
D
RA
FT

sllin – TTY discipline for UART-LIN
device implementation

P. Ṕı̌sa, R. Lisový, M. Sojka
Czech Technical University in Prague

August 27, 2012
Version f510653

D
RA
FT

Abstract

This document describes sllin– TTY line discipline for GNU/Linux operating system
that allows it to communicate over LIN bus interfaced via serial port (UART) and a
simple logic level converter.

The API and ABI defined in this document are subjects to future changes.

D
RA
FT

Contents

1 Introduction 4
1.1 Glossary . 4
1.2 TTY line discipline . 5

2 Using sllin 6
2.1 Compilation . 6
2.2 Loading the module . 6
2.3 Attaching sllin to the UART interface . 7
2.4 Sllin operation . 7

2.4.1 Master mode . 8
2.4.2 Slave mode . 9
2.4.3 Error reporting . 9
2.4.4 Frame cache . 9
2.4.5 Examples . 10
2.4.6 Configuration . 11

3 Implementation details 13
3.1 Experienced problems . 13
3.2 Break signal generation . 13

4 Hardware 15

5 Tests 16
5.1 Communication with of-the-shelf LIN devices 16
5.2 Proper timing observation . 16

6 Conclusion 18
6.1 Acknowledgment . 18

3

D
RA
FT

1 Introduction

The LIN-bus (Local Interconnect Network) is a vehicle bus standard or computer net-
working bus-system used within current automotive network architectures.

It is possible to use serial port (UART) combined with simple logic level converter to
interface with the LIN bus.
sllin is TTY line discipline implemented for GNU/Linux operating system that han-

dles the interchange of LIN messages between the underlying UART driver and the CAN
bus subsystem. This way, the same API as the one used for CAN networking can be
used for communication with LIN devices.

1.1 Glossary

This section introduces the terms which are essential to understand this document. More
complete glossary can be found in LIN specification1.

Cluster
A cluster is defined as the LIN bus wire and all the nodes connected to it.

Frame
All transmitted information is packed into frames; a frame consist of a header and
a response.

Header
A header is the first part of a frame and contains a protected identifier. It is always
sent by the master task.

Master node
The master node is a node that contains a master task. Besides that, master node
also contains zero or more slave tasks.

Master task
The master task is responsible for sending all headers on the bus, i.e. it controls
the timing on the bus. Its implementation is usually based on a schedule table.

Note: The current sllin’s task model does not correspond to the task model
of LIN specification. In sllin, it is possible to have multiple Linux tasks (or
processes) that serve as master tasks.

1To be downloaded from http://www.lin-subbus.de/

4

http://www.lin-subbus.de/

D
RA
FT

1 Introduction

Node
Loosely speaking, a node is a LIN device.

Protected identifier
An eight-bit value containing the frame identifier together with its two parity bits.

Response
Response is the second part of the frame. It is transmitted after the header.

Slave node
A node that contains slave task(s) only, i.e. it does not contain a master task.

Slave task
The slave task listens to all headers on the bus. Depending on the identifier of the
received header it either publishes a frame response, or it receives the responses
published by another slave task, or it ignores the header.

1.2 TTY line discipline

TTY line discipline is a code that implements a specific protocol on an UART interface.
The TTY line discipline interacts with the Linux TTY (terminal) subsystem.

To use the protocol, the line discipline needs to be attached to a TTY by passing its
identifier (defined in include/linux/tty.h) to ioctl(fd, TIOCSETD, &tty disc nr)

system call.

5

D
RA
FT

2 Using sllin

2.1 Compilation

To successfully compile sllin, it is necessary to have the source code of Linux kernel
actually running on the computer.

Compilation of sllin code can be configured by changing the values of two prepro-
cessor symbols:

� DEBUG – when defined, sllin logs debugging information into kernel log.

� BREAK BY BAUD – when defined, sllin generates break signal by changing the baud
rate (and transmitting 0x00 character). Otherwise, the break signal is generated
by manual setting of TX signal for short period of time. Both approaches are
described in more detail in section 3.2.

To compile sllin, run

$ make

2.2 Loading the module

The sllin module can be loaded as any other Linux kernel module by modprobe or
insmod utilities. Run time behavior of the module can be changed by setting the fol-
lowing module parameters:

maxdev
Optional parameter.
Possible values: unsigned int.
Defines the maximum number of sllin interfaces. Default is maxdev = 4.
When maxdev < 4, maxdev = 4.

master
Optional parameter.
Possible values: 0 or 1.
Determines whether the LIN interface will be in master or slave mode (1 = master,
0 = slave).
Default is master = 1.

6

D
RA
FT

2 Using sllin

baudrate
Optional parameter.
Possible values: unsigned int.
Determines the baudrate of the LIN bus.
Default is baudrate = 19200.

2.3 Attaching sllin to the UART interface

There are several ways how sllin could be attached to the particular UART interface:

1. Writing sllin-specific utility

2. Using modified slcan attach utility – it is sufficient to change only the number
identifying slcan TTY discipline to the one of sllin TTY discipline.

3. Using ldattach utility from util-linux package

The last possibility is the easiest one and is used in the following examples. The only
disadvantage is that the user has to know the number identifying sllin TTY discipline
(which may vary in time, as new line disciplines are added to the Linux kernel).

To attach sllin to /dev/ttyS0 interface, use

ldattach 25 /dev/ttyS0

This opens the device and attaches particular line discipline. The program then goes
into the background keeping the device open to keep the line discipline attached.

To detach sllin from TTY, it is necessary to kill ldattach.

Initialization of sllin network interface After successful attachment of sllin to an
UART interface, it is necessary to activate the newly created network interface:

ip link set sllin0 up

ip link show dev sllin0

11: sllin0: <NOARP,UP,LOWER_UP> mtu 16 qdisc pfifo_fast state UNKNOWN qlen 10

link/can

2.4 Sllin operation

From high-level view sllin operates as follows. After loading the kernel module and
attaching the TTY line discipline to an existing UART interface, a new network interface,
e.g. sllin0, is created (note that the number of the created sllin interface may be
different). From the application’s point of view, this interface presents the traffic received
from LIN bus (i.e. UART RX) as CAN traffic and transforms the CAN frames sent to
it by applications into LIN frames on the bus.

7

D
RA
FT

2 Using sllin

2.4.1 Master mode

In Master mode, sllin operates according to the following rules. Each rule is illustrated
with a simple sequence diagram.

1. LIN header is sent to the LIN-bus after receiving SFF RTR CAN frame from an
application.
(LIN id = can id).

App/Socketcan sllin LIN bus

SFF RTR frame Header

2. LIN header immediatelly followed by LIN response is sent to the LIN bus after
receiving SFF non-RTR CAN frame from an application.
(LIN id = can id; LIN response = can frame.data).

App/Socketcan sllin LIN bus

SFF non-RTR frame Header

Response

3. LIN response is sent to the LIN-bus (LIN-header is sent due to reception of SFF
RTR CAN frame) after receiving SFF non-RTR CAN frame.
(can id of both frames must be the same; LIN response = can frame.data).

App/Socketcan sllin LIN bus

SFF RTR frame Header

SFF non-RTR frame Response

same can_id

4. A frame is stored in a frame cache (see Section 2.4.4) after receiving EFF non-RTR
CAN frame. This operation is controlled by the flags in can id of the frame.

App/Socketcan sllin LIN bus

EFF non-RTR frame

sllin frame
cache confi-
guration entry

5. LIN response from correctly configured frame cache is sent to the LIN-bus upon
sending the LIN header due to the reception of SFF RTR CAN frame.

8

D
RA
FT

2 Using sllin

App/Socketcan sllin LIN bus

SFF RTR frame Header

Response
(sllin frame cache)

2.4.2 Slave mode

Slave mode enables monitoring of the LIN-bus which means that intercepted LIN frames
are sent to sllin0 interface in the form of CAN frames. Currently, slave mode is not
finished and more functionality needs to be added to use it for implementation of real
LIN slave tasks.

App/Socketcan sllin LIN bus

SFF RTR frame Header

SFF non-RTR frame Response

2.4.3 Error reporting

Errors from sllin are reported to applications by sending CAN frames with flags which
are part of can id. Individual error flags are listed in table 2.1 (they are also defined in
linux/lin bus.h).

Error flag Meaning

LIN ERR RX TIMEOUT Reception of the LIN response timed out

LIN ERR CHECKSUM Calculated checksum does not match the received data

LIN ERR FRAMING Framing error

Table 2.1: Error flags used by sllin

2.4.4 Frame cache

sllin integrates a so called frame cache. For each LIN ID, it is possbile to store up to
8 bytes of data. Frame cache is currently used in Master mode only, but it is planned
to be used in slave mode as well.
sllin can send LIN response based on the data stored in the frame cache immediately

after transmission of the LIN header. This can be configured for each LIN ID separately
by sending EFF CAN frames where CAN ID consists out of LIN ID and particular flags
(these are listed in table 2.2).

9

D
RA
FT

2 Using sllin

Flag Meaning

LIN CACHE RESPONSE Sets that slave response will be sent from frame cache

LIN CHECKSUM EXTENDED Sets extended checksum for LIN frame with particular ID

Table 2.2: Flags used when configuring sllin frame cache

Example To store 0xab data byte to be used as LIN response for LIN ID 0x5, it is
necessary to send EFF (i.e. configuration frame) non-RTR CAN frame with CAN ID
set to 0x5 | LIN CACHE RESPONSE and data 0xab.

2.4.5 Examples

SFF RTR CAN frame, LIN response from PCAN-LIN slave

$ cangen sllin0 -r -I 1 -n 1 -L 0

$ candump sllin0

sllin0 1 [0] remote request

sllin0 1 [2] 00 00

SFF non-RTR CAN frame

$ cangen sllin0 -I 7 -n 1 -L 2 -D f00f

$ candump sllin0

sllin0 7 [2] F0 0F

sllin0 7 [2] F0 0F

SFF RTR CAN frame without response (ERR RX TIMEOUT)

$ cangen sllin0 -r -I 8 -n 1 -L 0

$ candum sllin0

sllin0 8 [0] remote request

sllin0 2000 [0]

$ ip -s link show dev sllin0

14: sllin0: <NOARP,UP,LOWER_UP> mtu 16 qdisc pfifo_fast state UNKNOWN qlen 10

link/can

RX: bytes packets errors dropped overrun mcast

2 4 1 0 0 0

TX: bytes packets errors dropped carrier collsns

0 4 0 0 0 0

10

D
RA
FT

2 Using sllin

EFF non-RTR CAN frame to configure frame cache

(LIN_CACHE_RESPONSE | 0x8) == 0x108

$ cangen sllin0 -e -I 0x108 -n 1 -L 2 -D beef

$ candump sllin0

sllin0 108 [2] BE EF

Try RTR CAN frame with ID = 8 again (there is no active slave task)

$ cangen sllin0 -r -I 8 -n 1 -L 0

$ candump sllin0

sllin0 8 [0] remote request

sllin0 8 [2] BE EF

Slave mode

$ insmod ./sllin.ko master=0

$...

$ candump -t d sllin0

(000.000000) sllin0 2 [0] remote request

(001.003734) sllin0 1 [0] remote request

(000.000017) sllin0 1 [2] 08 80

(000.996027) sllin0 2 [0] remote request

(001.003958) sllin0 1 [0] remote request

(000.000017) sllin0 1 [2] 08 80

(000.996049) sllin0 2 [0] remote request

(001.003930) sllin0 1 [0] remote request

(000.000016) sllin0 1 [2] 08 80

There is one LIN header without response on the bus (= only RTR

CAN frame) and another LIN header followed by a response (= RTR

+ non-RTR CAN frame with the same ID)

2.4.6 Configuration

A dedicated utility was developed1 to simplify sllin configuration. It is able to:

1. Attach sllin line discipline to particular UART device

2. Configure BCM (SocketCAN Broadcast Manager) to periodically send LIN headers
(according to LIN schedule table)

3. Configure sllin frame cache

1https://rtime.felk.cvut.cz/gitweb/linux-lin.git/tree/HEAD:/lin_config

11

https://rtime.felk.cvut.cz/gitweb/linux-lin.git/tree/HEAD:/lin_config

D
RA
FT

2 Using sllin

The configuration is obtained from an XML file. The format of this XML file is the
same as the one generated by the official PCAN-LIN configuration tool.

The described utility is also able to configure the PEAK PCAN-LIN device (from the
same XML configuration file).

The usage is as follows:

Usage: ./lin_config [OPTIONS] <SERIAL_INTERFACE>

’lin_config’ is used for configuring sllin -- simple LIN device

implemented as a TTY line discipline for arbitrary UART interface

(works only on built-in interfaces -- not on USB to RS232

convertors).

This program is able to configure PCAN-LIN (RS232 configurable

LIN node) as well.

SERIAL_INTERFACE is in format CLASS:PATH

CLASS defines the device class -- it is either ’sllin’ or

’pcanlin’ (when not set, default is ’sllin’)

PATH is path to the serial interface, e.g /dev/ttyS0

General options:

-c <FILE> Path to XML configuration file in PCLIN format

If this parameter is not set, file ’config.pclin’ is used

PCAN-LIN specific options:

-f Store the active configuration into internal flash memory

-r Execute only Reset of a device

Sllin specific options:

-a Attach sllin TTY line discipline to particular

SERIAL_INTERFACE

Examples:

./lin_config sllin:/dev/ttyS0 (Configure the device with the

configuration from ’config.pclin’)

./lin_config -r pcanlin:/dev/ttyS0 (Reset the device)

After invoking lin config and successful configuration of sllin, the configuration
utility switches to background and runs as a daemon. This behaviour is necessary
because of the preservation of the BCM and TTY line discpline configuration. To detach
the sllin line discipline, it is necessary to kill the running daemon.

12

D
RA
FT

3 Implementation details

This section mentions the problems that were encountered during the development and
that are relevant for future work. After that, the currently implemented approaches are
described.

3.1 Experienced problems

First prototype of sllin was programmed for user-space. At first this seemed to be
much easier than to implement a TTY discipline, however we were experiencing some
problems. Those are briefly mentioned in the following paragraphs.

� It is possible to generate UART-break by calling tcsendbreak() system call. The
result was a break signal lasting hundreds of milliseconds, whereas about 700µs
long break signal is needed for LIN when operating at 19200 bauds.

A possible way for generating break signal of the appropriate length would be
to lower UART baud rate and send a normal character of value 0x00 using the
changed speed. The baud rate can be changed by cfsetospeed(struct termios

*termios p, speed t speed) (and tcsetattr()) system call but it does not al-
low to use arbitrary value for speed t, only a predefined values can be used. This
means that it is not possible to decrease the baud rate to 2/3 of the current baud
rate.

When tried to use half baud rate for sending break, the break signal was still to
long.

� Slave implementation faces another fundamental problem. Common UART chips
signal a receive event when either RX FIFO is filled up to the certain level or after
a timeout (typically one to three characters long) elapses. FIFO RX trigger level
can be configured for some UART chips but there is no standard API (neither in
the kernel nor in the user space) to set the level. Linux serial drivers set the level
to a fixed value. Even worse, the most common 16C550 based chips cannot be told
to set the RX FIFO trigger level to one character. The only solution is to disable
RX and TX FIFOs completely. But again, there is no API to ask for that in Linux
serial drivers.

3.2 Break signal generation

There are two possible ways how to generate correct LIN break signal in a user-space
program:

13

D
RA
FT

3 Implementation details

� Baud rate can be decreased by setting custom divisor field in struct serial struct

structure, which is obtained by calling ioctl(tty fd, TIOCGSERIAL, &sattr)

(see the file lin master/main.c at line 60). This approach works with PC UARTs,
however it is deprecated and may not work with every UART controller.

� Alternatively, baud rate can also be decreased by setting struct termios2 struc-
ture, which is obtained by calling ioctl(tty fd, TCGETS2, &tattr) (see file
lin master/main.c at line 95).

sllin is implemented in kernel-space. It generates the correct break signal by manu-
ally controlling TX line for the necessary amount of time. The time interval is measured
by usleep range() function.

Another possible solution is similar to the user-space approach. Break signal is gen-
erated by changing the baud rate. This is done by setting struct ktermios belonging
to the particular TTY (struct tty struct).

14

D
RA
FT

4 Hardware

To connect an RS232 interface to LIN-bus, it is necessary to use logic level converter.
Possible implementation of such a converter is shown in Figure 4.1.

DCD

DSR

CTS

DTR

RI

SG

TXD

RTS

RXD

Petr Porazil PiKRON s.r.o.

GND

GND

1K2
R6

2
1

JP1

2 1

15K

R5
21

8K2
R4

2
1

2K2
R3

2
1 1N4148

D1

1
2

GND

CN2

3
3

2
2

1
1

BSS138

T2

2
3

1

GND

10K
R2

2
1

10K

R1
21

BC846B
T1

3
2

1

GNDCANON-9

CN1

1

6

2

7

3

8

4

9

5

THU JAN 12 2012

RS232-LIN

Figure 4.1: RS232 to LIN logic level converter

15

D
RA
FT

5 Tests

sllin was developed and tested on IBM PC compatible computer, however its proper
functionality was also tested on MPC5200-based (PowerPC) embedded board. Results
of our tests are reported in the following sections.

5.1 Communication with of-the-shelf LIN devices

Proper behavior in a real-world environment was tested in conjunction with PCAN-LIN
device. PCAN-LIN was configured by using the tools delivered with the device. Two
different setups were used:

� PCAN-LIN as Slave node, sllin in Master mode – in this setup PCAN-LIN cor-
rectly responded to LIN headers sent by sllin.

� PCAN-LIN as Master node, sllin in Slave mode – PCAN-LIN device in master
mode was sending LIN headers and LIN headers with corresponding LIN responses.
sllin was reading this traffic and converting to CAN frames.

5.2 Proper timing observation

Timing properties of sllin were observed on an oscilloscope. Waveforms captured on
the LIN-bus are shown in Figures 5.1 and 5.2. It can be seen that there are no extensive
delays caused by incorrect sllin implementation. Note, however, that these experiments
were conducted on otherwise unloaded system.

16

D
RA
FT

5 Tests

Header Response

Break Sync ID

Figure 5.1: Master: MPC5200 with sllin; Slave: PCAN-LIN

Header Response

Break Sync ID

Figure 5.2: Master: MPC5200 with sllin; Slave: MPC5200 with sllin

17

D
RA
FT

6 Conclusion

This document described the prototype implementation of sllin. Due to technical
difficulties encountered during development and limited project time, sllin is not (yet)
a complete and fully working solution for interfacing LIN bus from Linux.
sllin is currently capable of operating as a master node – i.e. either sending only

LIN headers or LIN headers and associated LIN responses.
Schedule table is not implemented in sllin. Timing is controlled in the application

by sending RTR SFF CAN frames to sllin at appropriate times.
Slave mode enables monitoring of the LIN-bus. Full featured slave node and support

for slave task were not implemented. To fully implement slave mode in a way that is
independent on the under laying driver would require adding a kernel API for controlling
the RX FIFO of serial controllers. This will have to be discussed with Linux TTY layer
maintainers.

6.1 Acknowledgment

This work was financially supported by Volkswagen AG. The authors would like to thank
Oliver Hartkopp for his feedback on this work.

18

D
RA
FT

Bibliography

[1] LIN consortium, “LIN specification package, revision 2.2.” [Online]. Available:
http://www.lin-subbus.de/

19

http://www.lin-subbus.de/

	Introduction
	Glossary
	TTY line discipline

	Using sllin
	Compilation
	Loading the module
	Attaching sllin to the UART interface
	Sllin operation
	Master mode
	Slave mode
	Error reporting
	Frame cache
	Examples
	Configuration

	Implementation details
	Experienced problems
	Break signal generation

	Hardware
	Tests
	Communication with of-the-shelf LIN devices
	Proper timing observation

	Conclusion
	Acknowledgment

