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Abstract
This note describes our submission to the 2023 PACE Challenge on the computation of twin-width.
Our solver Hydra Prime combines modular decomposition with a collection of upper- and lower-
bound algorithms, which are alternatingly applied on the prime graphs resulting from the modular
decomposition. We introduce two novel approaches which contributed to the solver’s winning
performance in the Exact Track: timeline encoding and hydra decomposition. Timeline encoding is
a new data structure for computing the width of a given contraction sequence, enabling faster local
search; the hydra decomposition is an iterative refinement strategy featuring a small vertex separator.
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Supplementary Material Code submitted to the competition: https://doi.org/10.5281/zenodo.
7996823. Code repository on GitHub: https://github.com/TheoryInPractice/hydraprime

1 Introduction

The 2023 Parameterized Algorithms & Computational Experiments (PACE) Challenge
(https://pacechallenge.org/2023/) was to compute twin-width [3], a structural graph
parameter which measures how close a given graph is to a cograph – a graph which can be
reduced to a single vertex by repeatedly merging (contracting) pairs of twins – vertices with
identical open neighborhoods. More generally, twin-width measures the minimum number of
“mistakes” made in such a process when the pairs being contracted are no longer twins. If
u and v are being merged, we say uy becomes a red edge if y is a neighbor of u but not v

(and analogously for edges vy). The width of a contraction sequence is then the maximum
number of red edges incident on any vertex (red degree) at any time during the process, and
the twin-width of a graph is the minimum width of all valid contraction sequences. While
graphs with bounded twin-width admit many FPT algorithms, computing the parameter is
NP-hard, and prior to the PACE challenge its exact computation had remained impractical
even on relatively small graphs.

Most twin-width solvers naturally begin by removing twins, as all groups of twins can be
collapsed without incurring any red edges, making it a safe operation. In Hydra Prime, we
employ a stronger notion of this via modular decompositions [5], which hierarchically decom-
pose a graph into its twin-free prime components. A key property of these decompositions is
that the twin-width of the original graph is exactly the maximum of the twin-width of the
resulting prime graphs (Theorem 3.1 from [7]). We thus begin by running a re-implemented
linear-time modular decomposition solver based on [9], then process each prime graph separ-
ately, maintaining a global lower bound. If a prime graph is a tree, we run PrimeTreeSolver,
otherwise we run a series of lower- and upper-bound algorithms (listed at the end of this
section) alternatively until the bounds match, from the quickest algorithms to the slowest.
Those algorithms marked with (*) use a SAT solver as a subroutine; the implementation
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submitted to PACE uses the Kissat solver [2].

Algorithm List
Exact algorithms

PrimeTreeSolver: Linear-time exact solver for trees without twins.
BranchSolver: Brute-force solver equipped with caching mechanism and reduction rules.
DirectSolver (*): SAT-based solver implementing the relative encoding presented in [7].

Lower-bound algorithms
LBGreedy: Greedily removes a vertex u from the graph G such that |△(u, v)| is
minimized for some v. Reports the maximum value of min

u,v∈V (G),u̸=v
|△G(u, v)|.

LBCore (*): SAT-based algorithm to find max
S⊆V (G)

min
u,v∈S,u ̸=v

|△G[S](u, v)|.

LBSample: Sampling-based algorithm. Finds a connected induced subgraph G′ of G

by random walk and computes the exact or lower-bound twin-width of G′.
LBSeparate (*): Similar to LBSample, but uses the hydra decomposition to find an
induced subgraph to check for the lower-bound.

Upper-bound algorithms
UBGreedy: Iteratively contract a vertex pair minimizing the weak red potential.
UBLocalSearch: Using the timeline encoding, we make small changes to the elimination
ordering and the contraction tree to see if there is a better solution.
UBSeparate (*): Iterative refinement algorithm using the hydra decomposition.

In this paper we focus on two additional contributions to solving twin-width which are used
in the LocalSearch and Separate algorithms implemented in Hydra Prime: “timeline encoding”
and “hydra decomposition”. Timeline encoding is a novel data structure which enables
faster computation of twin-width by storing red “sources” and “intervals” indicating the
cause and window of each red edge. In the Separate upper- and lower-bound algorithms, we
introduce hydra decomposition, an iterative refinement strategy using small vertex separators.
After defining necessary notation, we briefly describe these in Sections 2 and 3, respectively.
Additional details are in the appendix available on the code repository.

Notation We follow standard graph-theoretic notation (e.g. found in [4]), the original
definition of twin-width [3], and terminology introduced by Schidler and Szeider [7]. Refer to
[5] and [9] for the definitions of a module, modular decomposition, a prime graph, etc. We
write u ← v when vertex v is contracted into vertex u. Given a trigraph G, the weak red
potential of u, v ∈ V (G), u ≠ v is the red degree of u after contraction u ← v. We further
define the unshared neighbors of vertices u and v, denoted by △(u, v) as N(u)△N(v) \ {u, v},
where △ denotes the symmetric difference of two sets. We write [n] for {1, . . . , n}.

2 Timeline Encoding

In this work we developed the timeline encoding, a data structure to compute the width of a
given contraction sequence. An instance of the timeline encoding stores the following data:

G: input graph with n vertices.
ϕ : V (G)→ [n]: bijection that encodes an elimination ordering (vertex v is eliminated at
time ϕ(v) if ϕ(v) < n).
p : [n− 1]→ [n]: encoding of a contraction tree. For i < j, p(i) = j if vertex ϕ−1(i) is
merged into vertex ϕ−1(j) (i.e. j is the parent of i in the contraction tree).
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Figure 1 An illustration of the timeline encoding given a graph and its contraction sequence.
Vertex labels show elimination ordering. For each time i with contraction j ← i (i < j), we create
red sources {k, j} for every k ∈ △>(j, i), which determines red intervals [i, min{k, j}) that will then
disappear or transfer at time min{k, j}. The red degree corresponds to the number of overlaps of red
intervals aggregated by vertices, and its maximum value is the width of the contraction sequence.

For internal data structures, we introduce a few terms. First, define △>(j, i) := {ϕ(w) |
w ∈ △(ϕ−1(i), ϕ−1(j)), ϕ(w) > i}. Then, the red sources at time t are a set of red edges
introduced at time t, defined as: {{p(t), k} | k ∈ △>(p(t), t)}. Red sources determine the red
intervals – non-overlapping, continuous intervals where an edge is red, defined as follows: for
i < j, red source (i, j) at time t creates an interval [t, i) (red edge ij disappears at time i).
If p(i) ̸= j, then we recurse this process as if red source {p(i), j} was created (red edge ij

transfers to {p(i), j}), as illustrated in Figure 1.
Now we aggregate red intervals by vertices. We maintain a multiset of intervals for each

vertex such that a red interval of an edge accounts to its both endpoints. The maximum
number of the overlaps of such intervals gives the maximum red degree at a vertex over time.
Finally, we obtain the width of the contraction sequence by taking the maximum of the red
degrees over all vertices.

A key observation is that we can dynamically compute the number of overlaps of a multiset
of intervals efficiently with a balanced binary tree (e.g. modification in time O(log n), getting
the maximum number of overlaps in O(1), etc.). For local search, we implemented methods
for modifying a contraction tree and also updating a bijection ϕ.

3 Hydra Decomposition

We also implemented an iterative refinement strategy which we term hydra decomposition,
based on finding a small vertex separator. A hydra is a structured trigraph which consists of
a (possibly empty) set of heads and a (possibly empty) vertex set tail. Each head is a set of
vertices containing one top vertex and a nonempty set of boundary vertices. The neighbors of
the top vertex must be a subset of the boundary vertices. All red edges in the trigraph must
be incident to one of the top vertices. Heads must be vertex-disjoint, but the tail may contain
boundary vertices (but not a top vertex). A compact hydra is a hydra consisting of its tail and
one extra vertex, with no heads. A head of a hydra H can additionally be viewed as a compact
hydra C, where the boundary vertices of H are the tail of C. Now that we have defined the
parts of a hydra, we will now show the operations performed in hydra decomposition:
1. Separate: partitions the vertices of a hydra into three parts: S, A, B such that S separates
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Figure 2 Structure of the hydra and two examples of performing a round of hydra decomposition.

A from B. S should not contain any vertices from the heads, and any tail vertices cannot
be in A. Figure 2 shows two ways of choosing a separator S of a hydra.

2. Contract: takes a hydra and contracts all vertices but its tail. The output is a contraction
sequence and the resulting compact hydra.

3. Join: combines a compact hydra C and another hydra H such that V (C) ∩ V (H) is the
tail of C. The output is the union of C and H, where the heads and tail of H remain
and C becomes an additional head.

We now present a description of UBSeparate. Given a graph H and a target width d for
a contraction sequence, UBSeparate runs contract on the original graph without any heads or
tails. The contract operation works as follows: If the input H is small enough, or a vertex
separator of size at most d is not found, we directly search for a contraction sequence of width
at most d for all but tail vertices, which can be done by modified UBGreedy and other exact
algorithms. Otherwise, we perform separate to obtain a partition S, A, B. We recursively
call contract with H[A ∪ S] with S being the tail. Then, we have a contraction sequence s1
and a compact hydra C. Next, we join C with H[B ∪ S] and obtain a hydra H ′. Notice that
the tail of C must be S. We again call contract with H ′ and get a contraction sequence s2,
resulting in a compact hydra C ′ with the original tail of H. Finally, C ′ is returned along
with the concatenation of s1 and s2 for the result of the original contract operation.

A key observation is that since red edges reside only in heads and the size of separators are
bounded by d, the red degree of a hydra is also upper-bounded by d, which helps construct
a d-contraction sequence part by part. For d = 1 we use a linear-time algorithm to find a
vertex separator, or a cut vertex (articulation point); for d ≥ 2, we instead call a SAT solver.
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A Known Theoretical Results

We utilized the following known facts extensively in our implementation.
If G′ is an induced subgraph of a graph G, then tww(G′) ≤ tww(G) [3].
If G is the complement graph of a graph G, then tww(G) = tww(G) [3].
tww(G) = max

H∈P
tww(H), where P is a set of prime graphs found in the modular decom-

position of G [7].
For a graph G, min

u,v∈V (G),u ̸=v
|△(u, v)| ≤ tww(G) [7].

If every component of a graph G has at most one cycle, then tww(G) ≤ 2 [1].
For a tree T , tww(T ) ≤ 1 if and only if T is a caterpillar1 [1].

B SAT Formulation

Recent PACE challenges have shown that modern SAT solvers are versatile at solving NP-
hard problems; Twin-width is not an exception. As part of our solver, we adopted a known
SAT encoding by Schidler and Szeider [7] with a few additional clauses which we will detail
in Section B.3. We also used novel SAT encodings to find lower bounds (LBCore) as well as
to find vertex separators (LBSeparate, UBSeparate). For our SAT encodings, we assumed
that a given graph G is prime and V (G) = [n], and we work with binary variables having a
value either 0 (false) or 1 (true).

We use the Kissat SAT solver 3.0.0 [2] as an external library. In addition, we implemented
the sequential counter [8] for encoding cardinality constraints as it performed better than
the iterative totalizer [6] (typically used in MaxSAT2) and other algorithms.

B.1 Lower-bound: LBCore
For a graph G, we define the minimum neighborhood difference ℓG as min

u,v∈V (G),u̸=v
|△G(u, v)|

(refer to Section 1 for notation). The algorithm LBCore finds an induced subgraph maximizing
the minimum neighborhood difference, using the fact that ℓG′ ≤ tww(G′) ≤ tww(G) for any
induced subgraph G′ of G.

To find a vertex set S maximizing ℓG[S], we guess an integer d with d ≥ 1 and query a
SAT solver if there exists a set S ⊆ V (G) such that ℓG[S] ≥ d. Note that since the given
graph is prime, there are no twins in G and we have ℓG ≥ 1; there is no need to test for
d = 0. We observed that SAT solvers quickly find solutions for small graphs.

SAT Variables
x(i) for 1 ≤ i ≤ n: x(i) is true if and only if vertex i is in a solution S.

Clauses
Semantics of x(i):∑n

i=1 x(i) ≥ 4.
Semantics of c(i, j): for every 1 ≤ i < j ≤ n

x(i) ∧ x(j)→
∑

k∈△(i,j) x(k) ≥ d. 3

1 A caterpillar is a tree containing a path P such that all other vertices are adjacent to some vertex in P .
2 A problem to maximize satisfying SAT clauses. We did not use MaxSAT for the solver.
3 Implication denoted by x→ y is equivalent to ¬x ∨ y.
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Correctness First, suppose that all clauses are satisfied. Then, the solution S has at
least 4 vertices and for every vertex pair i, j in S, |△G[S](i, j)| ≥ d since x(i) ∧ x(j) →∑

k∈△(i,j) x(k) ≥ d, which leads to ℓG[S] ≥ d. Conversely, suppose that there is a set S such
that ℓG[S] ≥ d ≥ 1. Since S does not contain twins, |S| ≥ 4, satisfying the first constraint.
Also, we know that for every distinct vertex pair i, j in S, |△G[S](i, j)| = |△G(i, j) ∩ S| =∑

k∈△G(i,j) x(k) ≥ d. This satisfies the second constraint.

B.2 Finding vertex separators
To perform the hydra decomposition (used in algorithms LBSeparate and UBSeparate), we
need to find a vertex separator under certain constraints. We formulate a problem as follows:
given a connected graph G and its hydra structure (defined in Section 3) with head H ⊆ V (G)
and tail T ⊆ V (G) vertices, and an integer k, find a vertex separator S ⊆ V (G) \H of size at
most k, such that G−S can be partitioned into two parts A, B with the following constraints.
(1) A and B must be nonempty, (2) there are no edges between A and B, (3) B is a superset
of T \ S, and (4) at least one vertex from T must be in B.

When k = 1, we can solve this problem in linear-time by testing all articulation points
(or cut vertices) in G. Otherwise, we use color coding on V (G) indicating the guess of a
partition A, B, S with colors Ȧ, Ḃ, Ṡ : χ : V (G) → {Ȧ, Ḃ, Ṡ}. If all vertices are properly
colored, we have A = χ−1(Ȧ), B = χ−1(Ḃ), S = χ−1(Ṡ).

SAT Variables
x(i) for i ∈ V (G): x(i) = 1 if and only if vertex i has color Ȧ.
y(i) for i ∈ V (G): y(i) = 1 if and only if vertex i has color Ḃ.
z(i) for i ∈ V (G): z(i) = 1 if and only if vertex i has color Ṡ.

Clauses
Every vertex has a color: for every i ∈ V (G)

x(i) + y(i) + z(i) = 1.
Semantics of the heads:

Head vertex cannot be in solution: for every i ∈ H, ¬z(i).
Semantics of the tail:

Tail vertex cannot be in part A: for every i ∈ T , ¬x(i)
At least one tail vertex is not in solution:

∨
i∈T y(i)

Encoding reachability: for every edge ij ∈ E(G)
x(i)→ ¬y(j).
y(i)→ ¬x(j).

Parts A and B must be nonempty.∑
i∈V (G) x(i) ≥ 1.∑
i∈V (G) y(i) ≥ 1.

Constraints on the solution size.∑
i∈V (G) z(i) ≤ k.

Correctness Notice that each SAT clause encodes all constraints in the problem definition.
Let A = x−1(1), B = y−1(1), and S = z−1(1). Then, from the reachability constraints,
there cannot be an edge between A and B, as if there is an edge ij such that i ∈ A, j ∈ B,
x(i) = y(j) = 1, which violates x(i) → ¬y(j). Also, since ¬x(i) for every i ∈ T , we have
T ∩A = ∅. Then, T ⊆ B ∪S and T \S ⊆ B. For others, it is straightforward to see relations
between the problem definition and SAT clauses.
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B.3 Direct Solver
Our SAT formulation for computing exact twin-width is based on the relative encoding
presented in [7], which is faster than the absolute encoding in most instances. We further add
extra hints for vertex pairs having many unshared neighbors. Specifically, for a given target
twin-width d and any integer s > 0, if vertices u, v ∈ V (G) has d + s unshared neighbors,
then contraction u← v cannot appear in the first s contractions. Otherwise, the red degree
of u after the contraction will exceed d. Even stronger, we can state that at least s of such
unshared neighbors must be contracted before contraction u← v. With these hints, some
instances witnessed speed-ups in a SAT solver’s running time.

SAT Variables
o(i, j) for 1 ≤ i < j ≤ n: encodes an elimination ordering (relative encoding); o(i, j) = 1
if and only if vertex i is earlier than vertex j in the elimination ordering.
p(i, j) for 1 ≤ i < j ≤ n: encodes a contraction tree; p(i, j) = 1 if vertex i is merged into
vertex j.
r(i, j, k) for 1 ≤ i, j ≤ n and j < k ≤ n: encodes red edges; r(i, j, k) = 1 if after
eliminating vertex i, there is a red edge jk.
a(i, j) for 1 ≤ i < j ≤ n: auxiliary variable for computing transferred red edges; a(i, j) = 1
if a red edge ij is present at any time.

For any distinct 1 ≤ i, j ≤ n, we use shorthand notation o∗(i, j) for o(i, j) if i < j

and ¬o(i, j) if i > j. Also, let a∗(i, j) = a(min{i, j}, max{i, j}) and similarly r∗(i, j, k) =
r(i, min{j, k}, max{j, k}).

Clauses
Semantics of o:

transitivity: for every mutually distinct 1 ≤ i, j, k ≤ n, o∗(i, j) ∧ o∗(j, k)→ o∗(i, k).
Semantics of p:

all but the root vertices must have one parent: for every 1 ≤ i < n,
∑n

j=i+1 p(i, j) = 1.
parent must be present: for every 1 ≤ i < j ≤ n, p(i, j)→ o(i, j).

Semantics of r:
encodes red edges: for every 1 ≤ i < j ≤ n and k ∈ △(i, j), p(i, j)∧o∗(i, k)→ r∗(i, j, k).
additional hints described above: for every 1 ≤ i < j ≤ n and 1 ≤ s ≤ d, p(i, j) →∑

1≤k≤n:i,j ̸=k o∗(k, i) ≥ s.
transfer red edges: for every mutually distinct 1 ≤ i, k ≤ n and i < j ≤ n, p(i, j) ∧
o∗(i, k) ∧ a∗(i, k)→ r∗(i, j, k).
maintain red edges: for every mutually distinct 1 ≤ i, j ≤ n and 1 ≤ k < m ≤ n,
o∗(i, j) ∧ o∗(j, k) ∧ o∗(j, m) ∧ r∗(i, k, m)→ r∗(j, k, m).

Semantics of a:
for every mutually distinct 1 ≤ i, j, k ≤ n, o∗(k, i) ∧ o∗(k, j) ∧ r∗(k, i, j)→ a∗(i, j).

Constraints on the solution size
for every distinct 1 ≤ i, x ≤ n,

∑
1≤y≤n:i,x ̸=y r(i, x, y) ≤ d.

Correctness The main proof is in [7]. Additional hints do not affect the fidelity of the
encoding.
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