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Abstract— This paper provides new results for the tracking
control of a quadrotor unmanned aerial vehicle (UAV). The
UAV has four input degrees of freedom, namely the magnitudes
of the four rotor thrusts, that are used to control the six
translational and rotational degrees of freedom, and to achieve
asymptotic tracking of four outputs, namely, three position
variables for the vehicle center of mass and the direction of
one vehicle body-fixed axis. A globally defined model of the
quadrotor UAV rigid body dynamics is introduced as a basis
for the analysis. A nonlinear tracking controller is developed
on the special Euclidean group SE(3) and it is shown to
have desirable closed loop properties that are almost global.
Several numerical examples, including an example in which the
quadrotor recovers from being initially upside down, illustrate
the versatility of the controller.

I. INTRODUCTION

Geometric control is concerned with the development of
control systems for dynamic systems evolving on nonlinear
manifolds that cannot be globally identified with Euclidean
spaces [12], [13], [14]. By characterizing geometric proper-
ties of nonlinear manifolds intrinsically, geometric control
techniques provide unique insights to control theory that
cannot be obtained from dynamic models represented using
local coordinates [15]. This approach has been applied to
fully actuated rigid body dynamics on Lie groups to achieve
almost global asymptotic stability [14], [16], [17], [18].

In this paper, we develop a geometric controller for
a quadrotor UAV. The dynamics of a quadrotor UAV is
expressed globally on the configuration manifold of the
special Euclidean group SE(3). We construct a tracking

Problems with parameterizations: https://en.wikipedia.org/wiki/Charts_on_SO(3)

http://lucaballan.altervista.org/pdfs/Rigid Transformations.pdf



https://en.wikipedia.org/wiki/Charts_on_SO(3)
http://lucaballan.altervista.org/pdfs/RigidTransformations.pdf

“Geometric control is concerned with the
development of control systems for dynamical
systems evolving on nonlinear manifolds that

cannot be globally identified with Euclidean
spaces.”

Lee et al., Control of Complex Maneuvers for a Quadrotor UAV using Geometric Methods on SE(3), 2010.
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http://www.youtube.com/watch?v=wtn9L6BsYiE&t=11

Interesting perspective of differential flatness that | didn't realize -- it seems to be
directly related to manifolds and the idea of finding a mapping from the curvey SE(3)
space onto a flat space: https://youtu.be/cx1WugXzIFM?t=10m51s


http://www.youtube.com/watch?v=geqip_0Vjec

Definitions of SO(3) and SE(3)

SOB)2{RecR¥>*3 | RTR=1, det R=1}
SE(3) £ {(R,p) | R €SO(3),p € R’}
Note: These are also Lie Groups because they are groups that are also differentiable

manifolds. This allows us to use some nice results from differential geometry and Lie theory
(e.g., tangent spaces and the exponential mapping).




Quick Review: Manifolds

Figure 1: Mapping a local neighborhood in the state space
(here: on the unit sphere S?) into R™ (here: the plane) al-
lows for the use of standard sensor fusion algorithms with-
out explicitly encoding the global topological structure.

Hertzberg et al., Integrating Generic Sensor Fusion Algorithms with Sound
State Representations Through Encapsulation of Manifolds, 2013.




IF THE EARTH'WAS FLAT

CATS “ﬁlllll HAVE PUSHED EVERYTHING OFF IT BY NOW



Other Popular Representations of Orientation

Euler Angles Quaternions
e Attempt to globally cover SO(3) e Hypercomplex representation of
e Have to deal with wrapping and rotation
singularities e Double covers SO(3):
e Intuitive to understand o ¢ and -q represent the same
orientation

e Computationally efficient

S ={qeH]||lq||=1}
q=qo+ gzt +qyj+q.k




The equations of motion of the quadrotor UAV can be
written as

T =0, (2)

mv = mges — f Res, 3)
R = RO, 4)
JO+QxJ0=M, (5)

where the hat map * : R® — s0(3) is defined by the condition
that 2y = = x y for all 2,y € R3 (see Appendix A).




A. Properties of the Hat Map
The hat map * : R? — s0(3) is defined as

0 —XI3 T2
T = I3 0 —I (55)
—T2 X1 0

for z = [x1; xo; x3) € R3. This identifies the Lie algebra s0(3)
with R? using the vector cross product in R3. The inverse of
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Trajectory Generator

Draw Aircraft

SE(3) Geometric Control Quadrotor Dynamics

Full state feedback: x, v, R, \Omega

Maybe do a slide on group theory

http://www.roboticsproceedings.org/rss11/p06.pdf

Rotation:

https://cwzx.wordpress.com/2013/12/16/numerical-integration-for-rotational-dynamics/
http://www.cs.unc.edu/~lin/COMP768-F07/LEC/rbd1.pdf

Python quadrotor simulation: https://github.com/hbd730/quadcopter-simulation



http://www.roboticsproceedings.org/rss11/p06.pdf
https://cwzx.wordpress.com/2013/12/16/numerical-integration-for-rotational-dynamics/
http://www.cs.unc.edu/~lin/COMP768-F07/LEC/rbd1.pdf

30,000 Foot View

e We would like to control position and heading.
e Our Lyapunov-based control recipe will be:

o Analyze the attitude dynamics and design a tracking controller for
an input of desired attitude.
o Design a tracking controller for an input of desired position.

Extend the position controller to allow a specification of heading
Make stability claims along the way




Attitude Tracking Controller

e An arbitrary, smooth attitude command R,(t) € SO(3) is given.

e Define an attitude error function that evolves on the tangent
bundle of SO(3): w(R, Ry = %tr[[ — RYR).

e Using Lyapunov-based control design, it is shown that the
attitude controller given below achieves exponential stability
to the desired attitude -- assuming attitude errors < 180°.

M = —kgrer — kqgeq + 2 x JQ — J(QRTRde — RTRde)




Position Tracking Controller

e An arbitrary, smooth position command z4(t) € R3 is given.

e The below position and attitude control can be shown to give
exponential stability to the desired position command --
assuming attitude errors < 90°.

e However, it can be shown that this controller achieves almost
global exponential attractiveness for attitude errors < 180°.

f = (kzez + kye, + mges — mq) - Res
M = —kregr — kgeq + Q x JQ— J(QRTR.Q. — RTR.Q.)




Position Tracking Controller with Desired Heading

e An arbitrary, smooth position command z4(t) € R3 and a
desired heading direction b;, € S? are given.

e The given controller continues to achieve almost global
exponential attractiveness for attitude errors < 180°.

e The controller gives asymptotic stability in heading direction.

f - (ka:ea: + kye, + mges — mxd) - Reg
M = —kgegr — kaea + Q x JQ— J(QRTR.Q. — RTR.Q,)
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Initially Upside Down Quadrotor

zq(t) =10,0,0], b1,(¢t) =[1,0,0]

2(0) = [0,0,0], ©(0) = [0,0,0],
1 0 0

R(0)= [0 —0.9995 —0.0314|, (0)=0,0,0].
0 0.0314 —0.9995

(178.2° initial attitude error)







Initially Upside Down Quadrotor

My Implementation Results from Lee et al.
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Initially Upside Down Quadrotor

My Implementation
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Initially Upside Down Quadrotor
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Implementation Thoughts

e Lots of high-order numerical derivatives

e Nice not having to worry about Euler angles
o Wrapping, singularities

e Lots of operations (cross, dot, norm), but fairly easy to
implement

e Math is different, less intuitive to debug




