
9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

VORC Technical Guide
2020 Virtual Ocean Robotics Challenge

1. Introduction
The purpose of this document is to provide Virtual Ocean Robotics Challenge (VORC) teams with the
information necessary to successfully prepare for and participate in the VORC. It covers the following topics:
the robotic platform, propulsion and sensor configuration, the general structure of the competition tasks,
runs and environmental envelopes, the application programming interface (API), and instructions for
submitting your code for the competition.

For a description of competition goals, scoring, phases, and the details of the individual competition tasks,
please see the following related document:
● 2020 Virtual Ocean Robotics Challenge Task Descriptions

2. Robotic Platform
The VORC will be executed using the Gazebo simulation environment. All teams must use the simulated
version of the Common Raft (CoRa) distributed with the ​VORC software​. The boat, as supplied by the VORC
software, is standard for all teams. No modification of the standard platform model (URDF description, etc.)
is allowed during competition.

The simulated boat includes models of the rigid body dynamics, hydrodynamics, external forcing (waves and
wind) and propulsion. The rigid body dynamics are captured via the Gazebo physics engine. The
hydrodynamics, external forcing and propulsion forces are generated by VORC plugins with fixed
parameters. As with the platform model itself, no modification of the standard VORC model parameters is
allowed during competition.

Figure 1: Simulated CoRa model

Page 1 of 10

https://github.com/osrf/vorc

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

3. Propulsion configuration
The boat is equipped with two identical
thrusters configured in “H” differential
configuration (illustrated in ​Figure 2: CoRa
"H" thruster configuration​). The thrusters are
fixed at the chassis of the boat. It is not
possible to change their yaw angle.

Figure 2: CoRa "H" thruster configuration

4. Sensor configuration
Much like the propulsion system, the sensor configuration is also common across all competitors, and the
boat is equipped with a set of standard sensors. Standard sensors include navigation sensors (GPS and IMU)
and perception sensors (cameras and lidars).

Table 1: Standard sensors included with the boat

The available sensor types and their performance characteristics have been chosen to reflect commonly
used sensors. These characteristics do not represent any specific sensor choice but are meant to be
representative of typical hardware options.

Note: While the sensor performance specifications below (update rates, noise values, etc.) are detailed, the
exact values of these specifications may change before the final release of this document.

4.1. Navigation Sensor
A single standard navigation sensor, representing a GPS-aided IMU, will be used for VORC. This single
sensor is simulated through the use of two Gazebo plugins (see the ​hector_gazebo_plugins​) which generate
GPS information (position and velocity) and IMU information (attitude, attitude rate and accelerations).
While these two measurements are presented separately, the characteristics of the measurements are
consistent with a sensor that estimates a complete navigation solution, e.g., a GPS-aided IMU.

Page 2 of 10

Sensor
type

Number of instances Pose

Camera 2 (-0.61, ±0.2, 4.7, 0, 0, 0.261799)
Lidar 1 (-0.595, 0, 5, 0, 0, 0.139626)
GPS 1 (-1, 0, 4.6, 0, 0, 0)
IMU 1 (0.3, -0.2, 1.0, 0, 0, 0)
Acoustic 1 (0, 0, 0, 0, 0, 0)

http://wiki.ros.org/hector_gazebo_plugins

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

Table 2: Characteristics of VORC Navigation Sensor

4.2. Camera Sensor
A standard camera is simulated via the Gazebo camera plugin.

Table 3: Characteristics of VORC Camera Sensor

4.3. Acoustic Sensor
An acoustic sensor providing a ​RangeBearing message with the location of the beacon at a given update
rate. The 3D location of the beacon is relative to the sensor, in the form of range and two angles (bearing
and elevation) .

Table 4: Characteristics of VORC Acoustic Sensor

4.4. Lidar Sensor
One type of lidar sensor is provided for VORC: 16 beam.

Table 5: Characteristics of VORC Lidar Sensors

1 Unless otherwise noted, noise values are specified as one standard deviation and represent a Gaussian distribution.

Page 3 of 10

GPS-Aided IMU

GPS

Update Rate 20 Hz

Horizontal Position Noise​1 0.85 m

Vertical Position Noise 2.0 m

Velocity Noise 0.1 m/s

IMU

Update Rate 100 Hz

Acceleration Offset/Bias +/- 0.002 g

Acceleration Noise 0.275 g

Attitude Rate Noise 0.08 degrees/s

Heading Noise 0.8 degrees

Camera

Update Rate 30 Hz

Resolution 1280x720 px

Color format R8G8B8

Acoustic sensor

Update Rate 1 Hz

 16 Beam

Update Rate [Hz] 10

Lasers (Number of beams) 16

Samples (Number of horizontal rotating samples) 1875

https://github.com/osrf/vrx/blob/master/usv_msgs/msg/RangeBearing.msg

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

4.5. Task Information
Teams face multiple independent tasks during VORC. These tasks require different actions from the
participant’s controller code. During every task, the status of the task is published as a custom ROS ​Task
message over a ROS topic. The message provides the following information about the status of the
simulated task. Please, refer to the VORC API section of this document for further details.

Table 6: ROS Task message definition

Teams are expected to subscribe to the task ROS topic and select their appropriate robot behavior given the
current task under execution. In addition, teams need to react to the task states appropriately. The ​initial
state is only used to stabilize the vehicle, allow for initial transients to decay and make sure that all the
software blocks are ready. While the system is in the initial state, teams receive sensor information, but the
robot control will be very limited. In the ​ready state, teams have full control of their robot and we expect
them to get ready for the start of the task. Teams need to monitor the simulation time published over the
clock ROS topic and compare it with the ​ready_time and ​running_time to be prepared to take control of
the vehicle and start the task. Once the task is in the ​finished state, teams can still control the vehicle, but
the score will not change.

Page 4 of 10

Min Range [m] 0.9

Max Range [m] 130

Noise [m] 0.01

Min. Horizontal Angle [rad] − π

Max. Horizontal Angle [rad] π

Min. Vertical Angle [rad] − π
12

Max. Vertical Angle [rad] π
12

Field Name Description
name Unique task name (e.g.: “wayfinding”, “perception”).
state The current task state = {initial, ready, running, finished}. See the

Task States​ section for more information.
ready_time Simulation time at which the task transitions to the ​ready​ state.
running_time Simulation time at which the task transitions to the ​running​ state.
elapsed_time Elapsed time since the start of the task (since running_time).
remaining_time Remaining task time.
timed_out Whether the task timed out or not.
score Current task score.

https://github.com/osrf/vrx/blob/master/vrx_gazebo/msg/Task.msg
https://github.com/osrf/vrx/blob/master/vrx_gazebo/msg/Task.msg

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

5. Task States
A task can be in one of four different states. The task state is set by Gazebo according to the task
configuration. The current state is included in the task message periodically published on the task information
ROS topic.

Figure 3: Task states as a function of time

5.1. Initial
After Gazebo starts, the task is in the ​initial state. The robot’s motion is fixed in the X (surge), Y (sway) and
yaw degrees of freedom, but allowed to move in Z (heave), pitch and roll degrees of freedom. Thus, the
robot is pushed up and down by the waves and wind and will change its orientation (except in yaw) but
stays in the same 2D position. The purpose of this initial state is to allow for simulation startup transients to
decay and for all the user’s software to have sufficient time to initialize.

5.2. Ready
The task transitions to ​ready when simulation time reaches the value ready_time. In the ​ready state, the robot

motion is free in all degrees of freedom and is under the participant’s full control. While in the ready state
no scoring is performed.

5.3. Running
The task transitions to ​running when simulation time reaches the value running_time. In the ​running state,
the task officially starts. The scoring and the task timer are enabled.

5.4. Finished
The task transitions to ​finished when the remaining_time field of the task message reaches 0 or when the
task is considered complete. If all task time has been consumed, but the task has not been fully solved, the
field timed_out of the task message will be set to true. The score will not be updated in this state.

6. Runs and Environmental Envelopes
In the competition, each team shall conduct multiple runs per task, where each run will use a different set of
environmental conditions. Though conditions will be distinct from run to run, these distinct configurations
will be identical for each team; i.e., each team will see the same set of conditions as the other teams in the
competition. The following elements of the simulation will change between runs:

6.1. Object Location and Orientation
Relevant objects will be moved between runs to prevent training the team’s controllers to handle known
geometry across runs. This will include the placement of obstacles (for example, buoys or docks), as well as
the starting pose of the robot itself.

Page 5 of 10

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

6.2. Fog
Gazebo will optionally simulate fog with different densities and colors. The two images below illustrate the
addition of fog to the visual scene.

Figure 4: Visual scene with no fog

Figure 5: Visual scene with fog

6.3. Wind
Wind exerts a force on objects in the VORC environment. The total wind velocity is a combination of a
constant mean velocity component and a variable wind speed (i.e., gusting). The variable component of the
wind speed is modeled as a first-order linear spectrum defined by two components: the variability gain and
the variability time constant. The variability gain specifies the magnitude (root-mean-square) of the variable
component of the wind speed, and the variability time constant specifies how rapidly the wind speed
changes with time. For details on the wind model and implementation see the ​VRX Documentation Wiki:
Gazebo Plugins​. For examples of how to change the wind parameters see the ​VRX Tutorials Wiki: Changing
Simulation Parameters​.

Page 6 of 10

https://github.com/osrf/vrx/wiki/VRXGazeboPlugins
https://github.com/osrf/vrx/wiki/VRXGazeboPlugins
https://github.com/osrf/vrx/wiki/tutorials-ChangingPluginParameters
https://github.com/osrf/vrx/wiki/tutorials-ChangingPluginParameters

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

6.4. Waves
Surface waves affect the motion of objects in the simulated environment. The simulated sea state is
generated using a summation of individual regular waves to create the three-dimensional water surface
geometry as a function of time. The amplitudes of the individual waves are determined from sampling a
Pierson-Moskowitz (P-M) ocean wave spectrum. The pertinent parameters associated with specifying a
particular sea state are as follows:

● Peak Period () – wave period with the highest energy.T p
● Gain () – constant multiplier applied to the individual wave amplitudesγ
● Wave Direction – direction of travel of the wave component corresponding to the peak period
● Wave Angle – angular difference in direction between component waves

The combination of and parameters determine the energy in the specific sea state. For the VORC T p γ
competition combinations of and as illustrated in Figure 7 will be used for evaluation.T p γ

For details on the sea state model see the ​VRX Documentation Wiki: Gazebo2019 Plugins​.

Figure 6: Envelope for sea state parameters used in VORC evaluation

Page 7 of 10

https://github.com/osrf/vrx/wiki/VRXGazeboPlugins

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

6.5. Ambient Light
The color of the ambient light. The two images below illustrate changes to the ambient lighting conditions.

Figure 7: Visual scene with reduced ambient light

Figure 8: Visual scene with regular ambient light

The following table summarizes the range of all the parameters that can change during runs:

Table 7: Environmental variable parameters

The characteristics of the simulated environment will be varied during competition runs. Final specifications
for the exact characteristics will be released as part of the final technical specification; however, teams can
expect values to be within the ranges described in the table above.

Page 8 of 10

Gazebo Parameter Minimum value Maximum
value

scene::fog::color [0.7, 0.7, 0.7, 1] [0.9, 0.9, 0.9, 1]
scene::fog::density 0 0.1
scene::ambient [0.3, 0.3, 0.3, 1] [1, 1, 1, 1]
wamv_gazebo::wind_mean_velocity 0 60
wamv_gazebo::wind_variance_gain 0 40
wamv_gazebo::wind_variance_time 2 20
wamv_gazebo::wind_direction 0 360
wamv_gazebo::wave_period See Figure 6.
wamv_gazebo::wave_gain
wamv_gazebo::wave_direction 0 360
wamv_gazebo::wave_angle 0 360

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

7. VORC API
VORC provides a ROS interface to the teams for controlling all available actuators, reading sensor
information and sending/receiving notifications. The use of ROS as the interface between the team’s
software and the simulation environment does not require that the team’s software internally use ROS. The
intention of the competition is to be technology agnostic with regard to solution architecture and
implementation. However, a single standard interface is required for the feasibility of the virtual
competition. Every effort will be made to offer all teams support implementing the ROS interface to their
software. For teams not familiar with ROS we highly recommend going through
http://wiki.ros.org/ROS/Tutorials​ ​to get familiar with ROS and, in particular, with ROS topics and services.

The next table summarizes the ROS API used for the competition. Note that all topic names used for
propulsion and sensors are configurable via their respective YAML files.

Table 8: Thruster actuation API

Table 9: Sensor information API

Table 10: Task information API

Table 11: Debug information API (not available during competition)

The interface described is generic to the entire competition, including all tasks. The task-specific elements
of the interface are described in the Virtual RobotX Competition and Task Descriptions, which details the
additional ROS topics and services used to support individual task execution.

2 Each task can use an additional set of ROS topics/services. Please consult the 2020 VORC task Descriptions document
for additional information.

3 All Gazebo topics to query ground truth information and other simulation aspects are available for debugging.

Page 9 of 10

Thruster Actuation

Topic Name Description
/cora/thrusters/left_thrust_cmd Next power command for the left thruster
/cora/thrusters/right_thrust_cmd Next power command for the right

thruster

Sensor Information

Topic Name Description
/cora/sensors/cameras/front_left_camera Front left camera
/cora/sensors/cameras/front_right_camera Front right camera
/cora/sensors/lidars/front_lidar Front 3D lidar
/cora/sensors/gps/gps GPS
/cora/sensors/imu/imu IMU

Tasks​2
Topic Name Description
/clock Simulation time
/vorc/task/info Task information

Debug​3
Topic Name Description
/vorc/debug/wind/direction Wind vector (units in degrees and ENU coordinate)
/vorc/debug/wind/speed Magnitude of the wind
/vorc/debug/contact CoRa collisions

http://wiki.ros.org/ROS/Tutorials

9 December 2020
2020 Virtual Ocean Robotics Challenge Version 1.11

8. Submission and Code Execution

Figure9: Architecture used to execute competitor code

We expect to receive a file from each competitor prior to each event. This file will specify the team’s
controller. Please, see the ​VORC wiki page for detailed instructions about how to submit a solution for a
given event.

Performance for each task will be evaluated as follows:
1. A Docker container running the VORC simulation image will be executed. This container will execute

Gazebo with the VORC environment configured to run a particular task. Additionally, Gazebo will be

configured to record a log of the execution.

2. A ROS bag (log file) will capture all task messages containing the score.

3. A team’s Docker container (running the team’s image) will be executed. It’s expected that the entry

point of this Docker instance spawns all the necessary elements of the team’s code.

4. The competitor’s code should interact with the simulation via the VORC API, determine the current

task via the VORC API, and try to solve it.

5. When the task has been completed or has timed out, the Gazebo log file and the ROS bag will be

saved and tagged appropriately.

This process will be repeated for each run of each task and for all the teams participating in the event. This
architecture allows the execution of the entire competition in batch mode. Teams will be able to run a
competition locally using the same set of tools that the organization will use during the official events. The
automatic evaluation tool is available in the ​vrx-docker repository​. We encourage all teams to use it for
testing their solutions.

Page 10 of 10

https://github.com/osrf/vorc/wiki/Home
https://github.com/osrf/vrx-docker

