made and then averaged as 
described above to get the number of cycles. Finally, that value was divided 
by the buffer size to express the performance in cycles per byte. 

Note: Software and workloads used in performance tests may have been optimized 
for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, 
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components, software, operations and functions. Any change to any of those 
factors may cause the results to vary. You should consult other information 
and performance tests to assist you in fully evaluating your contemplated 
purchases, including the performance of that product when combined with 
other products. 

Note: For more information go to http://www.intel.com/performance  

Results 
The performance of this family of hash functions is expected to be roughly 
the same as a multi-buffer method. In fact, it is expected to be a little better 
for at least the following reasons:  

• No scheduling of buffers (of possibly different lengths) in a queue 

• Ideal interleaved layout that permits a streaming access of data and maps 
directly to SIMD execution units without requiring transpose operations on 
the data 

Figure 3. SHA-256 and MD5 Single Buffer (Blue) vs. Multi-Hash (Red) 
Performance in Cycles/Byte2 

 

                                                     
2 Software and workloads used in performance tests may have been optimized for performance 
only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are 
measured using specific computer systems, components, software, operations and functions.  
Any change to any of those factors may cause the results to vary.  You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products.   
Configurations: Refer to the Performance of Multi-Hash section on page 9. For more information 
go to http://www.intel.com/performance. 
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For SHA256, it can be seen that the SHA256x4 Multi-Hash provides ~2.6X 
performance gain over the best SHA256 algorithm computation on a 
reasonably sized 1MB data buffer [4]. 

For MD5, the ideal parallelism is actually larger than the SIMD width due to 
the latencies of execution and tight data dependency chain of the round 
function. Therefore MD5 shows ~4.4X3 performance gain with Multi-Hash 
(utilizing a Multi-Hash x8 as opposed to a Multi-Hash x4 that would be ideal 
for SHA1/SHA256). 

It is interesting to observe that even with a 128-bit SIMD, SHA256 Multi-Hash 
performance is better than the single-buffer performance of the fastest still 
widely-used cryptographic hash algorithm MD5. We expect Multi-Hash 
performance to scale proportional to increasing SIMD data-path widths of 
future processors. 

Security of Multi-Hash 
It can be seen that our proposed method is a special case of tree-mode 
hashing, where, at the leaf-level we hash interleaved words of the data 
buffer, and in a 2nd level we hash the ordered set of hash digests. We perform 
padding at both levels of the tree, derived from the standard for the 
underlying hash function. The fan-out of the tree is S. We hypothesize that 
the resulting digest from Multi-Hash is at least as secure and collision-
resistant as the digest obtained by a direct application of the underlying hash 
function. 

SHA-3 Candidates 
In addition to the most commonly used hash functions today, Multi-Hash 
extensions should work for the new SHA3 candidates as well.  

The definition of Multi-Hash aligns closely with the tree hashing parameters 
outlined by the Keccak team in [5].  In [6], the Keccak team describes the 
tree hashing parameter values for a 128-bit data path SIMD implementation 
of Keccak as (G=LI, H=1, D=2, B=64, C=c=576).  Trying to keep within a 
similar framework for Multi-Hash, the D value is equal to S, the number of 
segments.  G would always be equal to LI, H is 1, and B would be equal to 

                                                     
3 Software and workloads used in performance tests may have been optimized for performance 
only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are 
measured using specific computer systems, components, software, operations and functions.  
Any change to any of those factors may cause the results to vary.  You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products.   
Configurations: Refer to the Performance of Multi-Hash section on page 9. For more information 
go to http://www.intel.com/performance. 
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the word size in bits (e.g. 32 for SHA1/2).  The chaining value, C, would be 
equal to digest size in bits (e.g. 256 for SHA256). 

Multi-Hash and HMAC 
Hash-based message authentication code (HMAC) is a mechanism for 
creating a message authentication code (MAC) using a cryptographic hash 
function with the combination of a message and secret key [7].  Secure 
network connections, using protocols such as IPSec and TLS, make use of 
HMACs to ensure a message has been received correctly from the expected 
sender.  In scenarios where messages may be large, performance may be 
improved if the HMAC is calculated in a parallel manner.  Using the notation 
from the FIPS-198 specification, with the addition of parameter MH being an 
approved Multi-Hash function, we define the Multi-Hash HMAC function as 
follows: 

1. If the length of K=B: set K0 = K.  Go to step 4. 

2. If the length of K > B: hash K to obtain an L byte string, then append 
(B-L) zeros to create a B-byte string K0 (i.e., K0 = H(K) || (00..00).  
Go to step 4. 

3. If the length of K<B: append zeros to the end of K to create a B-byte 
string K0 (e.g., if K is 20 bytes in length and B=64, then K will be 
appended with 44 zero bytes 0x00). 

4. Exclusive-Or K0 with ipad to produce B-byte string: K0 ⊕ ipad. 

5. Apply H to the string generated in step 4: H(K0 ⊕ ipad). 

6. Use the final state of step 5 as the initial state for each segment in the 
application of MH to the stream of data ‘text’: MH(text) (e.g., the 
initial state variables of the underlying hash used by each segment 
within the Multi-Hash are set to the final state of H(K0 ⊕ ipad) as 
opposed to using the published initial constants).  Note the initial state 
for step 6 may not be the actual hash result of step 5 (e.g. SHA-224, 
use all 256 bits of state). 

7. Exclusive-Or K0 with opad to produce B-byte string: K0 ⊕ opad. 

8. Append the result from step 6 to step 7: (K0 ⊕ opad)|| MH(text) 

9. Apply H to the result from step 8: H((K0 ⊕ opad)|| MH(text)) 

10. Select the leftmost t bytes of the result of step 9 as the MAC 
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Figure 4. HMAC Construction with Multi-Hash 

 
In step 6, we can define MH in two different ways.  We can use MH as the 
two step process that appends a single digest to the outer portion in step 8, 
or we could use MH as a one step process and append the S digests to the 
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outer portion.  We propose using the latter option of appending all S digests 
to K0 ⊕ opad in step 8. 

Another alternative in the derivation of K0 is to divide the key into S chunks, 
and perform S different hashes in step 4 to provide a different initial state to 
each of the S segments in the MH of step 6. 

Conclusion 
We propose a family of extensions of the widely used cryptographic hashes, 
called Multi-Hash, which can greatly accelerate the hashing of a single data 
buffer through parallel processing. The usage of the Multi-Hash family of 
algorithms is expected to be very beneficial in the case where we have a 
single core (single thread of execution) processing data buffers one at a time. 
We expect the security/collision properties of the scheme to be comparable to 
that of the underlying hash function. Though we generate a digest of the 
same size/strength as the underlying hash function, we expect to generate a 
different one, and therefore require a new standard for Multi-Hash extensions 
that can then be adopted into higher-level protocols/standards. Performance 
gains of over 4X4 are possible on current processors that offer 128-bit SIMD 
execution units, and we expect performance to scale roughly proportional to 
the SIMD data-path width of future processors. 
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4 Software and workloads used in performance tests may have been optimized for performance 
only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are 
measured using specific computer systems, components, software, operations and functions.  
Any change to any of those factors may cause the results to vary.  You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products.   
Configurations: Refer to the Performance of Multi-Hash section on page 9. For more information 
go to http://www.intel.com/performance. 
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