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Abstract

In this paper, we introduce a new functional reactive programming
(FRP) language Emfrp designed to support small-scale embedded
systems. An Emfrp program defines a system as a fixed directed
graph whose nodes correspond to the time-varying values in the
system. The language equips a simple mechanism that enables each
node to refer the past values of arbitrary nodes. Using this mecha-
nism, Emfrp provides simplicity and flexibility for describing com-
plex time-dependent reactive behaviors without space and time
leaks. Our Emfrp compiler produces platform-independent ANSI-
C code that can run on multiple processors including resource con-
strained microcontrollers. To demonstrate the capabilities of the
language, we show a simple but non-trivial example application.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Control structures; D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

General Terms Languages, Design

Keywords Functional Reactive Programming, Embedded Sys-
tems

1. Introduction

Reactive programming[1, 13] is a complicated and stressful task
for developers using traditional programming paradigms. Handling
of asynchronous events and/or time-varying values is essential for
reactive programming. However, conventional methods, such as
callbacks, polling and state-machines are obstacles to modularity
because they tend to cut a control flow into small pieces. Also, this
makes testing, maintenance, and extension of a program using these
methods laborious tasks.

Functional Reactive Programming (FRP) is a programming
paradigm that supports reactive programming using (purely) func-
tional building blocks. Since its invention[5], FRP has been ac-
tively studied and applied in many areas such as animation[5],
robotics[10, 6], web applications[9] and GUIs[3]. Recently, several
FRP languages and frameworks that can bear to practical use have
been developed (e.g., Elm[3, 4] and FRPNow[16]).

With a few exceptions, majority of the FRP systems proposed
so far are based on Haskell thanks to the powerful language mecha-
nisms that can, for example, realize arrows to abstract time-varying
values or signals. However, this fact has constrained the applica-
tion areas of FRP. Because currently available Haskell processors
require relatively large runtimes, it is hard to use a Haskell-based
FRP system on resource constrained platforms. Of course, the ad-
vance of programming language studies and microprocessor tech-
nologies might resolve such situation in the future. However, the
need for small-scale and cost-effective devices will remain.

We designed and developed a new FRP language named Emfrp
that mainly targets small-scale embedded systems. The term small-
scale here indicates that the target platform is not powerful enough
to run full-fledged operating systems such as Linux. As in the ex-
isting FRP systems, Emfrp is based on the notion of behaviors and
signals to represent time-varying values. However, we adopt differ-
ent abstraction mechanisms to evade dynamic memory reclamation
(garbage collection) and time-/space-leaks.

To demonstrate our approach, we implemented a compiler

and an interpreter of Emfrp1. The compiler generates platform-
independent ANSI-C code that can be deployed on multiple pro-
cessors including microcontrollers. The interpreter can be used as
a practical testing tool for reactive behaviors in both manual and
automated way. We show, in this paper, a simple but non-trivial
application to illustrate the power of the language.

The rest of this pater is structured as follows. In the next section,
we overview the language with some examples. Section 3 presents
a nontrivial application as a case study. In Section 4, we discuss
how to test the Emfrp code using the interpreter. Section 5 discusses
the FRP style realized by the language and Section 6 briefly ex-
plains the implementation of the language. Finally, we show some
related works in Section 7 and concludes the paper in Section 8.

2. Emfrp Overview

Emfrp is a purely functional language with features for reactive
programming. This section overviews Emfrp’s abstraction mecha-
nisms for FRP and other language features.

2.1 Design Considerations

Expressing time-varying values and events is the central topic of
FRP language design. Existing FRP languages and frameworks,
such as Elm[4] and Yampa[10, 6, 2], treat time-varying values
as first-class data using types that encapsulate time dependencies.
Types (or type constructors) for the purpose are either built-in (e.g.,
Signal in Elm) or user-defined using sophisticated type construc-
tors such as arrows[7].

1 Available at: https://github.com/sawaken/emfrp

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:
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1 module Thermostat

2 in

3 temperature : Int , # temp sensor

4 pulse1min : Bool # periodical pulse

5 out

6 switching : Bool # heater state

7 use

8 Std # standard library

9

10 node init[False] switching =

11 if pulse1min then

12 temperature < 50

13 else

14 switching@last # previous value

Code 1. Simple Thermostat Controller in Emfrp

We adopt a different approach for Emfrp. A program in (func-
tional) reactive style is often expressed as a directed graph whose
nodes and edges represent time-varying values and their dependen-
cies respectively. The design of Emfrp follows this tradition but in
a simple and direct manner. An Emfrp program contains a fixed
number of named nodes that represent time-varying values. A node
may refer to the names of other nodes that it depends on. If node x

refers to y (namely, x depends on y), we say that there is an edge
from y to x. Emfrp’s syntax provides a convenient way of writing
programs as graphs.

Because Emfrp is mainly targeted at small-scale embedded sys-
tems, we designed the language to have the following characteris-
tics:

• Nodes (time-varying values) are not first-class values in the
language. We must, therefore, always specify nodes with their
names.

• The language does not provide ways to alter the dependency
relation between nodes at runtime. In other words, the graph
representation of a program is static.

• Recursion is not allowed in function and type definitions.

Although the design choices shown above greatly reduce the
flexibility and dynamicity of the language, they enable us to enjoy
the following advantages:

• A developer can concentrate on the semantics of each time-
varying value with simple and intuitive abstractions.

• The entire structure of an Emfrp program is more clear and
readable than a program written using higher-order functions
and type constructors.

• A compiled Emfrp program can run with a small and fixed
memory footprint.

We can say that Emfrp chooses simplicity, performance, and small
memory footprint rather than flexibility and dynamicity provided
by functional languages with higher-order features.

2.2 Programming in Emfrp

Code 1 is an Emfrp program for the controller of a simple thermo-
stat system that has a temperature sensor and a heater. The con-
troller periodically (at 1 minute interval) reads the sensor value and
turns on the heater if the measured temperature is less than 50. It
keeps the previous heater state otherwise.

Code 1 consists of a single module definition (lines 1–8) that
contains a node definition (lines 10–14). Characters from ‘#’
through the end of line constitute a single-line comment. The

1 #include "Thermostat.h"

2

3 void Input(int* temperature , int* pulse1min) {

4 /* Your code goes here ... */

5 }

6 void Output(int* switching) {

7 /* Your code goes here ... */

8 }

9 int main() {

10 ActivateThermostat ();

11 }

Code 2. I/O Code Skeleton for Thermostat

module source 

(Emfrp)

I/O code 

skeleton (C)

I/O code 

(C/C++)
FRP code (C)

C/C++ compiler for 

the target 

platform

Executable 

binary code

Emfrp compiler

Library code 
(C/C++/binnary)

Filling the 

skeleton

Figure 1. Emfrp Development Workflow

module definition declares two input nodes (temperature and
pulse1min) and a single output node (switching) that are time-
varying values. The node definition (lines 10–14) descries the be-
havior of switching. The behaviors of the two input nodes should
be defined separately (in C/C++).

Because the program is intended to run on an embedded device,
the nodes declared as input and output are to be connected to the
I/O of the device. Our Emfrp compiler generates a C source file
called I/O code skeleton as well as the compiled node definitions
and functions. The generated I/O code skeleton contains empty
function definitions that correspond to the input and output nodes
of the original program. The developer should fill the body of the
functions with the actual low-level I/O codes in C/C++. Code 2 is
the I/O code skeleton generated from Code 1.

Figure 1 depicts the Emfrp development workflow. From an
Emfrp source file, the compiler generates two platform-independent
ANSI-C source files: FRP code and I/O code skeleton. The FRP
code contains the C code implementing the nodes and functions
in the Emfrp source. The developer should prepare the I/O code
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1 module Iterate

2 in

3 a : Int , b : Int

4 out

5 x, y

6 use

7 Std

8

9 node init [1] x : Int = a + y@last

10 node init [0] y : Int = b * x@last

Code 3. Iterate Process in Emfrp

1 #include "Iterate.h"

2 #include <stdio.h>

3

4 void Input(int* a, int* b) {

5 scanf("%d %d", a, b);

6 }

7 void Output(int* x, int* y) {

8 printf("%d %d\n", *x, *y);

9 }

10 int main() {

11 ActivateIterate ();

12 }

Code 4. I/O Code for Code 3

by manually filling the generated I/O code skeleton as explained
above. Finally, she/he can obtain the executable binary by compil-
ing and linking these C/C++ source files and platform-dependent
libraries.

2.3 The Last Value of a Node

Code 1 contains an expression switching@last (line 14). This ex-
pression refers the last value of the node switching. From the
viewpoint of the FRP semantics, the last value should refer the
value at the snapshot taken a moment ago. In practical, this is
the value of the node evaluated at the last iteration. An iteration
corresponds to an evaluation cycle of the entire program (see Sec-
tion 6.1). In the following example, we show that how a loop-like
execution can be realized in Emfrp.

The module Iterate in Code 3 has two input nodes and two
output nodes. As Code 4 shows, they are connected to the standard
I/O via scanf and printf. When we feed some inputs like 1 2, 3
4 and 5 6, the output should be 1 2, 5 4 and 9 30. This behavior
is realized because x and y refer to each other with last values.
This example demonstrates that how we can write a simple input-
process-output iteration pattern in Emfrp.

In a node definition, a clause init[exp] after the keyword node

specifies the initial value of the node. The initial value specification
is necessary for a node to be referred with @last in case it is
accessed at the first iteration.

As we have explained in Section 2.1, a program in Emfrp forms
a directed graph. For example, the graph in Figure 2 represents the
program in Code 3. Edges that correspond to the references to the

last values are drawn as broken lines2. For debugging purpose, our
Emfrp compiler has a facility to visualize the graph representations

of programs by generating dot3 files.

2 We call them past edges. See Section 6.1 for details.
3 File format used in Graphviz (http://www.graphviz.org/)

a : Int

x : Int b : Int

y : Int

Figure 2. Graph Representation of Code 3

1 type Box[a] =

2 RectangleBox(a) | CircleBox(a)

3

4 func exchangeBox(b) = b of:

5 RectangleBox(x) -> CircleBox(x)

6 CircleBox(x) -> RectangleBox(x)

Code 5. Type and Function Definitions

2.4 Types and Functions

Emfrp is a strongly-typed language whose type system supports
parametric polymorphism and type inference. We can define alge-
braic data types and functions apart from node definitions. Code 5
is an example including a type declaration and a function definition.

Pattern-matching expressions are also available to take values
from algebraic data safely. We don’t need explicitly specify types
except for input nodes declarations since Emfrp supports ML-like
polymorphic type inference.

An important limitation in Emfrp is that we can define neither
recursive data types nor recursive functions. Furthermore, the lan-
guage does not provide any loop constructs. Thanks to these (some-
what severe) constraints, the runtime memory footprint of a pro-
gram is bounded and time-/space-leaks do not occur. If some itera-
tive behaviors are needed, we are required to use @last as explained
in the previous subsection instead of using recursions or loops.

2.5 Modules

An Emfrp program consists of one or more modules. A program file
(with extension mfrp) contains a single module definition followed
by node definitions used in the module.

A module can be used as the main module of a program, or as a
submodule used in other modules. The main module of a program
plays the role of the launch point. A module can be instantiated
as a submodule of another module using the language construct
newnode. Code 6 and Code 7 show an example program consist of
two modules. The former is the main module that instantiate the
latter twice as the submodule.

3. Case Study: Digital Clock

3.1 Application Overview

The application is an orthodox digital clock displaying the current
time as HH:MM:SS. We can set the time at any time the program is
running using buttons A, B and C. The behaviors of the application
is shown in the hierarchical state-transition diagram in Figure 3.
Note that the clock continues ticking even while setting the time.
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1 module MyMainModule

2 in x : Int out a, b, c, d use Std

3

4 newnode a, b = MySubModule(x, x + 1)

5 newnode c, d = MySubModule(x, x + 2)

Code 6. MyMainModule.mfrp

1 module MySubModule

2 in x : Int , y : Int

3 out sum , pro

4 use Std

5

6 node sum = x + y

7 node pro = x * y

Code 7. MySubModule.mfrp

EditMode = True

EditMode = False

EditPos = Hour

12:30:05 --:30:05

EditPos = Minute

12:30:05 12:--:05

12:30:05

EditPos = Second

12:30:05 12:30:--

0.5sec

0.5sec

0.5sec

0.5sec

button A

button B

0.5sec

0.5sec

button C increases second by 1button C increases hour by 1

button C increases minute by 1

Figure 3. Behavior of the Digital Clock

We have tested the code on mbed LPC17684 with mbed ap-

plication board5. The platform has 96MHz ARM Cortex-M3 core
with 32KB RAM and 512KB flash memory. The full source code

is available on our Github repository6.

3.2 Declaring and Defining I/O Nodes

Code 14 (in Appendix A) shows the whole source code. In the first
part (lines 2–11), the following Boolean-typed nodes are declared
as inputs.

4 https://developer.mbed.org/platforms/mbed-LPC1768/
5 https://developer.mbed.org/cookbook/mbed-application-board
6 https://github.com/sawaken/emfrp/tree/develop/examples/LCDClock

1 #include "DigitalClock.h"

2

3 void Input(int* btnMode , int* btnNext , int* btnInc

, int* pulse100ms) {

4 /* Your code goes here ... */

5 }

6 void Output(int* hour , int* min , int* sec , int*

maskHour , int* maskMin , int* maskSec) {

7 /* Your code goes here ... */

8 }

9 int main() {

10 ActivateDigitalClock ();

11 }

Code 8. I/O Code Skeleton for DigitalClock

• btnMode: becomes True only while button A (mode-button) is
pressed

• btnNext: becomes True only while button B (next-button) is
pressed

• btnInc: becomes True only while button C (inc-button) is
pressed

• pulse100ms: becomes True at 100ms interval

In the next part (lines 12–17), the following nodes are declared
as outputs.

• hour, min, and sec: represent integer values to be displayed as
current time hour, minute, and second respectively

• maskHour, maskMin, and maskSec: represent that currently set-
ting the hour, minute or second respectively. For example, if the
value of maskHour is True, then blinking ‘--’ is shown in the
hour part of the display.

After these I/O node declarations, type definitions (lines 25–27),
function definitions (lines 29–61) and node definitions (lines 66–
140) follow. They are used to define the whole behaviors of output
nodes. Due to the limitation of space, we do not explain semantics
of nodes in Code 14 here. However, the code is fully annotated so
that you may be able to read and understand it.

3.3 I/O Code

As mentioned in Section 2.2, in addition to write the main part of
the code in Emfrp, it is necessary to write IO code in C/C++ by fill-
ing the I/O code skeleton generated by the Emfrp compiler. Code 8
is the I/O code skeleton generated from Code 14 (in Appendix A).

An example I/O code derived from Code 8 is provided as
Code 15 (in Appendix B). The code is for the tested platform (de-
scribed in Section 3.1) and uses the standard mbed library and

a user-provided library7 for the LCD display on the application
board.

3.4 Using FRP Modules (Optional)

We can use the submodule feature (described in Section 2.5) for
more comfortable reactive programming. For example, we can de-
fine a reusable module PositiveEdge (Code 9) that detects positive
(rising) edges of a Boolean node.

Using this module as a submodule, we can define the node
curMode (in Code 14) as Code 10. The resulting code is easier
to read than the original code that use function positiveEdge for
the same purpose. Note that the specification of the initial value
specification for the input node btnMode (line 5 in Code 14) is no
longer needed.

7 https://developer.mbed.org/users/dreschpe/code/C12832 lcd
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1 module PositiveEdge

2 in x : Bool out y : Bool

3 use Std

4

5 node init[False] buf = x

6 node y = !buf@last && buf

Code 9. PositiveEdge.mfrp

90 newnode btnModeEdge = PositiveEdge(btnMode)

91 node init[Normal] curMode : Mode =

92 if

93 btnModeEdge

94 then

95 curMode@last.nextMode

96 else

97 curMode@last

Code 10. Definition of curMode using Code 9

4. Testing FRP Code

A program written in Emfrp has good testability. The reason is that
each element in Emfrp has no implicit state. Thus we can replay
the behavior of a node from is arbitrary state or can feed arbitrary
input to it. Those are essential benefits of FRP, however, thanks to
its design characteristics, Emfrp has no testing obstacles.

4.1 Testing Functions

The Emfrp interpreter provides :assert-equals command to
check the equality of two expressions. We can always use it for
testing because all Emfrp functions are pure.

1 #@ :assert -equals 3, add(1, 2)

2 func add(a, b) = a + b

As the above code shows, a special comment syntax opening with
#@ allows the interpreter command used as an annotation embedded
in the source code.

4.2 Testing Nodes

We can use :assert-node command to test a node by regarding it
as a function. For example, the command in the code below asserts
that the value of the node xnode must be 3 if the values of the nodes
foo and bar are 1 and 2 respectively.

1 #@ :assert -node xnode 1, 2 => 3

2 node from[foo , bar] xnode = foo + bar

The current version of the interpreter requires an extra annotation
from[...] to use :assert-node.

4.3 Testing Modules

A module can be tested by checking the values of the output nodes
after feeding a combination of values to the input nodes. The Emfrp
interpreter provides :assert-module command for this purpose.
For example, following commands tests the module Iterate in
Code 3 (in Section 2).

1 :assert -module 1, 2 => 1, 2

2 :assert -module 3, 4 => 5, 4

3 :assert -module 5, 6 => 9, 30

The values of the output nodes of a module is history-sensitive if
the module uses @last. It is possible to set the current states of the
module to arbitrary values for testing.

1 x : Signal Int

2 x = ...

3 lastOfX ’ : Signal (Int , Int)

4 lastOfX ’ = foldp (\a state -> (snd state , a)

) (0, 0) x

5 lastOfX = lift fst lastOfX ’

6 sampler = lift (+1) lastOfX

Code 11. Getting Feedbacks in Elm

1 node init [0] x : Int = ...

2 node sampler = x@last + 1

Code 12. Getting Feedbacks in Emfrp

5. Alternative Style for FRP

Elm-style FRP provides one of the most simple and accessible ab-
stractions for reactive programming. The design of Emfrp is in-
spired by Elm and partly adopts Elm-style FRP. However, we think
that programming in Elm is sometimes non-intuitive for reactive
programming due to its basic language design influenced by usual
functional languages such as Haskell. Emfrp provides more intu-
itive syntax and semantics to handle time-varying values. The rest
of this section discusses the FRP style provided by both languages.

Getting feedbacks, namely, referring the past value of a time-
varying value is the key concept in FRP. In Elm-style FRP (includ-
ing Emfrp), the only way to get feedbacks is by referring the last-
value of a time-varying value. In Elm, a time-varying value can
only refer to the last value of itself using foldp. In contrast, Em-
frp provides @last notation that allows a node can refer to the last
value of an arbitrary node.

This is a major difference between Elm and Emfrp for users
to write FRP program. Although Elm’s design of syntax focuses
on handling time-varying values in the conventional functional
syntax similar to Haskell, this is not an intuitive way to express
the semantics of time-varying values. Therefore, users are forced
to use their brain unnaturally to express application’s logic by FRP.

Both Code 11 and Code 12 define the same example in Elm and
Emfrp respectively. In the example, time-varying value sampler

refers last-value of time-varying value x. The Emfrp version is
highly intuitive because the last value of x can be accessed directly
by sampler using @last while both time-varying values should
form a pair in Elm.

6. Implementation

Emfrp code is compiled into platform-independent ANSI-C code.
This section briefly explains the compilation strategy and runtime
behaviors.

6.1 Iterations

As explained in Section 2.1, an Emfrp program can be represented
by a directed graph whose nodes and edges correspond to time-
varying values and their dependencies respectively. We categorize
the edges into two kinds, namely, past and present. A past edge
from node x to y means that y refers to the last value of x (i.e.,
x@last). A present edge from node x to y, in contrast, means that
y refers to x without @last annotation. For example, the graph
representation of Foo in Code 13 has two past edges: one from f

to b and the other from d to d. All other edges are present.
By removing the past edges from the graph representation of a

program, we obtain a directed-acyclic graph (DAG). Figure 4 is the
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1 module Foo

2 in a : Int , c : Int , e : Int

3 out d, f

4 use Std

5

6 node init [0] b : Int = if f@last then a else

c

7 node init [0] d = max(b, d@last)

8 node init[False] f : Bool = e > 0

Code 13. A Module with 6 Nodes

a

b

c e

f

d

Figure 4. A DAG Representation of Foo in Code 13

resulting DAG for Foo. Using the topological sorting on the DAG,
we have a sequence of the nodes, for example, (a, c, e, b, f, d).
For each node in a program, the compiler generates a C function
that computes the current value of the node. The sequence of the
nodes described above determines the linear evaluation order of
such functions that is compatible with the partial order specified
determined by the edges in the DAG. This means that the evaluation
order obeys the node dependencies.

The Emfrp runtime system updates the current values of the
nodes by repeatedly evaluating the sequence of the functions. We
call a single evaluation cycle an iteration. The last value of a node
(node name with @last) is realized by the reference to the node
value computed in the last iteration.

6.2 Memory Management

Thanks to the static characteristics described in Section 2.1, the
size of the runtime memory can be determined at the compile time.
Thus, runtime data other than primitive values (such as integers)
can be allocated in the static area of the program memory. For such
data, the Emfrp runtime system provides a kind of mark-and-sweep
GC that runs each time an iteration finishes.

6.3 Performance

As explained in Section 6.1, the Emfrp runtime repeats iterations
(evaluation of functions corresponds to nodes). Thus the runtime
performance depends on the performance of each function. There
is no big gap between an Emfrp node definition and the C function
generated for the node. This means that Emfrp’s performance bears
comparison with C. Only one possible exception is the process of
data type instantiations. Due to the process, the runtime system
pays additional costs relative to the size of the instantiated data.
Our experience so far states that the performance impact regarding
such process is not significant. But we leave a through performance
evaluation for future work.

6.4 Avoiding Space-/Time-Leaks

In the context of (functional) reactive programming, space-leak
means that a program allocates more memory than expected and
time-leak means that the program consumes more time than ex-
pected. These phenomena are usually caused by the lazy nature of
the host language[8] or by history sensitive behaviors[16]. They
disturbs the normal execution of the program.

The Emfrp runtime does not allocate data structures such as tu-
ples on the stack or heap of the program memory. As explained
in Section 6.2, they are allocated in the static area. This alloca-
tion strategy is possible because the language allows neither recur-
sive data structures nor recursive functions, which may require un-
bounded memory spaces. Excluding recursions from type and func-
tion definitions guarantees that we can determine the upper bound
of the memory sizes needed (a) to evaluate an arbitrary expression
and (b) to allocate an arbitrary data structure. Thus, the upper bound
of the runtime memory size can be determined at compile time. The
fact implies that Emfrp can avoid space-leak.

Emfrp can also avoid time-leak by its nature. Because the lan-
guage do not allow recursive functions and do not provide loop
constructs, the time for evaluating a node value is always bounded.
Moreover, a node can hold only the current and previous (last) val-
ues whose sizes are bounded as explained above. In other words,
the memory usage of each node is always bounded. Thus, a node
cannot keep data that unboundedly glows (e.g., a list). The above
facts imply that there are no ways to define a node whose evaluation
time glows over time.

7. Related Works

7.1 Céu

Céu[14, 15] is an imperative programming language designed for
small-scale embedded systems. The method of describing reactive
behaviors in this language is completely different from that of
FRP languages including Emfrp. However, Emfrp is inspired by
Céu especially on designing the language suitable for resource
constrained environments.

For reactive programming, Céu provides simple mechanisms
for event handling and synchronous concurrent execution. The
await statement plays roles of event handling and synchroniza-
tion points as well as context-switching points. Using this state-
ment and other constructs, we can describe the reactive behaviors
without bothered by callbacks and threads that might make the
programming of embedded systems a complex task.

Céu does not provide sufficient tools for testing. Because a
Céu program may have complex control flows due to the above
mentioned language mechanisms, it is generally difficult to offer a
easily usable testing mechanism such as simple assertions provided
by Emfrp.

7.2 FRP Libraries in Haskell

FRP was originated as a technique for defining time-dependent
behaviors in lazy functional languages and hence mainly studied
using Haskell[3, 1]. After the publication of the founder paper on
Fran[5], majority of previous FRP systems, such as Yampa[10, 6,
2], Reactive Banana[11] and FRPNow[16] are based on Haskell.
Problems thought to be peculiar to FRP, such as space- and time-
leaks, are, in fact, caused by the attempt to realize FRP in lazy
languages like Haskell.

Of course, the contributions of Haskell-based research on FRP
are significant. For example, by defining sophisticated types for
handling time-varying values, they showed that we can realize safe
reactive programming without introducing new and dedicated lan-
guage constructs. Now, however, some of such types or equiva-
lents are known to be realized by somewhat simple and dedicated
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language mechanisms, such as built-in Signal type constructor in
Elm[4].

As explained in Section 1, the runtime systems of currently
available Haskell compilers require relatively large resources.
Thus, it is virtually impossible to use Haskell-based FRP systems
on small-scale embedded systems.

7.3 Elm

Elm[4] is an FRP language for client-side scripting run on web-
browser. Both Elm and Emfrp are pure functional languages. The
crucial difference between them is in their basic language design.
Elm is based on the lambda-calculus tradition (e.g., ML, Haskell),
but Emfrp is not.

For example, first-class, anonymous function (i.e., lambda) is a
powerful language mechanism available in most major functional
languages. Unfortunately, the mechanism is not suitable for small-
scale embedded systems without enough amount of memory and
CPU power. The reason is that dynamic memory management is
essential to fully enjoy the power of lambdas.

Emfrp throws lambdas (and other convenient language mech-
anisms) away to be able to utilize resource constrained environ-
ments. However, as described in Section 5, @last provides better
flexibility and simplification than Elm and other Haskell-based FRP
frameworks.

7.4 Reactive Extensions

Reactive Extensions (Rx)[12] is a cross-platform library to real-
ize reactive programming along with methodology of dataflow pro-
gramming based on the Observer-Pattern. The methodology can be
called as a non-pure style FRP that manipulates time-varying values
using side-effects. Rx is currently active project and is a low-cost
solution for comfortable reactive programming because it is not a
framework but just a library. Thus there is no need to migrate our
existing program from to a new framework’s culture. Although Rx
supports various languages, they, at least, require environment in
which C++11 works sufficiently. This means that Rx depends on
the powerful language features in C++11 such as lambda expres-
sions. Unfortunately, C++11 is currently bit heavy for most small-
scale microcontrollers.

8. Concluding Remarks

We have designed and developed Emfrp, a functional-reactive lan-
guage that is targeted at small-scale embedded systems. For the
design of Emfrp, we do not follow the lambda-calculus tradition to
make the language suitable for resource constrained environments
such as microcontrollers. Instead, we introduced a simple mecha-
nism that realizes the reference to the last values of arbitrary nodes.
The mechanism provides better flexibility and simplification than
previous FRP languages and libraries. Thanks to the simple struc-
ture of the language and its runtime, there are no chances of space-
/time-leaks. We presented a digital clock application as a simple but
non-trivial example that demonstrates the capabilities of the lan-
guage.

Future work includes the following:

• Performance evaluation in terms of CPU usage and memory
footprint

• Improvement of the compiler in terms of generated code size
and speed

• Introduction of flexible data structures that will not disturb the
language characteristics described in Section 2.1

• Formal semantics (especially the semantics of @last)
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A. Emfrp Source Code of Digital Clock

1 module DigitalClock

2 in

3 # Is mode -button pushed now?

4 # (False is initial value)

5 btnMode(False) : Bool ,

6 # Is next -button pushed now?

7 btnNext(False) : Bool ,

8 # Is increment -button pushed now?

9 btnInc(False) : Bool ,

10 # True/False which toggles by 100ms

11 pulse100ms(False) : Bool

12 out

13 # current time to display

14 hour , min , sec ,

15 # Is it now needed to display --

16 # instead of two -digits?

17 maskHour , maskMin , maskSec

18 use

19 # using Emfrp ’s standard library

20 Std

21

22 # Functions

23 # --------------------

24

25 type Mode = Normal | Edit

26 type EditPos = HourPos | MinPos | SecPos

27 type Time = Time(Int , Int , Int)

28

29 func nextMode(m) = m of:

30 Normal -> Edit

31 Edit -> Normal

32

33 func editable(m) = m of:

34 Normal -> False

35 Edit -> True

36

37 func nextPos(p) = p of:

38 HourPos -> MinPos

39 MinPos -> SecPos

40 SecPos -> HourPos

41

42 # note: you can define local variables

43 # with expression {(<name >=<exp >)+ <exp >}

44 # and you can use pattern match for

45 # <name >

46 func proceedTime(t) = {

47 Time(h, m, s) = t

48 newS = s + 1

49 newM = m + (newS / 60)

50 newH = h + (newM / 60)

51 Time(newH % 24, newM % 60, newS % 60)

52 }

53

54 func increaseTime(t, dh , dm , ds) = {

55 Time(h, m, s) = t

56 Time((h+dh)%24, (m+dm)%60, (s+ds)%60)

57 }

58

59 func positiveEdge(a, b) = !a && b

60

61 func bothEdge(a, b) = !a && b || a && !b

62

63 # Nodes

64 # --------------------

65

66 # mod -10 counter incremented by every 100ms

67 # note: you can put type annotation

68 # following the node name

69 # note: expression x ‘f‘ y is syntax sugar

70 # for expression f(x, y)

71 node init [0] counter : Int =

72 if

73 pulse100ms ‘bothEdge ‘ pulse100ms@last

74 then

75 (counter@last +1) %10

76 else

77 counter@last % 10

78

79 # node to be True only once by every 1sec

80 node pulse1s : Bool =

81 counter == 0 && counter@last != 0

82

83 # node switching True/False by every 500ms

84 node flash : Bool =

85 counter < 5

86

87 # node representing current time -set mode

88 # note: you can use pattern match

89 # for left side value of node -definition

90 node init[Normal] curMode : Mode =

91 if

92 btnMode@last ‘positiveEdge ‘ btnMode

93 then

94 curMode@last.nextMode

95 else

96 curMode@last

97

98 # node representing current cursor position

99 node init[HourPos] curPos : EditPos =

100 if

101 btnNext@last ‘positiveEdge ‘ btnNext

102 then

103 curPos@last.nextPos

104 else

105 curPos@last

106

107 # node representing diffs

108 # to add to current time

109 node (dh, dm, ds) : (Int , Int , Int) =

110 if

111 curMode.editable &&

112 (btnInc@last ‘positiveEdge ‘ btnInc)

113 then

114 curPos of:

115 HourPos -> (1, 0, 0)

116 MinPos -> (0, 1, 0)

117 SecPos -> (0, 0, 1)

118 else

119 (0, 0, 0)

120

121 # node representing current time

122 # note: expression x.f(y) is syntax sugar

123 # for expression f(x, y)

124 node init[Time(0, 0, 0)]

125 Time(hour , min , sec) as curTime =

126 if pulse1s then

127 curTime@last.proceedTime

128 .increaseTime(dh , dm , ds)
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129 else

130 curTime@last.increaseTime(dh , dm , ds)

131

132 # node representing need of masking

133 node (maskHour , maskMin , maskSec) =

134 if curMode.editable && flash then

135 curPos of:

136 HourPos -> (True , False , False)

137 MinPos -> (False , True , False)

138 SecPos -> (False , False , True)

139 else

140 (False , False , False)

Code 14. Emfrp Source Code of Digital Clock

B. I/O Code of Digital Clock

1 #include "DigitalClock.h"

2 #include "mbed.h"

3 #include "C12832_lcd.h"

4

5 C12832_LCD lcd;

6 DigitalIn center(p14), up(p15), right(p16);

7 int current_pulse100ms = 0;

8

9 void pulse_toggle () {

10 current_pulse100ms ˆ= 1;

11 }

12

13 void put_digits(int number , int mask) {

14 if (mask) {

15 lcd.printf("--");

16 } else {

17 lcd.printf("%02d", number);

18 }

19 }

20

21 void Input(int* btnMode , int* btnNext ,

22 int* btnInc , int* pulse100ms) {

23 *btnMode = center.read();

24 *btnNext = right.read();

25 *btnInc = up.read();

26 *pulse100ms = current_pulse100ms;

27 }

28

29 void Output(int* hour , int* min , int* sec ,

30 int* maskHour , int* maskMin ,

31 int* maskSec) {

32 lcd.cls();

33 lcd.locate (45, 10);

34 put_digits (*hour , *maskHour);

35 lcd.printf(":");

36 put_digits (*min , *maskMin);

37 lcd.printf(":");

38 put_digits (*sec , *maskSec);

39 wait (0.01);

40 }

41

42 int main() {

43 Ticker ticker;

44 ticker.attach (& pulse_toggle , 0.1);

45 ActivateDigitalClock ();

46 }

Code 15. I/O Code of Digital Clock
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