
302

Python4Delphi80
Python4Delphi

Purpose: To become familiar with the use of Python4Delphi

What is Python4Delphi?
Python1 for Delphi (Python4Delphi) is a set of free components that wrap up
the Python dll so that Python scripts can be executed from Delphi.
Figure 80.1 shows a simple demonstration in which a Python script
BubbleSort.py is loaded and executed from a Delphi program
Demo1Project.exe.
The upper window shows the version of python being used (Python 3.8),
then the output, [0, 1, 2, 3, 5, 8, 9], from the execution of the python script,
BubbleSort.py, shown in the lower window, acting on the unsorted list,
[5, 1, 2, 3, 9, 8, 0].

1	 "Python" is a registered trademark of the Python Software Foundation

Information
The programs in this chapter
rely on Python4Delphi software,
inspiration being derived from
the software demos provided
with Python4Delphi.
For licensing see
https://github.com/pyscripter/
python4delphi/blob/master/
LICENSE

Information
Why use Python4Delphi?
Python4Delphi combines the
strengths of Delphi and Python.
It supports Python-based data
analytics in Delphi applications
and Python GUI development
using the VCL.

Figure 80.1 Demo1Project.exe executing Python script BubbleSort.py

Upper window - Memo1

Lower window - Memo2

Unsorted list

Python script

Sorted list

www.educational-computing.com/DelphiBook/Code/Chapter80/Demo1Project.zip

Early access pdf edition available from
www.educational-computing.co.uk

Free sample chapter from How to Program Effectively in Delphi for AS/A Level Computer Science by Dr K R Bond

Free sample chapter - copyright Dr K R Bond 2020

https://github.com/pyscripter/python4delphi/blob/master/LICENSE
https://github.com/pyscripter/python4delphi/blob/master/LICENSE
https://github.com/pyscripter/python4delphi/blob/master/LICENSE
http://www.educational-computing.com/DelphiBook/Code/Chapter80/Demo1Project.zip
http://www.educational-computing.co.uk

HOW TO PROGRAM EFFECTIVELY IN DELPHI﻿

303

Setting up Python4Delphi
Download python4delphi code, python4delphi-master.zip, or clone this code from the GitHub repository at
github.com/pyscripter/python4delphi. Unzip it to create a python4delphi-master folder with the contents shown
in Figure 80.2 (September 2020).

1.	 Start RAD Studio.
2.	 Add the source subdirectory (e.g., C:\Users\drbond\

python4delphi-master\Source) to the IDE's library
path for the targets you are planning to use
(Tools|Options|Language|Delphi|Library) - Figure
80.3.

3.	 Open the Python4Delphi package specific to the
version of Delphi being used. For Delphi 10.4.1
and later, use the package in the Packages\Delphi\
Delphi 10.4+ directory. For earlier versions including
Delphi 10.4 (version before 10.4.1) use the package
in the Packages\Delphi\Delphi 10.3- directory
- Figure 80.4. This will need editing for Delphi
10.4. Remove all the {$IFDEF}{$LIBSUFFIX
....} {$ENDIF} statements and replace with
{$LIBSUFFIX '270'}. Figure 80.5 shows the
Projects pane in the Delphi IDE after opening the
the package for Delphi 10.4.

4.	 Python was installed as a part of an Anaconda
distribution (32-bit), Anaconda3, but Python can
also be installed directly from Python.org. You must
also add the \Library\bin path of the Anaconda
distribution to the system environment variable -
Figure 80.6.

Figure 80.2 python4delphi_master folder contents

Figure 80.3 Setting Library path

Figure 80.4 Open Project Python_D.dprog

Figure 80.5 Projects pane after opening Python_D.dproj

Figure 80.6 System environment variable

Path to \Library\bin

Free sample chapter - copyright Dr K R Bond 2020

http://github.com/pyscripter/python4delphi
http://Python.org

304

5.	 Right click on Python_D270.bpl to bring up the menu shown in Figure 80.7. Click on Install to install the
python components. If successful, the component palette should now contain a Python palette of components
as shown in Figure 80.8.

First project
1.	 Create a new Windows VCL Application for

Delphi.
2.	 Drop a TPanel component on the form and

set its Align property to alTop in the Object
Inspector. Change its Caption property to
Python Source Code.

3.	 Drop a TMemo component (Memo1) on the
form and set its Align property to alTop. Open its Lines
property and delete Memo1 string to leave the memo box
empty. Set ScrollBars to ssBoth.

4.	 Drop a TSplitter component from the Additional palette on the
form and set its Align property to alTop and its Height property to 2.

5.	 Drop a TPanel component on the form and set its Align
property to alTop in the Object Inspector. Change its
Caption property to Python Output.

6.	 Drop a TPanel component on the form and set its Align
property to alBottom in the Object Inspector. Empty its
Caption property.

7.	 Drop a TMemo component (Memo2) on the form and set its
Align property to alClient so that it fills the gap between the bottom panel and the TSplitter component.
Open its Lines property and delete Memo2 string to leave the memo box empty. Set ScrollBars to ssBoth.

8.	 Select the bottom panel and then drop a TButton component (Button1) onto this panel. Set its caption to
Execute. Set its Anchors property to [akTop,akRight, akBottom].

The user interface's appearance in the design window should now be as shown in Figure 80.9.

Figure 80.7 Install components from here

Right mouse click
Python_D270.Bpl

Click

Part of the
menu that
appears

Figure 80.8 Component palette showing
installed Python components

Figure 80.9 Design of the user interface

TPanel

TPanel

TPanel

TMemo

TButton

TSplitter

Free sample chapter - copyright Dr K R Bond 2020

305

HOW TO PROGRAM EFFECTIVELY IN DELPHI

9.	 Drop a TPythonEngine component from the Python palette on the form. This
component provides the connection to Python or rather the Python API. Its default
name is PythonEngine1.

10.	Drop a TPythonGUIInputOutput component on the form. Its default name
is PythonGUIInputOutput1. This component provides a conduit for routing
input and output between the Graphical User Interface (GUI) and the currently
executing Python script.

11.	As this project uses an Anaconda distribution (see later for the same project implemented with Python
from www.Python.org) PythonEngine1's properties are required to be set up as follows

•	 Set property DllName to python38.dll (because Python 3.8 is installed) or the version that you have installed.

•	 Set property DllPath to the Anaconda distribution, e.g. c:\users\drbond\anaconda3.

•	 Set property AutoLoad to False.

•	 Set UseLastKnownVersion to False.

•	 Set PythonEngine1's property IO to PythonGUIInputOutput1.

12.	Set PythonGUIInputOutput1's property Output to Memo2.

13.	As this Delphi application relies on an Anaconda distribution, we are required to set up a Form Create
event handler with the following two lines of code (this is unnecessary with Python from Python.org)

Procedure TForm1.FormCreate(Sender: TObject);
 Begin
 PythonEngine1.SetPythonHome('c:\drbond\users\anaconda3');
 PythonEngine1.LoadDll;
 End;

14.	Double click Button1 and add the line of code to the
event handler

PythonEngine1.ExecStrings(Memo1.Lines);

15.	Save the project and its unit in folder FirstExample.
Name project FirstExampleProject and its unit
FirstExampleUnit.

16.	Now compile, link and run (F9) the executable.

17.	Write print(2 + 2) in the Python Source Code
window then click Execute. Figure 80.10 shows the
result. The executable calls up the Python interpreter
which executes the print function with the given
argument 2 + 2 returning the result 4. This result is
passed to the Delphi executable which then displays it
in the Python Output window.

The TSplitter component allows the sizes of the two windows
to be adjusted together so that as one is enlarged the other is
reduced in size accordingly seamlessly - Figure 80.11.

Figure 80.11

Figure 80.10 FirstExampleProject.exe in execution

Free sample chapter - copyright Dr K R Bond 2020

http://www.Python.org
http://Python.org

306

HOW TO PROGRAM EFFECTIVELY IN DELPHI

In order to be able to load and save Python scripts for execution by FirstExampleProject.exe, two more
TButton components need to be added to the bottom panel as shown in Figure 80.12.

18.	Select the bottom panel then add two TButton
components to this panel, Button2 and Button3. Set
the Caption property of Button2 to Save and the
Caption property of Button3 to Load. Position these
two buttons as shown in Figure 80.12.

19.	Set the Anchors property of Button3 to [akLeft,
akTop, akBottom].

20.	Set the Anchors property of Button2 to [akTop,
akBottom].

When the application's window is resized, Button3 (Load) will
remain anchored at the same distance from the left, top and
bottom edges of the bottom panel. Button 2 (Save) will remain
anchored at the same distance from the top and bottom edges
of the bottom panel but it will move to the right or to the left,
respectively, if the application's window is resized in either of
these directions. Button1 (Execute) will remain anchored at
the same distance from the right, top and bottom edges of the
bottom panel.

21.	Add a TOpenDialog and a TSaveDialog to the form.

22.	Double click Button2 (Save) and add the following lines of code to the event handler

With SaveDialog1
 Do
 Begin
 If Execute
 Then Memo1.Lines.SaveToFile(FileName);
 End;

23.	Double click Button3 (Load) and add the following
lines of code to the event handler

With OpenDialog1
 Do
 Begin
 If Execute
 Then Memo1.Lines.LoadFromFile(FileName);
 End;

24.	Save project and unit in folder FirstExample.

25.	Now compile, link and run (F9) the executable.

26.	Click Load and select BubbleSort.py.

27.	Click Execute.

Figure 80.13 shows the result.

Property of SaveDialog1

Property of OpenDialog1

Figure 80.12 FirstExampleProject with
two additional buttons Open and Save

Figure 80.13 FirstExampleProject.exe in execution
and with Python script BubbleSort.py loaded

www.educational-computing.com/DelphiBook/Code/Chapter80/FirstExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/FirstExample.zip

307

Second project
Save project FirstExampleProject.dproj in a new folder, SecondExample,
rename the project SecondExampleProject.dproj (Save Project As).
Save unit FirstExampleUnit.pas in new folder SecondExample, rename the
unit SecondExampleUnit.pas (Save As).

1.	 Select bottom panel and add a TButton component to this panel. Change
its Caption property to Show Var. Position as shown in Figure 80.14.

2.	 Add a TPythonDelphiVar component from the Python palette. Change its
VarName property to test. Set its Engine property to PythonEngine1 if
this doesn't happen automatically.

3.	 Double click Show Var and add the following line of code to the event
handler

ShowMessage('Value = ' +
PythonDelphiVar1.ValueAsString);

4.	 Save project and unit.
5.	 Now compile, link and run (F9)

the executable.
6.	 Enter the following Python code

into the Python Source Code
window
test.value = 5
print(test, test.value)

as shown in Figure 80.15.
7.	 Click Execute. The line

<PythonDelphiVar: 5> 5

appears in the Python Output
window. Python function print
copies the numeric value 5
stored in the Python variable
test.value and then sends
it to Delphi to handle via
PythonGUIInputOutput1
which is also connected to
Memo2.

8.	 Now click Show Var to execute
some Delphi code. The window
shown in Figure 80.15 should
appear displaying the string
'Value = 5'. This is occurs
because the identifiers
PythonDelphiVar1 and test
are aliases for the same variable.

The fact that these identify the same
variable means it is possible to read and write the variable's content in both Python and Delphi!

Information
The identifiers test and
PythonDelphiVar1 operate as
aliases for the same variable. It
makes better sense therefore to
use the same identifier name
for each. PythonDelphiVar1 is
the property value of property
Name for a TPythonDelphiVar
object and the other, test, is
the property value of property
VarName. The latter is the
variable name that is accessible
to a Python script.

Figure 80.14 SecondExampleProject user interface design

Figure 80.15 SecondExampleProject.exe in execution

Share common
value 5

Output from Python script

Output from Delphi
ShowMessage

www.educational-computing.com/DelphiBook/Code/Chapter80/SecondExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/SecondExample.zip

308

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Third project
Save project SecondExampleProject.dproj in a new folder, ThirdExample, renaming the project
ThirdExampleProject.dproj (Save Project As).
Save unit SecondExampleUnit.pas in new folder ThirdExample renaming the unit ThirdExampleUnit.pas
(Save As).

1.	 Select bottom panel and add a TEdit component, Edit1, to this panel as shown in Figure 80.16. Set its
Text property to 0.

2.	 Click on PythonDelphiVar1 and in the Object Inspector switch to the Events tab.
3.	 Double-click on attribute OnGetData to create its event handler. Add the following line of code to this

event handler: Data := Edit1.Text;
4.	 Double-click on attribute OnSetData, and add the following line of code to this event handler:

	 			 Edit1.Text := Data;

5.	 Double-click on the OnChange attribute, and add the following line of code to this event handler:
With Sender As TPythonDelphiVar
 Do ShowMessage('Var test changed: ' + PythonDelphiVar.ValueAsString);

6.	 Save project and unit.
7.	 Now compile, link and run (F9) the

executable - Figure 80.17.
8.	 Write the Python script

test.value=45 in the Python
Source Code window.

9.	 Click Execute. The value shown in
the text box Edit1 will change from
its default value 0 to new value 45
as a consequence of executing the
given Python script. The outcome
demonstrates that Python variable
test is associated with the variable
Edit1 in the Delphi program.

Figure 80.17 ThirdExampleProject just launchedFigure 80.16 ThirdExampleProject user interface design

Edit1 text box

Figure 80.18 ThirdExampleProject executing script test.value=45

OnChange event handler executed because
PythonDelphiVar1's value changed

Free sample chapter - copyright Dr K R Bond 2020

309

10.	Click OK to close the popup window.

11.	Delete test.value=45 in the Python Source Code window.

12.	Write print(test.value) in the blank Python Source Code window

13.	Change the contents of text box Edit1 to 30.

14.	Click Execute. The value 30 now appears in the Python Output window reflecting the fact that the
value assigned to Python variable test has been updated to the value of Delphi text box, Edit1.

This exercise has demonstrated that it is possible using components from the Python palette to create two-way
communication between a Delphi program in execution and a Python script in execution.

Fourth project
1.	 Create a new Windows VCL Application for Delphi.

2.	 Drop a TPanel component on the form and set its Align property to alTop in the Object Inspector.
Change its Caption property to Python Source Code.

3.	 Drop a TPanel component on the form and set its Align property to alBottom in the Object Inspector.
Empty its Caption property.

4.	 Select the bottom panel and then drop a TButton component (Button1) onto this panel. Set its caption
to Execute. Set its Anchors property to [akTop,akRight, akBottom].

5.	 Drop a TMemo component (Memo1) on the form and set its Align property to alClient. Open its Lines
property and delete Memo1 string to leave the memo box empty. Set ScrollBars to ssBoth.

6.	 Drop a TPythonEngine component from the Python palette on the form. This component provides the
connection to Python or rather the Python API. Its default name is PythonEngine1.

7.	 Drop a TPythonInputOutput component on the form. Its default name is PythonInputOutput1. This
component provides a conduit for routing input and output between a console window and the currently
executing Python script.

Figure 80.19 FourthExampleProject GUI design

www.educational-computing.com/DelphiBook/Code/Chapter80/ThirdExample.zip

www.educational-computing.com/DelphiBook/Code/Chapter80/FourthExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/ThirdExample.zip
http://www.educational-computing.com/DelphiBook/Code/Chapter80/FourthExample.zip

310

HOW TO PROGRAM EFFECTIVELY IN DELPHI

The user interface's appearance in the design window should now be as shown in Figure 80.19. As this project
uses an Anaconda distribution (see later for the same project implemented with Python from www.Python.org)
PythonEngine1's properties are required to be set up as follows

•	 Set property DllName to python38.dll (because Python 3.8 is installed) or the version that you have
installed).

•	 Set property DllPath to the Anaconda distribution, e.g. c:\users\drbond\anaconda3.

•	 Set property AutoLoad to False.

•	 Set UseLastKnownVersion to False.

•	 Set PythonEngine1's property IO to PythonInputOutput1.

8.	 Select PythonInputOutput1 and its Events page. Double click OnReceiveData to create event handler
PythonInputOutputReceiveData.

9.	 Select PythonInputOutput1 and its Events page. Double click OnSendData to create event handler
PythonInputOutputSendData.

10.	Add the line of code to PythonInputOutputReceiveData

Readln(Data);

11.	Add the line of code to PythonInputOutputSendData

Writeln(Data);

12.	In order to read from and write to the console we need to create a console at run time. Click Project|View
Source to bring up the application's source code. Add the following directive to the application's source
code as shown in Figure 80.20

{$APPTYPE CONSOLE}

13.	Save the project using filename FourthExampleProject.dproj (Save Project As) in a folder
FourthExample.

14.	Save its unit using filename FourthExampleUnit.pas in the same folder FourthExample.

Program FourthExampleProject;
{$APPTYPE CONSOLE}
Uses
 Vcl.Forms,
 FourthExampleUnit in 'FourthExampleUnit.pas' {Form1};

{$R *.res}

Begin
 Application.Initialize;
 Application.MainFormOnTaskbar := True;
 Application.CreateForm(TForm1, Form1);
 Application.Run;
End.

Figure 80.20 Program FourthExampleProject

Creates Console window

Creates GUI window

Free sample chapter - copyright Dr K R Bond 2020

http://www.Python.org

311

15.	Now compile, link and run (F9) the executable. Two windows should appear: a console window and an
application window as shown in Figure 80.21.

16.	Enter the following Python script in the Python Source Code window and click Execute
value = input("Please enter a string\n")
print(f'You entered {value}')

17.	The prompt Please enter a string should appear in the console window as shown in Figure 80.21.
18.	Click the console window and enter Hello World! then press return.

The string You entered Hello world! shown in Figure 80.21 should be echoed to the console
window.

Fifth project - this project was inspired by Kiriakos Vlahos (aka PyScripter)
Open project FirstExampleProject.dproj and save in a new folder,
FifthExample, whilst renaming it FifthExampleProject.dproj (Save Project As).
Save unit FirstExampleUnit.pas
in folder FifthExample renaming it
FifthExampleUnit.pas (Save As).

1.	 Add a TPythonModule to the
form (the form should already
contain a TPythonEngine and a
TPythonGUIInputOutput component).

2.	 Add the function IsPrime shown in
Figure 80.22 to the implementation
section of FifthExampleUnit.pas.

3.	 Select PythonModule1 and in the Object Inspector click the ellipsis (Figure 80.23) to bring up the Events
editor shown in Figure 80.24.

Figure 80.21 FourthExampleProject in execution

Function IsPrime(No : Integer) : Boolean;
 Begin
 If (No <= 1) Then Exit(False);
 Var UpperLimit := Floor(Sqrt(No));
 For Var i := 2 To UpperLimit
 Do If (No Mod i = 0) Then Exit(False);
 Exit(True);
 End;

Figure 80.22 Function IsPrime

Figure 80.23 Events property PythonModule1

Figure 80.24
delphi_is_prime

event
Figure 80.25 delphi_is_prime

event

Every composite positive
integer has a factor other
than 1 or itself less than or
equal to the greatest integer
less than or equal to its
square root.

www.educational-computing.com/DelphiBook/Code/Chapter80/FifthExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/FifthExample.zip

312

HOW TO PROGRAM EFFECTIVELY IN DELPHI

4.	 Click in the Events editor to add a new event named delphi_
is_prime. Figure 80.24 already shows that a new event hasalready been
added and then named delphi_is_prime. This naming is done by
highlighting the default name of this new event in the Events editor and
then in the Object Inspector, changing the events Name property to delphi_is_prime - Figure 80.25.

5.	 In the Structure pane select Events and 0 - delphi_is_prime - Figure 80.26.
6.	 Switch to the Events page for PythonModule1.

Events[0] and double click the field for the
OnExecute event to create the event handler
PythonModule1Events0Execute - Figure 80.27.

7.	 Switch to the source code view of
FifthExampleUnit.pas and add the lines of
source code shown in Figure 80.28 to the event handler PythonModule1Events0Execute.

8.	 Select PythonModule1 in the Object Inspector and set its ModuleName property to delphi_module.
9.	 Save all (Shift+Ctrl+S).
10.	 Now compile, link and run (Shift+Ctrl+F9) the executable.

The following exercise was inspired by a Webinair given by Kiriakos Vlahos (aka PyScripter):

11.	Click Load and open countofprimesinpythononly.py (Figure 80.29).
12.	Click Execute to run countofprimesinpythononly.py. Repeat this two more times.
13.	The Python program counts the number of primes between 0 and 1000000, measures the time that elapses

and then prints both results - Figure 80.30. The elapsed time is approximately 6.5 seconds.
14.	Click Load and open pythondelphiprime.py - see Figure 80.31. This script uses a function, delphi_

is_prime, linked to PythonModule1 via module delphi_module, to test for primality in place of the
Python is_prime function in countofprimesinpythononly.py. Figure 80.28 shows that delphi_
is_prime in turn relies on function IsPrime written in Delphi. When the python script is run it invokes
the event handler PythonModule1Events0Execute which in turn calls the Delphi function IsPrime.

Procedure TForm1.PythonModule1Events0Execute(Sender: TObject; PSelf,
 Args: PPyObject;
 Var Result: PPyObject);
 Var
 N : Integer;
 Begin
 With GetPythonEngine
 Do
 Begin
 If PyArg_ParseTuple(Args, 'i:delphi_is_prime', @N) <> 0
 Then
 Begin
 If IsPrime(N)
 Then Result := PPyObject(Py_True)
 Else Result := PPyObject(Py_False);
 Py_INCREF(Result);
 End
 Else Result := Nil;
 End;
 End; Figure 80.28 Event handler PythonModule1Events0Execute

Figure 80.27 Creating OnExecute event handler

Figure 80.26

Free sample chapter - copyright Dr K R Bond 2020

313

PythonEngine1 and PythonModule1
provide the "wiring" between the Python
script and the Delphi event handler
PythonModule1Events0Execute. The
remainder of the code of the latter packs and
unpacks the communication between Python
script and the Delphi program.

15.	 Click Execute to run pythondelphiprime.py.
Repeat this two more times.

16.	The Python program counts the number
of primes between 0 and 1000000,
measures the time that elapses and then
prints both results - Figure 80.32. The
elapsed time is approximately 0.32
seconds. Twenty times faster than script
countofprimesinpythononly.py.

from timeit import Timer

import math

def is_prime(n):

 if n <= 1:

 return False

 upperlimit = math.floor(math.sqrt(n))

 for i in range(2, upperlimit + 1):

 if (n % i== 0):

 return False

 return True

def count_primes(max_n):

 result = 0

 for i in range(2, max_n + 1):

 if is_prime(i):

 result += 1

 return result

def test():

 max_n= 1000000

 print(f'Numberof primes between 0 and {max_n} = {count_primes(max_n)}')

def main():

 print(f'Elapsedtime: {Timer(stmt=test).timeit(1)} secs')

if __name__ == '__main__':

 main() Figure 80.29 countofprimesinpythononly.py

Figure 80.30 countofprimesinpythononly.py executed three times

Free sample chapter - copyright Dr K R Bond 2020

314

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Sixth project
This project was inspired by Kiriakos Vlahos
(aka PyScripter):
1.	 Save project FifthExampleProject.dproj

in a new folder, SixthExample, renaming it
SixthExampleProject.dproj (Save Project
As). Save unit FirstExampleUnit.pas in folder
SixthExample renaming it
SixthExampleUnit.pas (Save As).

2.	 Select PythonModule1 and in the Object
Inspector click the ellipsis (Figure 80.23) to bring
up the Events editor.

3.	 Click in the Events editor to add a new
event delphi_count_primes - Figure 80.33.

4.	 In the Structure pane select Events and
1 - delphi_count_primes.

5.	 Switch to the Events page for PythonModule1.
Events[1] and double click the field for the
OnExecute event to create the event handler
PythonModule1Events1Execute.

6.	 Switch to the source code view of
SixthExampleUnit.pas and add the function
CountPrimes - Figure 80.34.

7.	 Add the lines of source code shown in Figure 80.35 to the event handler
PythonModule1Events1Execute.

8.	 Save all (Shift+Ctrl+S).
9.	 Now compile, link and run (Shift+Ctrl+F9) the executable.
10.	Click Load and open CountoPrimesParallel.py (Figure 80.36).

from delphi_module import delphi_is_prime

from timeit import Timer

import math

def count_primes(max_n):

 result=0

 for i in range(2,max_n+1):

 if delphi_is_prime(i):

 result +=1

 return result

def test():

 max_n=1000000

 print(f'Number of primes between 0 and {max_n}={count_primes(max_n)}')

def main():

 print(f'Elapsed time:{Timer(stmt=test).timeit(1)}secs')

if __name__=='__main__':

 main() Figure 80.31 pythondelphiprime.py

Figure 80.32 pythondelphiprime.py executed three times

Figure 80.33 Events editor, new
event delphi_count_primes

www.educational-computing.com/DelphiBook/Code/Chapter80/SixthExample.zip

Information
Threading issue in Python
Python is not suitable for parallelising
computationally intensive Python code
because threaded Python code is locked
to one thread executing at a time. If C
extensions and I/O, however (e.g.PIL or
numpy operations) and any C code can
run in parallel with one active Python
thread. One solution is to delegate to a
dedicated external library.

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/SixthExample.zip

315

11.	Click Execute to run CountoPrimesParallel.py. Repeat this two more times.
12.	The Python program counts the number of primes between 0 and 1000000, measures the time that elapses

and then prints both results - Figure 80.37. The elapsed time is approximately 0.06 seconds which is a 100
times faster than the python script countofprimesinpythononly.py.

TParallel provides a class for-loop, &For, which makes efficient use of all the CPU cores in the system.

Function CountPrimes(MaxN : Integer): Integer;
 Begin
 Var Count := 0;
 TParallel.&For(2, MaxN, Procedure(i : Integer)
 Begin
 If IsPrime(i)
 Then AtomicIncrement(Count);
 End
);
 Result := Count;
 End;

Figure 80.34 Function CountPrimes

Procedure TForm1.PythonModule1Events1Execute(Sender: TObject; PSelf,
 Args: PPyObject;
 Var Result: PPyObject);
 Var
 N : Integer;
 Begin
 With GetPythonEngine
 Do
 Begin
 If PyArg_ParseTuple(Args, 'i:delphi_count_primes', @N) <> 0
 Then
 Begin
 Result := PyLong_FromLong(CountPrimes(N));
 Py_INCREF(Result);
 End
 Else Result := Nil;
 End;
 End; Figure 80.35 Event handler PythonModule1Events1Execute

from delphi_module import delphi_count_primes
from timeit import Timer
import math
def test():
 max_n = 1000000
 print(f'Number of primes between 0 and {max_n} = {delphi_count_primes(max_n)}')
def main():
 print(f'Elapsed time:{Timer(stmt=test).timeit(1)}secs')
if __name__=='__main__':
 main() Figure 80.36 CountPrimesParallel.py

Free sample chapter - copyright Dr K R Bond 2020

316

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Using Python4Delphi with a version of Python installed from Python.org
Download Windows x86-64 executable installer for Python from
python.org/downloads/windows - Figure 80.38.

Click on python-3.9.0-amd64.exe (or the version that you
downloaded) to launch the install window. Tick Add Python 3.9 to
PATH then click Install Now to install Python 3.9 - Figure 80.39.

Python4Delphi should find Python39.dll automatically.

Create a new VCL application and add a TPythonEngine component
to the form. Figure 80.40 shows the Object Inspector pane for
PythonEngine1. For this version of Python4Delphi the default
settings of interest for DelphiPython1 are

•	 UseLastKnownVersion = True

•	 DllName = python39.dll

•	 AutoLoad = True.

When earlier in this chapter we worked with an Anaconda installation
of Python - Python 3.8 we needed the application to initialise
PythonEngine1 as follows

 PythonEngine1.SetPythonHome('c:\Users\drbond\anaconda3');

 PythonEngine1.LoadDll;

Using AutoLoad set to True takes care of this automatically.

Figure 80.37 CountPrimesParallel.py

Figure 80.38 Python 3.9 download versions

Figure 80.39 Python 3.9.0(64-bit) install

Figure 80.40 Objector Inspector

Free sample chapter - copyright Dr K R Bond 2020

http://python.org/downloads/windows

317

When Python is installed in Windows, the user has the option to register it, either for all users or just for this
user. Registration involves writing information to the registry about the location of the installation, the name and
location of the help file etc.

Setting UseLastKnownVersion = True forces
Delphi to use the latest registered version of
Python.

If the programmer requires a different
registered2 version then they need to set the
following properties:

•	 DLLName e.g. python38.dll

•	 RegVersion e.g 3.8

•	 Set UseLastKnownVersion property to False.

A little more work needs to be done to use a specific unregistered version:

Set
•	 DLLName e.g. python38.dll

•	 RegVersion e.g 3.8

•	 Set UseLastKnownVersion property to False

•	 Set DLLPath to the path where the DLL is located, e.g. C:\Users\drbond\anaconda3

•	 Set AutoLoad property to False

•	 The event handler for the OnCreate event of Form1 (or whatever the form launched by the application
is called), or in another suitable place, must contain the following code (assuming that PythonEngine1 is
the name of the component)

PythonEngine1.SetPythonHome('Python installation directory');

PythonEngine1.LoadDLL;

32-bit Delphi applications only work with 32-versions of Python and 64-bit Delphi applications only work with
64-bit versions of Python.

The project FirstExampleProject created using the Anaconda installed Python may now be recreated Python 3.9
downloaded directly from www.python.org.

2	 Anaconda distributions require that SetPythonHome is called as shown above even if they are registered.

Figure 80.41 Registry entry for
Computer\HKEY_CURRENT_USER\SOFTWARE\Python\PythonCore

Free sample chapter - copyright Dr K R Bond 2020

http://www.python.org

318

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Seventh project
This project manipulates images in Python which are loaded, displayed and saved using Delphi.

The Python side of things requires a module called pillow (PIL). The easiest way to install pillow is automatically as
an integral part of an Anaconda installation, installing it directly is quite tricky because it depends on other modules
being pre- installed. Anaconda automatically takes care of everything. For this reason, the Anaconda installation of
Python - Python 3.8 - is used in this project. It will therefore be necessary to set up the Python Engine as per the
instructions for unregistered versions of Python - see previous page.

1.	 Create a new Windows VCL Application for Delphi
and save in a new folder SeventhExample with
filenames SeventhExampleProject.dproj and
SeventhExampleUnit.pas.

2.	 Drop a TPanel component on the form and set its Align
property to alBottom in the Object Inspector. Set its
Height property to 41 and clear its Caption property.

3.	 With this panel selected drop three buttons on the panel
and set the Top property of each to 8. Position the buttons
as shown in Figure 80.42.

4.	 Label the buttons Load Image, Save Image and Execute
according to Figure 80.42 adjusting the width of each
accordingly.

5.	 Set the Anchors property of Load Image to [akLeft,
akTop, akBottom].

6.	 Set the Anchors property of Save Image to [akTop,
akBottom].

7.	 Set the Anchors property of Execute to [akTop, akRight,
akBottom].

8.	 Drop a TMemo component (change Name to Memo2) on the form and set its Align property to alBottom.
Open its Lines property and delete Memo2 string to leave the memo box empty for the moment. Set
ScrollBars to ssBoth.

9.	 Drop a TSplitter component from the Additional palette on the form and set its Align property to alBottom and its
Height property to 2.

10.	Drop a TPanel component on the form and set its Align property to alBottom in the Object Inspector.
Change its Caption property to Python Script.

11.	Drop a TMemo component (Memo1) on the form and set its Align property to alBottom. Open its Lines
property and delete Memo1 string to leave the memo box empty. Set ScrollBars to ssBoth.

12.	Drop a TPanel component on the form and set its Align property to alBottom in the Object Inspector. Set
its Caption property to Image information (Don't exceed 2.5 MB).

13.	Drop a TImage component set its Align property to alClient and its Proportional property to True.

14.	Drop a TPythonEngine and a TPythonGUIInputOutput component on the form.

Figure 80.42 SeventhExampleProject in execution

www.educational-computing.com/DelphiBook/Code/Chapter80/SeventhExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/SeventhExample.zip

319

15.	As the author's Python installation was done via Anaconda, PythonEngine1 needs to be set up as follows
•	 DLLName e.g. python38.dll
•	 RegVersion e.g 3.8
•	 Set UseLastKnownVersion property to False
•	 Set DLLPath to the path where the DLL is located, e.g. C:\Users\drbond\anaconda3
•	 Set AutoLoad property to False
•	 The event handler for the OnCreate event of Form1 (or whatever the form launched by the application

is called), or in another suitable place, must contain the following code (assuming that PythonEngine1 is
the name of the component)

PythonEngine1.SetPythonHome('Python installation directory');
PythonEngine1.LoadDLL;

16.	Set PythonEngine1's IO property to PythonGUIInputOutput1.
17.	Set PythonGUIInputOutput1's Output property to Memo1.
18.	Add a TOpenDialog and a TSaveDialog component to the form.
19.	Double click Save Image button and add the following lines of code to the event handler

With SaveDialog1
 Do
 Begin
 If Execute
 Then Memo1.Lines.SaveToFile(FileName);
 End;

20.	Double click Load Image button and add the following lines of code to the event handler
With OpenDialog1
 Do
 Begin
 If Execute
 Then Memo1.Lines.LoadFromFile(FileName);
 End;

21.	Save project and unit in folder SeventhExample.
22.	Select Memo2 and open its Lines property so that the

contents of script ImageProcessingScript.py shown
in Figure 80.45 can be pasted into the String List Editor.

23.	Add a Uses clause to the Implementation section
(place below {R *.dfm}) as follows

Uses
 VarPyth,
 Math,
 jpeg;

24.	Add the source code shown in Figure 80.46 to the
implementation section.

25.	Save all (Shift+Ctrl+S).
26.	Now compile, link and run (Shift+Ctrl+F9) the executable.
27.	The form shown in Figure 80.43 should show.
28.	Use the splitter bar to enlarge the Python script window.
29.	The default setting of Python script is new_im = im.convert('L'). This Python statement when

executed converts an RGB image to a black and white image one.

Property of SaveDialog1

Property of OpenDialog1

Figure 80.43 SeventhExampleProject
in execution

Free sample chapter - copyright Dr K R Bond 2020

320

HOW TO PROGRAM EFFECTIVELY IN DELPHI

30.	Click Load Image and select from the images folder
BorneoOrangUtan1SmallRes1.jpg and open - Figure
80.42.

31.	 Click Execute to convert the image to a black and white one
- Figure 80.44.

32.	Comment out new_im = im.convert('L') in the
Python Script window and uncomment
 new_im = im.rotate(90, expand=True).

33.	Click Load Image and select from the images folder
FarmPortDicksonLowResSmall.jpg and open.

34.	Click Execute to rotate this image through 90° counterclockwise.
Figure 80.47 shows the rotated image.

35.	Click Load Image and select from the images folder
CockatooSmallLowRes.jpg and open.

36.	Comment out new_im = im.rotate(90, expand=True) in the Python Script window and
uncomment new_im = im.filter(FIND_EDGES).

37.	Click Execute to find the images edges - Figure 80.48.

This demo requires the module pillow (PIL)
The easiest way to install module pillow is to install Anaconda
from io import BytesIO
from PIL import Image, ImageFilter, ImageDraw, ImageFont
from PIL.ImageFilter import(BLUR, CONTOUR, DETAIL, EDGE_ENHANCE,
 EDGE_ENHANCE_MORE, EMBOSS,
 FIND_EDGES,SMOOTH, SMOOTH_MORE, SHARPEN)
import sys

def ProcessImage(data):
 print(sys.version)
 stream = BytesIO(data)
 im = Image.open(stream)
 print ("Processing image %s of %d bytes" % (im.format, len(data)))
 # new_im = im.rotate(90, expand=True)
 # new_im = im.filter(ImageFilter.BLUR)
 # new_im = im.filter(ImageFilter.BoxBlur(5))
 # new_im = im.filter(ImageFilter.GaussianBlur(5))
 # new_im = im.crop((100,200,400,500))
 # new_im = im.transpose(Image.FLIP_LEFT_RIGHT)
 # new_im = im.transpose(Image.FLIP_TOP_BOTTOM)
 # new_im = im.transpose(Image.ROTATE_90)
 # new_im = im.resize(round(im.size[0]*0.5), round(im.size[1]*0.5))
 # width, height = im.size
 # draw = ImageDraw.Draw(im)
 # text = "sample watermark"
 # font = ImageFont.truetype('arial.ttf', 36)
 # textwidth, textheight = draw.textsize(text, font)
 # calculate the x,y coordinates of the text
 # margin = 10
 # x = width - textwidth - margin
 # y = height - textheight - margin
 # draw watermark in the bottom right corner
 # draw.text((x, y), text, font=font)
 new_im = im.convert('L')
 # new_im = im.filter(CONTOUR)
 # new_im = im.filter(EMBOSS)
 # new_im = im.filter(FIND_EDGES)
 new_im.format = im.format
 return new_im
def ImageToString(image):
 stream = BytesIO()
 image.save(stream, image.format)
 return stream.getvalue()

Figure 80.45 ImageProcessingScript.py

Figure 80.44 Black & white conversion

Free sample chapter - copyright Dr K R Bond 2020

321

Function ImageToPyStr(AGraphic : TGraphic) : Variant;
 Var
 _Stream : TMemoryStream;
 _Str : PPyObject;
 Begin
 _Stream := TMemoryStream.Create();
 Try
 AGraphic.SaveToStream(_Stream);
 _Str := GetPythonEngine.PyString_FromStringAndSize(_Stream.Memory, _Stream.Size);
 Result := VarPythonCreate(_Str);
 GetPythonEngine.Py_DECREF(_Str);
 Finally
 _Stream.Free;
 End;
 End;
Procedure TForm1.Button1Click(Sender: TObject);
 Var
 _im : Variant;
 _Stream : TMemoryStream;
 _dib : Variant;
 pargs: PPyObject;
 presult :PPyObject;
 P : PAnsiChar;
 Len : NativeInt;
 Begin
 If (Image1.Picture.Graphic = nil) or Image1.Picture.Graphic.Empty
 Then Raise Exception.Create('You must first select an image');
 PythonEngine1.ExecStrings(Memo2.Lines);
 _im := MainModule.ProcessImage(ImageToPyStr(Image1.Picture.Graphic));
 If Not chkUseDC.Checked
 Then
 Begin
 // We have to call PyString_AsStringAndSize because the image may contain zeros
 With GetPythonEngine
 Do
 Begin
 pargs := MakePyTuple([ExtractPythonObjectFrom(_im)]);
 Try
 Try
 presult := PyEval_CallObjectWithKeywords(ExtractPythonObjectFrom(MainModule.ImageToString),
 pargs, nil);
 If (PyString_AsStringAndSize(presult, P, Len) < 0) or (P = nil)
 Then
 Begin
 ShowMessage('This does not work and needs fixing');
 Abort;
 End;
 Finally
 Py_XDECREF(pResult);
 End;
 Finally
 Py_DECREF(pargs);
 End;
 End;
 _Stream := TMemoryStream.Create();
 Try
 _Stream.Write(P^, Len);
 _Stream.Position := 0;
 Image1.Picture.Graphic.LoadFromStream(_stream);
 Finally
 _Stream.Free;
 End;
 End
 Else
 Begin
 Image1.Picture.Bitmap.SetSize(Image1.Width, Image1.Height);
 _dib := Import('PIL.ImageWin').Dib(_im);
 Image1.Picture.Bitmap.SetSize(Image1.Height, Image1.Width);
 _dib.expose(NativeInt(Image1.Picture.Bitmap.Canvas.Handle));
 End;

Figure 80.46 Source code from Python4Delphi Demo 29

Free sample chapter - copyright Dr K R Bond 2020

322

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Figure 80.47 Rotated image Figure 80.48 Finding edges

Before

After

Programming Task
Create a new VCL application which implements image processing based on the Python script shown in
Figure 80.45.
The user interface should enable a user to
•	 load an image
•	 save an image
•	 select and apply a particular image processing effect, e.g. convert a coloured image to monochrome (black

and white). The application should then automatically execute the corresponding Python code to achieve
this effect. No visible reference to this Python code should appear in the user interface when operating
normally.

The application should
•	 check that an image is loaded before attempting to apply any image processing
•	 prevent images from loading that are above 1MB in size.

1

Free sample chapter - copyright Dr K R Bond 2020

323

Deploying Python4Delphi Application
The minimum that is required to deploy a Python4Delphi application consists of

1.	 the application's exe, e.g. FirstExampleProject.exe

2.	 The dll of the version of Python that was used when developing the
application, e.g. python38.dll.

Figure 80.49 and Figure 80.50 show the first
two stages of creating a software installer for
the two files mentioned above. A free Microsoft
Windows® installer Inno SetUp by
JRSoftware.org was used to create an installer
setup.exe for FirstExampleProject.

Figure 80.51 shows that FirstExampleProject
has been added to the Start Menu after running its
installer setup.exe.

Figure 80.49 Creating an installer for FirstExampleProject.exe
using Inno Script Studio Community edition

Figure 80.50 Adding the application files

Information
Download Inno Setup
QuickStart pack - it is much
easier to use because it uses a
wizard to guide you through
setting up an installer.

Figure 80.51 Start menu showing
FirstExampleProject

Free sample chapter - copyright Dr K R Bond 2020

http://JRSoftware.org

324

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Figure 80.53 FirstExampleProject in execution

Figure 80.54 Expanded SynEdit download

Figure 80.55
Component Palette

www.educational-computing.com/DelphiBook/Code/Chapter80/EighthExample.zip

Figure 80.52 Object Inspectator view of PythonEngine1
in FirstExampleProject

TPythonEngine InitScript
TPythonEngine has a property called InitScript of type
TStrings - Figure 80.52. Valid Python source code assigned
to this property is executed when the application is launched
as shown in Figure 80.53. In this example, the Python
source code assigned to InitScript is the string

print ("This FirstExampleProject enables
Python scripts in the window\r\n above to be
executed with output appearing here.")

\r is the escape code for carriage return.

\n is the escape code for new line.

Eighth project
This project makes use of the package SynEdit which provides
syntax highlighting. The package may be downloaded:

1.	 As a zip file from https://github.com/SynEdit/SynEdit.

2.	 Or using Tools|GetIt Package Manager.

3.	 Or from within Delphi - File|Open From Version
Control... if you have installed git (https://
gitforwindows.org) on your computer.

Figure 80.54 shows the expanded SynEdit download.

Open SynEdit.groupproj from the Packages folder in the
Delphi IDE choosing the version corresponding to your
version of Delphi, e.g. 104S for Delphi 10.4 Sydney.

Highlight the runtime package SynEdit_R104S.bpl in
the Projects pane (or highlight your particular version
of SynEdit) and click the right mouse button to bring
up the menu to use to build the package. Select From
Here|Build All From Here.
Do the same for the design time package
SynEdit_D104S.bpl. Once built, click the right mouse
button over SynEdit_D104S.bpl to bring up the menu
again. Select the Install option to install the SynEdit
components.

Figure 80.55 shows that menus for the installed SynEdit
and SynEdit Highlighters components have been
installed in the Component Palette.

Open project FirstExampleProject.dproj and save
in a new folder, EighthExample, rename the project
EighthExampleProject.dproj (Save Project As).

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/EighthExample.zip
https://github.com/SynEdit/SynEdit
https://git-scm.com/downloads
https://git-scm.com/downloads

325

Save unit FirstExampleUnit.pas in new
folder EighthExample, rename the unit
EighthExampleUnit.pas (Save As).
Add a TSynEdit component from the SynEdit
Palette to the form. Set it Align property to alTop.
Now move it so that it is immediately below the
panel with caption Python Source Code.
Select Memo1 in the Structure pane and click the
right mouse button and select from Edit from the
popup menu then Delete. The form should look
similar to that shown in Figure 80.56.
Open the Lines property of SynEdit1 in Object
Inspector and delete the line SynEdit1.
Add a TSynEditPythonBehaviour component from the SynEdit Palette to the form. Set its Editor property to
SynEdit1.

Add a TSynPythonSyn component from the SynEdit Highlighters Palette to the form. Set the Highlighter
property of the Editor property of SynEditPythonBehaviour1 to SynPythonSyn1.

Change the event handler for the button labelled Execute to

PythonEngine1.ExecStrings(UTF8Encode(SynEdit1.Text)).

Replace Memo1 in the event handler for the button labelled Load with SynEdit1.

Replace Memo1 in the event handler for the button labelled Save with SynEdit1.

Select SynPythonSyn1 in the Object Inspector and change the ForeGround of KeyAttri property to clRed -
Figure 80.57.
Change the ForeGround of IndentifierAttri property to clHighlight.
Save project and unit in folder EighthExample.
Now compile, link and run (Shift+Ctrl+F9) the executable.
Click Load and select BubbleSort.py.
Click Execute.
Figure 80.58 shows the result.

Figure 80.56 Form design for EighthExampleProject

Figure 80.57 Section of Object Inspector showing
how to change attribute colour

Figure 80.58 EighthExampleProject in execution
with BubbleSort.py loaded and run

Free sample chapter - copyright Dr K R Bond 2020

326

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Ninth project
Save project EighthExampleProject.dproj in a new folder, NinthExample, rename the project
NinthExampleProject.dproj (Save Project As).
Save unit EighthExampleUnit.pas in new folder NinthExample, rename the unit NinthExampleUnit.pas
(Save As).

1.	 Add a TPyDelphiWrapper from the Python Palette to the form.
2.	 Check in Object Inspector that Engine property of PyDelphiWrapper1 (default identifier of

TPyDelphiWrapper component) is set to PythonEngine1 and Module property is set to PythonModule1.
3.	 Add the additional source code shown in Figure 80.59 to the FormCreate event handler in

NinthExampleUnit.Pas.

The properties and events displayed at design time in the Object Inspector for an instance of a class have the
scope published. Published means that runtime type information (RTTI) is generated about these through the
application's published interface. External applications can also access this RTTI to get information that enables
each application to determine the fields, methods, and properties an otherwise indeterminate object has at runtime.

4.	 Add the following to the Implementation section
 Uses
 System.Rtti,
 System.Threading
 System.Math

 Type
 TDelphiFunctions = Record
 Class Function count_primes(MaxN : Integer) : Integer; Static;
 End;
 Var

 DelphiFunctions : TDelphiFunctions;

For a Python program to access a type defined in a Delphi program we need to supply a published interface, i.e. an
RTTI structure.

The inline variable declaration(introduced in Delphi 10.3):
Var Py := PyDelphiWrapper1.WrapRecord(@DelphiFunctions,
 TRttiContext.Create.GetType(TypeInfo(TDelphiFunctions))
 As TRttiStructuredType);

wraps up the published type information in variable Py which
PythonModule1.SetVar('delphi_functions', Py);

associates with the class variable delphi_functions, the identifier to be used in the Python program side of
things as follows

from delphi_module import delphi_functions

Procedure TForm1.FormCreate(Sender: TObject);
 Begin
 PythonEngine1.SetPythonHome('c:\Users\drbond\Anaconda3');
 PythonEngine1.LoadDll;
 Var Py := PyDelphiWrapper1.WrapRecord(@DelphiFunctions,
 TRttiContext.Create.GetType(TypeInfo(TDelphiFunctions))
 As TRttiStructuredType);
 PythonModule1.SetVar('delphi_functions', Py);
 PythonEngine1.Py_DecRef(Py);
 End; Figure 80.59 Event handler TForm1.FormCreate

Required because Anaconda3 was used to install Python 3.8
@ means use address of

www.educational-computing.com/DelphiBook/Code/Chapter80/NinthExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/NinthExample.zip

327

Check that the ModuleName property of PythonModule1 is delphi_module.

The final added line of source code shown in Figure 80.59 frees the object reference stored in Py by calling
Py_DecRef

PythonEngine1.Py_DecRef(Py);

5.	 Add the source code shown in Figure 80.60 to the end of NinthExampleUnit.pas.

A class method is a method (other than a constructor) that operates on classes instead of objects. To be able to
access the function count_primes independently of any object reference, it is made a static class function.

A class static method therefore has no Self parameter. The Self parameter identifies the object to which the method
call applies or is to operate on but there won't be one in this example.

6.	 Save project and unit in folder NinthExample.
7.	 Now compile, link (Shift + F9) to build the project.
8.	 Create the Python script NinthExample.py as shown in Figure 80.61.

9.	 Press Shift + Ctrl + F9 to run NinthExampleProject without debugging.
10.	Click Load and open NinthExample.py

11.	Click Execute.

from delphi_module import delphi_functions

from timeit import Timer

import math

def test():

 max_n = 1000000

 print(f'Number of primes between 0 and {max_n} = {delphi_functions.count_primes(max_n)}')

def main():

 print(f'Elapsed time: {Timer(stmt=test).timeit(1)} secs')	

if __name__ == '__main__':

 main()	

Figure 80.61 NinthExample.py

Function IsPrime(x : Integer) : Boolean;
 Begin
 If (x <= 1) Then Exit(False);
 Var UpperLimit := Floor(Sqrt(x));
 For Var i := 2 To UpperLimit
 Do If (x Mod i = 0) Then Exit(False);
 Exit(True);
 End;

Class Function TDelphiFunctions.count_primes(MaxN : Integer) : Integer;
 Begin
 Var Count := 0;
 TParallel.&For(2, MaxN, Procedure(i : Integer)
 Begin
 If IsPrime(i) Then AtomicIncrement(Count);
 End);
 Result := Count;
 End;

Figure 80.60 More Source code for NinthExampleUnit.Pas

Count accessible by more than one thread
so must ensure that transaction is atomic

Free sample chapter - copyright Dr K R Bond 2020

328

HOW TO PROGRAM EFFECTIVELY IN DELPHI

12.	The outcome from NinthExample.py when run from Delphi NinthExampleProject is shown in Figure
80.62 - delphi_functions.count_primes with multiple threads takes to five sig. figs only 0.042383
seconds.

Tenth project
NumPy is a Python programming language library which adds support for large, multi-dimensional arrays and
matrices, as well as a large collection of high-level mathematical functions to operate on these arrays.

NumPy can be installed by using the installer pip from the command line. However installing some of the larger
Python libraries, particularly those such as NumPy which depend on complex low-
level C and Fortran packages, is made easier with Anaconda. Anaconda does all
the dependency checking and binary installs that are required. Anaconda is free to
download and install from https://www.anaconda.com/products/individual.

Once the NumPy library is installed, an array, for example, is created after importing
the numpy module (alias np) in Python as follow:

import numpy as np
vector = np.array([0, 1, 2, 3])

Python list [0, 1, 2, 3] is converted and returned by function np.array. Python has no
native array construct so we rely on libraries such as NumPy for array support.

The module numpy can be imported into Delphi as follows
Var np := Import('numpy');

For this statement to compile the VarPyth unit from Python4Delphi must appear in the Uses clause.
A delphi array is created and returned by Delphi function np.array is as follows

Var np_array : Variant := np.array(VarPythonCreate([1,2,3,4,5,6,7,8,9,10])

Figure 80.62 NinthExampleProject in execution

Information
Modules are individual
.py files from which we
can import functions
and objects. Packages
are collections of such
modules.

www.educational-computing.com/DelphiBook/Code/Chapter80/TenthExample.zip

Free sample chapter - copyright Dr K R Bond 2020

https://www.anaconda.com/products/individual
http://www.educational-computing.com/DelphiBook/Code/Chapter80/TenthExample.zip

329

The variable np_array is a variant data structure. A variant data structure is one that allows types that cannot
be determined at compile time or whose data structure values can change their type at run time. In this example,
TenthExample, using a variant for the variable np_array allows it to work in both Delphi and Python. We need
a TPythonModule, PythonModule1, with which to set up shared access to np_array for Delphi and Python as
follows

PythonModule1.SetVar('np_array', ExtractPythonObjectFrom(np_array));

This setting up may be done in the FormCreate event handler as shown in Figure 80.63.

With the ModuleName property delphi_module assigned to PythonModule1, the Delphi constructed array
np_array may be imported into the Python program np_array.py as shown in Figure 80.64.

np_array may then be accessed in Python, e.g. print("np_array = ", np_array)

In order to use what has been described, a graphical
user interface is needed.

Save project NinthExampleProject.dproj in
a new folder, TenthExample, rename the project
TenthExampleProject.dproj (Save Project
As).
Save unit TenthExampleUnit.pas in new
folder TenthExample, rename the unit
TenthExampleUnit.pas (Save As).

1.	 Delete PyDelphiWrapper1, Function
IsPrime and Class Function TDelphiFunctions.count_primes.

2.	 Edit FormCreate so that it conforms to Figure 80.63.
3.	 Edit the Uses clause under Implementation as follows

Uses
 System.Threading,
 System.Math,
 VarPyth;

4.	 Drop a TListBox component on the form and set its Align property to alRight in the Object Inspector so it
aligns between the Python Output panel and the bottom panel.

5.	 Drop a TSplitter component on the form and set its Align property to alRight so it aligns to the left of the
TListBox component.

The user interface at design time should look similar to Figure 80.65.

6.	 Edit Button1Click so that its body now is as shown in Figure 80.66.

from delphi_module import np_array
print("type(np_array) = ", type(np_array))
print("len(np_array) = ", len(np_array))
print("np_array = ", np_array)
res_array = np_array.copy()
for i in range(len(np_array)):
 res_array[i] *= np_array[i]
print("res_array = ", res_array)

Figure 80.64 np_array.py

Procedure TForm1.FormCreate(Sender : TObject);

 Begin

 PythonEngine1.SetPythonHome('c:\Users\drbond\Anaconda3');

 PythonEngine1.LoadDll;

 Var np := Import('numpy');

 Var np_array : Variant := np.array(VarPythonCreate([1,2,3,4,5,6,7,8,9,10]));

 PythonModule1.SetVar('np_array', ExtractPythonObjectFrom(np_array));

 End;

Figure 80.63 TenthExampleUnit.pas

These two statements needed because Anaconda installed
Python 3.8 which is used for the Python program.

Free sample chapter - copyright Dr K R Bond 2020

330

HOW TO PROGRAM EFFECTIVELY IN DELPHI

7.	 Add at the end of TenthExampleUnit.Pas
Initialization

 MaskFPUExceptions(True);

 ReportMemoryLeaksOnShutdown := True;

just before final End.

8.	 Save project and unit in folder TenthExample.
9.	 Create the Python script numpy_array.py as

shown in Figure 80.64.
10.	Now build and run the project without debugging

(Shift+Ctrl+F9).

11.	Click Load and open numpy_array.py.

12.	Click Execute.

Figure 80.67 shows the outcome. The array of integers
submitted to the Python script are returned squared.
The returned result is displayed in the TMemo window
Memo2 and in the TListBox window ListBox1.

Figure 80.65 TenthExampleProject user interface at design time

TListBox, ListBox1

Splitter2

SynEdit1

Memo2

Splitter1

Procedure TForm1.Button1Click(Sender : TObject);

 Begin

 // PythonEngine1.ExecStrings(SynEdit1.Lines);

 GetPythonEngine.ExecString(UTF8Encode(SynEdit1.Text));

 For Var V In VarPyIterate(MainModule.res_array)

 Do ListBox1.Items.Add(V);

 End;

Figure 80.66 TenthExampleUnit.pas Button1Click event handler

Alternative way of executing
the contents of SynEdit1

MainModule always refers to a Python
module, in this case np_array.py

Figure 80.67 TenthExampleProject
in execution

Information
FPU Exception mask
Delphi's default FPU
Exception mask is
different from most other
Windows apps. It is
incompatible with Python
libraries written in C or
C++. It is necessary to
match the FPU mask that
numpy, scipy, tensorflow,
etc expect to operate with.
PythonEngine.pas
provides a function
for doing that,
MaskFPUExceptions,
which needs to be called -
MaskFPUExceptions(True)
- before Python is loaded.
The Initialization section
of the main Delphi form
can be used to do this.

Free sample chapter - copyright Dr K R Bond 2020

331

Figure 80.68 GetIt Package Manager EdgeView2 SDK

Eleventh project
Save project TenthExampleProject.dproj in a new folder, EleventhExample, rename the project
EleventhExampleProject.dproj (Save Project As).
Save unit TenthExampleUnit.pas in new folder EleventhExample, rename the unit
EleventhExampleUnit.pas (Save As).
1.	 Add two TPanel components to the form, Panel4 and Panel5, clear the Caption property of each.

2.	 Set Align property of Panel4 to alLeft and adjust its Width property so that it occupies less than half of of a
wide form - see Figure 80.69.

3.	 In this order in the Structure pane, move Panel3 to Panel4, move Memo2 to Panel4, move Splitter1 to
Panel4, move Panel2 to Panel4, move SynEdit1 to Panel4, finally move Panel1 to Panel4.

4.	 Delete ListBox1.

5.	 Align property of Panel5 to alClient.

6.	 Set Splitter2's Align property to alLeft.

7.	 Add a TEdgeBrowser component, EdgeBrowser1, to Panel5 and set its Align property to alClient.

Support in VCL applications for working with web content through the Chromium-based Edge WebView2
browser control is now present in Delphi 10.4 via the new TEdgeBrowser component.

TEdgeBrowser replaces TWebBrowser, which uses the Internet Explorer WebBrowser browser control.
TWebBrowser is still available in the VCL component set, with some notable changes.

TWebBrowser uses the Operating System-supplied Internet Explorer WebBrowser browser control so there is no
preparation required; it will work wherever Windows has the Internet Explorer control available.

As Microsoft Edge is not an Operating System component at the time of writing this book, it is necessary to install
EdgeView2 SDK 0.9.488 by Microsoft® before the TEdgeBrowser component can work in Delphi applications.

The easiest way to do this is to use GetIt Package Manager - Tools|GetIt Package Manager..., type Edge in search
box then return. Figure 80.68 shows the currently available EdgeView2 SDK. Click this to select, then click the
install button to install the package. This is shown as done in Figure 80.68 by Installed being ticked.

For the TEdgeBrowser component to work at runtime, the corresponding WebView2Loader.dll - x86 or x64 -
must be placed in the project’s output directory, i.e. EleventhExample\Win32\Debug or EleventhExample\
Win64\Debug. Locate the folder containing the relevant WebView2Loader.dll (where Delphi 10.4 is installed, use
Redist folder) and copy this dll.

8.	 Add a TPyDelphiWrapper component, PyDelphiWrapper1, to the form.

9.	 The Engine property of PyDelphiWrapper1 should be set to PythonEngine1 and its Module property set
to PythonModule1.

10.	Edit the FormCreate event handler so that it is as shown in Figure 80.70.

www.educational-computing.com/DelphiBook/Code/Chapter80/EleventhExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/EleventhExample.zip

332

HOW TO PROGRAM EFFECTIVELY IN DELPHI

11.	Edit the Button1Click event handler so that it is as shown in Figure 80.71.

12.	Delete the Uses clause in the Implementation section.

13.	Change ReportMemoryLeaksOnShutdown in the Initialization section to False. There is a very small memory leak.
14.	This example project and others require the following python modules:

numpy - supports large, multi-dimensional arrays and matrices, and high-level mathematical functions to
operate on these arrays.

pandas - supports data manipulation and analysis, includes data structures and operations for manipulating
numerical tables and time series.

matplotlib - plotting library.
seaborn - data visualization library based on matplotlib, providing a high-level interface for drawing attractive

and informative statistical graphics.
mpld3 - brings together matplotlib and the JavaScript library for creating interactive data visualizations for

the web, D3js. The result is a simple API for exporting your matplotlib graphics to HTML code
which can be used within the browser.

bokeh - an interactive visualization library for modern web browsers.

Figure 80.69 EleventhExampleProject GUI design

Procedure TForm1.FormCreate(Sender : TObject);

 Begin

 PythonEngine1.SetPythonHome('c:\Users\drbond\Anaconda3');

 PythonEngine1.LoadDll;

 Var Py := PyDelphiWrapper1.Wrap(EdgeBrowser1, soReference);

 PythonModule1.SetVar('edge_browser', Py);

 GetPythonEngine.Py_DECREF(Py);

 End;

Figure 80.70 EleventhExampleUnit.pas FormCreate event handler

Enumerated type defined in
WrapDelphi.pas

Object reference variable Py assigned reference to wrapped EdgeBrowser1

Setting name that Python script will use
to refer to the object referenced by Py

Procedure TForm1.Button1Click(Sender : TObject);

 Begin

 PythonEngine1.ExecStrings(SynEdit1.Lines);

 End;

Figure 80.71 EleventhExampleUnit.pas Button1Click event handler

Free sample chapter - copyright Dr K R Bond 2020

333

altair - a declarative statistical visualization library.
scikit-learn - machine learning library.

15.	If Anaconda is used then the conda package manager is available to install any required packages.
Switch to the command line and enter the command as shown in Figure 80.72, replacing package-name with
the name of the required package. Anaconda will already have installed some of the required packages.

16.	Save project and unit in folder EleventhExample.

17.	Three Python example scripts have already been prepared:

•	 EleventhExampleMatPlotlib.py

•	 EleventhExampleBokeh.py

•	 EleventhExampleAltair.py

18.	Now build (Shift+F9) the project.

19.	Paste WebView2Loader.dll in Win32\Debug or Win64\Debug folder depending on target.

20.	Click Run Without Debugging (Shift+Ctrl+F9).

21.	Click Load and open EleventhExampleBokeh.py.

22.	Click Execute - Figure 80.73 shows the outcome.

23.	Use the sliders in the righthand window to interact with the Python script and alter the sine wave drawn by
Delphi in the righthand window.

Twelfth project - uses Python libraries to create charts which are saved in SVG format and then plotted in Delphi
Save project EleventhExampleProject.dproj in a new folder, TwelfthExample, rename the project
TwelfthExampleProject.dproj (Save Project As).
Save unit EleventhExampleUnit.pas in new folder TwelfthExample, rename the unit
TwelfthExampleUnit.pas (Save As).

conda install package-name

Figure 80.72 Command line use of conda

Figure 80.73 EleventhExampleProject in execution with script EleventhExampleBokeh.py loaded

Free sample chapter - copyright Dr K R Bond 2020

334

HOW TO PROGRAM EFFECTIVELY IN DELPHI

We need to install the package SVGIconImageList VCL & FMX (Figure 80.74) using GetIt Package Manager -
Tools|GetIt Package Manager. Use of the components in this package simplifies manipulating SVG images.
Once installed the components can be found in the component palette under Ethea.

1.	 Delete EdgeBrowser1 component from Panel5.

2.	 Add a TSVGIconImage component, SVGIconImage1 to Panel5.

3.	 Edit FormCreate so that it is as shown in Figure 80.75.

4.	 Save project and unit in folder TwelfthExample.

5.	 A Python example script has already been prepared TwelfthExamplePenguins.py - Figure 80.76.

6.	 Now run (Shift+Ctrl+F9) the project.

7.	 Click Load and open TwelfthExamplePenguins.py.

8.	 Click Execute - Figure 80.77 shows the outcome.

Thirteenth project
Load project NinthExampleProject.dproj and then
save in a new folder, ThirteenthExample, rename the
project ThirteenthExampleProject.dproj (Save Project As).
Save unit NinthExampleUnit.pas in new folder ThirteenthExample, rename the unit
ThirteenthExampleUnit.pas (Save As).

Figure 80.74 View in GetIt Package Manager of SVGIconImageList VCL and FMX

Procedure TForm1.FormCreate(Sender : TObject);

 Begin

 PythonEngine1.SetPythonHome('c:\Users\drbond\Anaconda3');

 PythonEngine1.LoadDll;

 Var Py := PyDelphiWrapper1.Wrap(SVGIconImage1, soReference);

 PythonModule1.SetVar('svg_image', Py);

 GetPythonEngine.Py_DECREF(Py);

 End;

Figure 80.75 TwelfthExampleUnit.pas FormCreate event handler

Setting name that Python script will use
to refer to the object referenced by Py

from delphi_module import svg_image
from io import StringIO
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load_dataset("penguins")
sns.pairplot(df, hue="species")
figfile = StringIO()
plt.savefig(figfile, format='svg')
figdata_svg = figfile.getvalue()
svg_image.SvgText = figdata_svg

Figure 80.76 TwelfthExamplePenguins.py

www.educational-computing.com/DelphiBook/Code/Chapter80/TwelfthExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/TwelfthExample.zip

335

1.	 Delete PythonWrapper1.

2.	 Replace Uses clause in the Implementation section with
Uses

 TypInfo, VarPyth, WrapDelphiVCL

3.	 Delete Type and Var statements in the Implementation section.

4.	 Delete Function IsPrime in the Implementation section.

5.	 Delete Class Function TDelphiFunctions.count_primes in the Implementation section.

6.	 Insert just before End keyword of TForm1 Class definition
Public
 PyDelphiWrapper1 : TPyDelphiWrapper;

7.	 Delete body of event handler FormCreate and replace with

8.	 Replace event handler Button1Click with

9.	 Rename ModuleName property of PythonModule1, delphi_controls.
10.	Set Form1's Width property to 980.
11.	Set Form1's Height property to 690.

Figure 80.77 TwelfthExampleProject in execution

 PythonEngine1.SetPythonHome('c:\Users\drbond\Anaconda3');
 PythonEngine1.LoadDll;
 PyDelphiWrapper1 := TPyDelphiWrapper.Create(Self);
 PyDelphiWrapper1.Engine := PythonEngine1;
 PyDelphiWrapper1.Module := PythonModule1;
 PyDelphiWrapper1.Initialize; //Use only if PyDelphiWrapper1 created at run time

www.educational-computing.com/DelphiBook/Code/Chapter80/ThirteenthExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/ThirteenthExample.zip

336

HOW TO PROGRAM EFFECTIVELY IN DELPHI

12.	Set SynEdit's RightEdge property to 120.

13.	Add to the end of the unit

Initialization

 ReportMemoryLeaksOnShutdown := DebugHoook <> 0;

14.	Save project and unit in folder ThirteenthExample.
15.	A Python example script has already been prepared, ThirteenthExample.py - Figure 80.79.
16.	Now run (Shift+Ctrl+ F9) the project.
17.	Click Load and open ThirteenthExample.py.
18.	Click Execute - Figure 80.78 shows the outcome.

The design of the Python-generated form may be prototyped first in Delphi. Once the form design is complete in
Delphi, the property values may be read from the corresponding .dfm file and used in the Python script.

Fourteenth project
1.	 Create a new Windows VCL Application for Delphi.

Procedure TForm1.Button1Click(Sender : TObject);
 Var
 PyObjectRef : PPyObject;
 Begin
 PyObjectRef := PyDelphiWrapper1.Wrap(Form1);
 PythonModule1.SetVar('MainForm', PyObjectRef);
 PythonEngine1.Py_DECREF(PyObjectRef);
 PythonEngine1.CheckError;
 PythonEngine1.ExecStrings(SynEdit1.Lines);
 End;

Figure 80.78 ThirteenthExampleProject in execution

Output from Python script ThirteenthExample.py

Free sample chapter - copyright Dr K R Bond 2020

337

from delphi_controls import MainForm, CreateComponent, Application, Screen, Form, Button, CheckBox, Label, Memo
import sys

def main():
 print('main called')
 MyForm = CreateComponent('TForm', None)
 MyForm.Name = 'MyForm'
 MyForm.Caption = 'Python Generated Form'
 MyForm.Height = 500
 MyForm.Width = 610
 MyForm.Position = 'poDesktopCenter'
 Memo1 = CreateComponent('TMemo', MyForm)
 Button1 = CreateComponent('TButton', MyForm)
 Edit1 = CreateComponent('TEdit', MyForm)
 Label1 = CreateComponent('TLabel', MyForm)
 CheckBox1 = CreateComponent('TCheckBox', MyForm)

 Memo1.Name = 'MemoBox1'
 Memo1.Parent = MyForm
 Memo1.Top = 14
 Memo1.Width = 300
 Memo1.Height = 387
 Memo1.Left = 10
 Memo1.Text = ''
 Memo1.TabOrder = 0
 Memo1.ScrollBars = 'ssVertical'
 Button1.Name = 'Button1'
 Button1.Parent = MyForm
 Button1.Left = 430
 Button1.Top = 380
 Button1.Width = 150
 Button1.Height = 21
 Button1.Caption = 'Generate Square of number'
 Button1.TabOrder = 1
 def ClickHandler(Sender):
 if CheckBox1.Checked:
 print(Sender.Name, ' was clicked')
 Memo1.Lines.Add('Square of ' + Edit1.Text + ' = ' + str(int(Edit1.Text) * int(Edit1.Text)))

 Button1.OnClick = ClickHandler
 Edit1.Name = 'Edit1'
 Edit1.Parent = MyForm
 Edit1.Left = 340
 Edit1.Top = 380
 Edit1.Width = 80
 Edit1.Height = 21
 Edit1.NumbersOnly = True
 Edit1.TabOrder = 2
 Edit1.Text = ''

 def KeyPressHandler(Sender, Key):
 print('non-numeric value')

 def KeyUpHandler(Sender, Key, Shift):
 if not (Key.Value in range(48, 59)) :
 a = Edit1.Text
 Edit1.Text = a[:len(a)-1]
 Edit1.SelStart = len(a)
 print('UP:non-numeric value')

 Edit1.OnKeyUp = KeyUpHandler
 Label1.Name = 'Label1'
 Label1.Parent = MyForm
 Label1.Left = 340
 Label1.Top = 359
 Label1.Width = 121
 Label1.Height = 21
 Label1.Caption = 'Enter an integer'
 CheckBox1.Name = 'CheckBox1'
 CheckBox1.Parent = MyForm
 CheckBox1.Left = 340
 CheckBox1.Top = 200
 CheckBox1.Width = 97
 CheckBox1.Height = 17

 MyForm.ShowModal()

if __name__ == '__main__':
 main()

Figure 80.79 ThirteenExample.py

Free sample chapter - copyright Dr K R Bond 2020

338

HOW TO PROGRAM EFFECTIVELY IN DELPHI

2.	 Drop a TPythonEngine component on the form, PythonEngine1.
3.	 Drop a TPythonModule component on the form, PythonModule1 - Figure 80.80.
4.	 Set Form1's Width property to 136, its Height property to 198 and BorderIcons

property to to [biSystemMenu].
5.	 Set properties of PythonEngine1 and PythonModule1 in Object Inspector as for

ThirteenthExample.
6.	 Create event handler FormCreate with body as shown in Figure 80.81.
7.	 Add PyDelphiWrapper1 to TForm1, a Uses clause to the Implementation section and

variable PythonProgram as shown in Figure 80.81.
8.	 Rename the project FourteenExampleProject.dproj (Save Project As) and save

in new folder FourteenExample.
9.	 Save unit as FourteenExampleUnit.pas in new folder FourteenExample (Save As).
10.	Now build (Shift+F9) the project.
11.	Place a copy of FourteenthExample.py (Figure 80.82) in the Windows32\Debug folder of

FourteenthExample.
12.	Now run (Shift+Ctrl+F9) the

project. Figure 80.83 shows the
outcome.

Figure 80.80
FourteenthExampleProject
form design

Unit FourteenthExampleUnit;

Interface

Uses
 Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants,
 System.Classes, Vcl.Graphics,
 Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls, Vcl.ExtCtrls,
 PythonEngine, WrapDelphi;

Type
 TForm1 = Class(TForm)
 PythonEngine1 : TPythonEngine;
 PythonModule1 : TPythonModule;
 Procedure FormCreate(Sender : TObject);
 Public
 PyDelphiWrapper1 : TPyDelphiWrapper;
 End;
Var
 Form1 : TForm1;

Implementation

{$R *.dfm}

Uses
 TypInfo, VarPyth, WrapDelphiVCL;
Var
 PythonProgram : TStringList;

Procedure TForm1.FormCreate(Sender : TObject);
 Var
 PyObjectRef : PPyObject;
 Begin
 Form1.Position:= poDesktopCenter;
 Form1.Width := 0;
 Form1.Height := 0;
 Form1.BorderIcons := [biSystemMenu];
 PythonEngine1.SetPythonHome('c:\Users\drbond\Anaconda3');
 PythonEngine1.LoadDll;
 PyDelphiWrapper1 := TPyDelphiWrapper.Create(Self);
 PyDelphiWrapper1.Engine := PythonEngine1;
 PyDelphiWrapper1.Module := PythonModule1;
 PyDelphiWrapper1.Initialize;
 PyObjectRef := PyDelphiWrapper1.Wrap(Form1);
 PythonModule1.SetVar('MainForm', PyObjectRef);
 PythonEngine1.Py_DECREF(PyObjectRef);
 PythonEngine1.CheckError;
 PythonProgram := TStringList.Create;
 PythonProgram.LoadFromFile('ThirteenthExample.py', TEncoding.UTF8);
 PythonEngine1.ExecString(PythonProgram.Text);
 End;

End. Figure 80.81 FourteenthExampleUnit.pas

www.educational-computing.com/DelphiBook/Code/Chapter80/FourteenthExample.zip

Free sample chapter - copyright Dr K R Bond 2020

http://www.educational-computing.com/DelphiBook/Code/Chapter80/FourteenthExample.zip

339

from delphi_controls import MainForm, CreateComponent, Application, Screen, Form, Button, Label,
Memo
import sys

def main():
 print('main called')
 MyForm = CreateComponent('TForm', None)
 MyForm.Name = 'MyForm'
 MyForm.Caption = 'Python Generated Form'
 MyForm.Height = 500
 MyForm.Width = 610
 MyForm.Position = 'poDesktopCenter'
 Memo1 = CreateComponent('TMemo', MyForm)
 Button1 = CreateComponent('TButton', MyForm)
 Edit1 = CreateComponent('TEdit', MyForm)
 Label1 = CreateComponent('TLabel', MyForm)

 Memo1.Name = 'MemoBox1'
 Memo1.Parent = MyForm
 Memo1.Top = 14
 Memo1.Width = 300
 Memo1.Height = 387
 Memo1.Left = 10
 Memo1.Text = ''
 Memo1.TabOrder = 0
 Memo1.ScrollBars = 'ssVertical'
 Button1.Name = 'Button1'
 Button1.Parent = MyForm
 Button1.Left = 430
 Button1.Top = 380
 Button1.Width = 150
 Button1.Height = 21
 Button1.Caption = 'Generate Square of number'
 Button1.TabOrder = 1
 def ClickHandler(Sender):
 Memo1.Lines.Add('Square of ' + Edit1.Text + ' = ' + str(int(Edit1.Text) * int(Edit1.Text)))

 Button1.OnClick = ClickHandler
 Edit1.Name = 'Edit1'
 Edit1.Parent = MyForm
 Edit1.Left = 340
 Edit1.Top = 380
 Edit1.Width = 80
 Edit1.Height = 21
 Edit1.NumbersOnly = True
 Edit1.TabOrder = 2
 Edit1.Text = ''

 def KeyUpHandler(Sender, Key, Shift):
 if not (Key.Value in range(48, 59)):
 a = Edit1.Text
 Edit1.Text = a[:len(a)-1]
 Edit1.SelStart = len(a)

 Edit1.OnKeyUp = KeyUpHandler
 Label1.Name = 'Label1'
 Label1.Parent = MyForm
 Label1.Left = 340
 Label1.Top = 359
 Label1.Width = 121
 Label1.Height = 21
 Label1.Caption = 'Enter an integer'
 MyForm.ShowModal()
if __name__ == '__main__':
 main()

Figure 80.82 FourteenthExample.py

Figure 80.83 FourteenthExampleProject in execution

Information
Python for Delphi
With Python for Delphi it is possible to leverage the best of both
Python and Delphi.
With Python for Delphi:
1.	 It is very easy to integrate Python into Delphi applications in

a RAD way, thus providing access to a vast range of Python
libraries.

2.	 Expose Delphi functions/procedures, objects, records and types
to Python using low-or high-level interfaces.

3.	 Create/access/use Python objects/modules in Delphi code using
a high-level interface (VarPyth).

4.	 Run Python code in threads.
5.	 Create Python extension modules.
6.	 Wrap VCL as a Python extension module to create GUIs with

Python.

Free sample chapter - copyright Dr K R Bond 2020

340

HOW TO PROGRAM EFFECTIVELY IN DELPHI

Fifteenth project
This project was inspired by Kiriakos Vlahos's Webinair

https://github.com/pyscripter/python4delphi/tree/master/Tutorials/Webinar%20I
Python's excellent library support for data science and machine learning has led to it dominating these two areas.

Delphi is renowned for its support for Rapid Application Development(RAD) - the first version of Skype to be
created used a Delphi-programmed front end and a C-programmed back end.

It therefore makes sense to leverage the strengths of each to create a usable machine learning application.

This project is dependent on the Python library scikit-learn (sklearn), a free software machine learning library for
the Python Programming Language. This machine learning library forms the core of the Python back end whilst
the front end, written in Delphi, reports on and displays an output graph that shows the closeness of the predicted
world-wide figures for the total number of Covid-19 cases over a ten day period at the end of data range. The front
and back ends are connecetd by Python for Delphi.

Use the conda package manager from Anaconda or pip install the Python machine learning library sklearn.

Also make sure that numpy, pandas, matplotlib and io are also installed.

This project uses COVID-19 time-series data for every country in the world reporting the total number of
Covid-19 cases to-date. This data is available in comma separated value(csv) format from the Center(sic) for
Systems Science and Engineering (CSSE) at John Hopkins University:

https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_
time_series/time_series_covid19_confirmed_global.csv

The format is Province/State, Country/Region, Latitude, Longitude, total recorded number of cases to date (dates
range from 22/1/2020 to 25/10/2020, inclusive for the day that this project was run).

For example,
, United Kingdom, 55.3781, -3.4336, 0, 0,, 873800

The first field is empty because the figures are not broken down in the UK's case by area.

The Python back end program is trained and confirmed on a subset of this data. The evolved statistical model is
then tested on a ten day subset of this data and the result plotted and saved as an SVG image. This image is then
exported for display by the Delphi program. Python for Delphi connects the front and back ends.

The machine learning model is uses Bayesian Ridge Regression hybridized with an n-degree Polynomial.
Probabilistic distribution is used to estimate the value of the dependent variable instead of relying traditional
methods.

The initial values of the parameters to be fine-tuned are

tol = [1e-4, 1e-3, 1e-2]
alpha_1 = [1e-7, 1e-6, 1e-5, 1e-4]
alpha_2 = [1e-7, 1e-6, 1e-5, 1e-4]
lambda_1 = [1e-7, 1e-6, 1e-5, 1e-4]
lambda_2 = [1e-7, 1e-6, 1e-5, 1e-4]

The pandas("panel data") is ideal for for importing and extracting data from csv files. Pandas enables data to be
represented as a virtual spreadsheet and as such shares many features with Microsoft® Excel:
confirmed_df = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_
data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv')

www.educational-computing.com/DelphiBook/Code/Chapter80/FifteenthExample.zip

Free sample chapter - copyright Dr K R Bond 2020

https://github.com/pyscripter/python4delphi/tree/master/Tutorials/Webinar%20I
https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
http://www.educational-computing.com/DelphiBook/Code/Chapter80/FifteenthExample.zip

341

The Bayesian ridge polynomial regression model expressed in Python 3.8 is as follows

bayesian_grid = {'tol': tol, 'alpha_1': alpha_1, 'alpha_2': alpha_2, 'lambda_1': lambda_1, 'lambda_2': lambda_2}

bayesian = BayesianRidge(fit_intercept = False, normalize = True)

bayesian_search = RandomizedSearchCV(bayesian, bayesian_grid, scoring = 'neg_mean_squared_error', cv = 3,
return_train_score = True, n_jobs = −1, n_iter = 40, verbose = 1)

bayesian_search.fit(poly_X_train_confirmed, y_train_confirmed)

1.	 Load TwelfthExampleProject.dproj into Delphi.
1.	 Save project TwelfthExampleProject.dproj in a new folder, FifteenthExample, rename the project

FifteenthExampleProject.dproj (Save Project As).
2.	 Save unit TwelfthExampleUnit.pas in new folder FifteenthExample, rename the unit

FifteenthExampleUnit.pas (Save As).
3.	 If the package SVGIconImageList VCL & FMX is not already installed then install it as per

TwelfthExampleProject.
4.	 Compile, link and run (Shift+Ctrl+F9) the project.
5.	 Figure 80.85 shows FifteenthExample.py which is the Python program which performs Bayesian ridge

polynomial regression. It takes about 15 seconds to produce output so be patient.
6.	 Click Load button and open FifteenthExample.py.
7.	 Click Execute button. The output produced is shown in Figure 80.84.

On 26th October 2020 the number of worldwide confirmed Covid-19 cases was 43, 446,557.

Figure 80.84 FifteenthExampleProject in execution

Free sample chapter - copyright Dr K R Bond 2020

342

HOW TO PROGRAM EFFECTIVELY IN DELPHI

from delphi_module import svg_image
from io import StringIO
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import BayesianRidge
from sklearn.model_selection import RandomizedSearchCV, train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.utils import parallel_backend
parallel_backend('threading')
import datetime
import warnings
warnings.filterwarnings("ignore")

confirmed_df = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_
covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv')

parallel_backend('threading')
cols = confirmed_df.keys()
confirmed = confirmed_df.loc[:, cols[4]:cols[-1]]

dates = confirmed.keys()
world_cases = []

for i in dates:
 confirmed_sum = confirmed[i].sum()
 world_cases.append(confirmed_sum)

window size
window = 7

days_since_1_22 = np.array([i for i in range(len(dates))]).reshape(-1, 1)
world_cases = np.array(world_cases).reshape(-1, 1)

days_in_future = 10
future_forcast = np.array([i for i in range(len(dates)+days_in_future)]).reshape(-1, 1)
start = '1/22/2020'
start_date = datetime.datetime.strptime(start, '%m/%d/%Y')
future_forcast_dates = []
for i in range(len(future_forcast)):
 future_forcast_dates.append((start_date + datetime.timedelta(days=i)).strftime('%m/%d/%Y'))

X_train_confirmed, X_test_confirmed, y_train_confirmed, y_test_confirmed = train_test_split(days_
since_1_22[50:], world_cases[50:], test_size=0.05, shuffle=False)

transform the data for polynomial regression
bayesian_poly = PolynomialFeatures(degree=5)
bayesian_poly_X_train_confirmed = bayesian_poly.fit_transform(X_train_confirmed)
bayesian_poly_X_test_confirmed = bayesian_poly.fit_transform(X_test_confirmed)
bayesian_poly_future_forcast = bayesian_poly.fit_transform(future_forcast)

bayesian ridge polynomial regression
tol=[1e-4, 1e-3, 1e-2]
alpha_1=[1e-7, 1e-6, 1e-5, 1e-4]
alpha_2=[1e-7, 1e-6, 1e-5, 1e-4]
lambda_1=[1e-7, 1e-6, 1e-5, 1e-4]
lambda_2=[1e-7, 1e-6, 1e-5, 1e-4]
normalize = [True, False]
bayesian_grid = {'tol': tol, 'alpha_1': alpha_1, 'alpha_2' : alpha_2, 'lambda_1': lambda_1,
'lambda_2' : lambda_2}
bayesian = BayesianRidge(fit_intercept=False, normalize=True)
bayesian_search = RandomizedSearchCV(bayesian, bayesian_grid, scoring='neg_mean_squared_error',
cv=3, return_train_score=True, n_jobs=-1, n_iter=40, verbose=1)
bayesian_search.fit(bayesian_poly_X_train_confirmed, y_train_confirmed)

print(bayesian_search.best_params_)
bayesian_confirmed = bayesian_search.best_estimator_
test_bayesian_pred = bayesian_confirmed.predict(bayesian_poly_X_test_confirmed)
bayesian_pred = bayesian_confirmed.predict(bayesian_poly_future_forcast)
print('MAE:', mean_absolute_error(test_bayesian_pred, y_test_confirmed))
print('MSE:',mean_squared_error(test_bayesian_pred, y_test_confirmed))
plt.plot(y_test_confirmed)
plt.plot(test_bayesian_pred)
plt.legend(['Test Data', 'Bayesian Ridge Polynomial Predictions'])
figfile = StringIO()
plt.savefig(figfile, format='svg')
figdata_svg = figfile.getvalue()
svg_image.SvgText = figdata_svg

Figure 80.85 FifteenthExample.py

Free sample chapter - copyright Dr K R Bond 2020

