

 412

An Open and Collaborative Object-Oriented

Taxonomy for Simulation of Marine Operations

Ícaro A. Fonseca, NTNU, Alesund/Norway, icaroaragao@outlook.com

Henrique M. Gaspar, NTNU, Alesund/Norway, henrique.gaspar@ntnu.no

Christopher F. Ryan, UCL, London/UK, christopher.ryan.15@ucl.ac.uk

Giles A. Thomas, UCL, London/UK, giles.thomas@ucl.ac.uk

Abstract

This paper introduces a taxonomy for marine simulations, based on entities, states and processes. The

taxonomy supports the open source Vessel.js library, which contains empirical models for different

vessel analyses following an object-oriented approach: seakeeping, resistance and propulsion system

working condition. The proposed taxonomy is applied to a ship design case, having entities as the phys-

ical element (e.g. ship), states as the behaviour of the ship for a given condition in time and processes

as the combination of various states over time. Two preliminary fuel consumption simulations applying

the proposed taxonomy are presented in a design space with different ship and propulsion system op-

tions: first the vessel sailing through a route, second through the sea states of an operating region.

Results are explored with visualizations and Pareto frontier plots for different design objectives. As the

Vessel.js library is intended to become a focus for collaborative work, suggestions for its extension and

improvement are also presented.

1. Taxonomy for Marine Simulations

The application of simulations to marine operations has lately been expanding and diversifying in the

marine industry. This diversification leads to a great variety of methods and approaches to tackle dif-

ferent simulation problems through the value-chain. However, simulation packages are often applica-

tion specific, not using common vessel models, input or output file formats. Furthermore, they are often

built with proprietary software, which means that even if someone is willing to adapt the code to their

own needs, it is not possible to do so.

Even simulation applications written for academic purposes are often not built for reusability or inter-

connection with other frameworks, even if their source code is publicly available. They may rely on

paid numeric packages (e.g. Matlab), and/or they only provide the source code as a printed appendix

with no further documentation. If a user decides to simply run the code in their own machine, they may

need to copy the content to source files, pay, download and install the correct version of the required

package; and only then they will be able to run the scripts. It may be even more difficult to adapt the

code to different use cases, or to extract some functionalities for usage in different projects.

Given these problems, this work introduces a simulation taxonomy intended to handle and connect

different simulations of marine operations. It uses one physical definition of the vessel to perform sim-

ulations of behaviour in operation. An object-oriented, open-source library accompanies the taxonomy.

The library is developed in JavaScript, allowing online deployment as web applications with graphical

user interfaces, Gaspar (2017).

The library starts with simulation models based on semi-empirical formulas and closed-form expres-

sions. It is intended to be collaborative, so besides having its source code freely available, the library is

maintained in an online repository with related documentation. This means that anyone who wants to

contribute can discuss, modify or improve it. Over time, this approach should allow easier incorporation

of more sophisticated analyses. A motion simulation, for example, could be gradually improved to in-

clude strip-theory or panel methods, then time-domain simulation of wave response. The object-ori-

ented approach may also aid the reutilization of code, as the source is split into several objects with

different purposes and capabilities.

413

2. Virtual Prototype Model for Marine Simulations

The basis of the taxonomy is the virtual prototype (VP) representation model proposed by He et al.

(2014) and previously used in a ship design context by Fonseca and Gaspar (2015). The VP represen-

tation model is subdivided into three sub models: an entity model (EM), a state model (SM) and a

process model (PM), each one defined as follows:

• EM: the entity model defines the physical product or system which is being simulated. It in-

cludes design and specification data, 2D and 3D models of the product, and can represent a

vessel or other simulated marine system, such as an oil rig or wind turbine, with any level of

detailing. For example, general arrangement, structural definition, 3D models and component

specifications can be included in the entity model.

• SM: the state model represents the system subjected to external static constraints in any kind

of simulation. In a marine operation VP, the SM could be the resistance of a vessel at a certain

speed, particular given load, and environmental conditions. The considered states are dependent

on the behaviour the VP model aims to simulate, so for example, a hull strength simulation

would require different states when compared to a seakeeping simulation.

• PM: the process model is a succession of different SMs to represent system behaviour over

time, or, alternatively, it is the EM subjected to a dynamic constraint. A PM could be, for in-

stance, the resistance model of a vessel sailing on a certain mission through different sea states,

or the motion response model of a vessel while performing a heavy lifting operation.

Fig.1 illustrates the relationships between the three models with some examples of possible simulations

in a marine operations context. The EM supports both other models, as it represents the simulated sys-

tem. The SM is the EM under a static constraint, and the PM is the accumulation of several SMs. The

PM can be decomposed into several SMs or obtained by applying dynamic constraints to the EM. In

the design process, both the SM and PM are used as feedback to modify the EM, i.e., according to the

results obtained from the static or dynamic models, the designer adjusts the product to improve its

performance, for example, optimizing the hull form.

Fig.1: Virtual Prototyping Representation Model Applied to Ship Design as adapted by Fonseca and

Gaspar (2015) from He et al. (2014)

Due to the complexity of a ship, it is natural that a breakdown is performed so as to better handle it as

an entity model. In ship design, some traditional approaches to that breakdown are by functional pur-

pose or physical division of systems, for example:

 414

• The System Based ship design methodology, Levander (2012), divides a ship into functional

sub systems for estimating the required area and volumes during the initial design stage.

• The Design Building Block approach, Andrews and Dicks (1997), divides a vessel initially into

functional blocks containing geometric and technical attributes, which can be further detailed

as the design process advances. The authors draw a comparison with the UCL Ship Weight

breakdown, essentially a physical division of ship systems.

• The SFI Coding and Classification system (named after the Skipsteknisk Forskningsinstitutt,

Ship Research Institute), Xantic (2001), defines a hierarchical ship division based on physical

systems arrangement, even if the original definition of those systems is by functional purpose.

The idea of an open taxonomy requires that the EM is able to exhibit and aid handling of both physical

and functional characterizations of ship systems. This flexibility yields higher potential for using the

models in different contexts during the vessel’s lifecycle, i.e., whether the focus is on evaluation of

functional performance during conceptual design stage or physical detailing of simulated systems dur-

ing construction and operation.

State models are snapshots of ship behaviour when subjected to internal or external stimuli, Gaspar et

al. (2012). Internal stimuli are simulation constraints which depend solely on states of the internal vessel

sub systems. For example, assuming the hull definition of a vessel is known, one can derive its hydro-

static characteristics. Adding weight and spatial definition of internal systems to that model, it is possi-

ble to calculate static stability or still-water structural demand for different states of those internal stim-

uli. The spatial definition, given as a general arrangement or 3D model, could also support a simulation

of evacuation time.

External stimuli are simulation constraints which depend on external or environmental states in general

and interact with the vessel as a system. Examples of external stimuli are waves, winds, currents or

geographic topology. Including these in the model makes it possible to perform simulations such as

sailing resistance, propulsion working condition, wave loads and seakeeping.

Finally, process models simulate state changes through time, for example, changes of draft, speed,

weather conditions or combinations of these. A simulation of a marine operation is assembled from a

sequence of states that change over time. It can be used as a case study to evaluate a vessel’s perfor-

mance in a certain scenario, incorporating external stimuli and operational rules. A lifting simulation,

for example, may have an operational rule for interrupting the operation in case the vessel reaches a

certain operability threshold according to the current weather state.

3. Taxonomy with Vessel.js: An Object-Oriented Open Source Library

This section introduces Vessel.js as an object-oriented JavaScript library for the taxonomy. Vessel.js is

an open source, collaborative project and can be accessed on http://www.vesseljs.org/. The repository

includes the latest version of the code, documentation with API reference for users and some examples

with tutorials presenting the library’s main functionalities.

This work starts from the library version presented by Gaspar (2018). Fig.2 gives a summary of the

repository’s structure at that time. Folder classes includes scripts to define a Ship object instance, which

represents the entity model and calculates state models which depend solely on internal stimuli. Folder

fileIO contains functions to browse, upload and download JSON specification files. Folder math con-

tains mathematical operators used to perform calculations.

We expand on this version of Vessel.js to perform simulations of fuel consumption with semi-empirical

formulas and closed-form expressions. The following sub-sections detail the VP sub models under this

framework, including interaction with external inputs and rules, such as sea state definition and vessel

operability criteria.

415

Fig.2: Vessel.js repository structure as of Gaspar (2018). This work expands on the library to perform

 simulations following the taxonomy.

3.1. Entity Model: Ship, Propulsion System

Vessel.js defines a Ship object constructor to create an entity model. The vision for the Ship prototype

is to support handling and evaluation of ship design data with different levels of detailing. The object-

oriented approach is suitable for handling both physical and functional characterization of ships; for

example, it is possible to have objects for ship sub systems and append SFI tags to them as properties.

A ‘Ship’ object is instantiated from a JSON input specification defining its physical characteristics. A

‘Ship’ instance includes sub-objects: attributes, baseObjects, derivedObjects, structure and designState,

each one with its own set of sub-objects, methods and properties. The first four objects define the EM,

while designState handles simulation states.

The ‘attributes’ object can be used to store general information about the vessel such as descriptions

and specifications. The base objects define templates for vessel compartments, tanks and outfitting

components. The definition includes spatial dimensions, links to 3D model files, and weight infor-

mation. Derived objects are the vessel components themselves. They are defined from base objects and

a single base object can be used as a template for multiple derived objects. A derived object also adds

information in addition to its base object: 3D coordinates describing the component’s relative position

to the vessel and identification tags according to the SFI group system. The structure object includes

bulkheads, decks and hull definition, including its table of offsets. Currently, the most detailed specifi-

cation available in the Vessel.js repository is a PSV composed of 106 derived objects, as shown in Fig.3.

This is the specification used throughout this work.

Fig.3: Visualization of an entity model, a PSV composed of 106 derived objects, Gaspar (2018)

 416

The entity model was expanded to provide the physical definition required for a fuel consumption sim-

ulation. The ‘Ship’ constructor received a property to specify one or more fuel tanks.

The main PSV specification collects some parameters which are not possible to obtain with the current

state of Vessel.js library, i.e.:

• Hull description which is beyond what the library can derive from the table of offsets, for in-

stance whether the hull has a bulb, transom stern or its afterbody form.

• List of hull appendices with respective wetted areas.

• Spare calculation parameters which can be taken as constant, such as natural roll period.

A propulsion system model was also created for the simulations. It is composed of two distinct, inde-

pendent objects: one for the propellers and another for the power plants.

Propeller objects define physical propeller characteristics: number of propellers, number of blades, di-

ameter and expanded area ratio. Efficiency data is linearized from Kt, Kq curves for the expected work-

ing regime (i.e., the high efficiency region of the curves). The linearization coefficients are included as

properties of the propeller object.

Power plant objects can be assembled from an engine library. For fuel consumption simulations, prop-

erties of an engine specification should include MCR and coefficients for approximation of the SFOC

curve as a 2nd or 3rd order polynomial.

A power plant object should have at least one main power providing system, as in this diesel electric

example:

var powerPlant1 = {

 main: {

 etas: 0.95, // shaft efficiency

 etag: 0.95, // generator efficiency

 engines: [CAT_3516C, CAT_3516C, CAT_C32, CAT_C32]

 }

};

In this case, the diesel electrical system supplies power for both propulsion and auxiliary systems.

Grouping multiple engines in the same array means they are able to share loads. The array order defines

the starting order of engines as the demanded power load increases. Shaft efficiency (etas) and generator

efficiency (etag) are taken as constant.

A power plant object may instead have one main power plant with two independent systems which do

not share loads. For example, two diesel mechanical systems, each with one or more engines coupled

to a propeller. In this case, the power plant should have an auxiliary diesel electrical system for power-

ing other systems. In the following example, this auxiliary system includes two high-speed engines:

// create a diesel mechanical power plant

var powerPlant2 = {

 main: {

 noSys: 2,

 etas: 0.99,

 engines: [CAT_3516C]

 },

 auxiliary: {

 etas: 0.95,

 etag: 0.95,

 engines: [CAT_C32, CAT_C32]

 }

};

417

Regarding integration between vessel and propulsion system, we favour a modular approach where

propeller, power plant and ship specifications are stored in separate libraries, so it is possible to couple

and test different combinations during the conceptual design stage (more details are given in section

4.1.). However, this approach does not necessarily exclude a more integrated one. In the future, it would

also be possible to define a default propulsion system inside the main ship specification and override it

with a different one in case the user wants to test different configurations.

3.2. State Model

All calculated states in a state model are handled inside a ‘ShipState’ object. It originally contained

analysis parameters, such as design speed and number of crew in sub-object calculationParameters and

a cache with states of ship derived objects in objectCache. Derived object states are purely dependent

on internal stimuli, they contain spatial positioning and tank filling ratios with flags for state version

control. This work expands the state object to handle ship states which relate to the vessel as a whole

system or depend also on external stimuli. These are now stored in a shipCache property, which lists

vessel states for one given time instant with a corresponding version flag.

Following the taxonomy, Vessel.js should be able to handle states that depend on both internal and

external stimuli. State models which depend purely on internal stimuli are calculated with methods

embedded into a ‘Ship’ instance. In this sense, a ‘Ship’ instance already includes methods for the cal-

culation of hull dimensions, hydrostatic and stability coefficients based on the current state of its derived

objects. Furthermore, a ‘Hull’ instance includes methods for calculating hydrostatic coefficients as a

function of the draft alone. The ‘Ship’ prototype only needed to be expanded with methods for fuel

handling: one for calculating the available amount inside tanks and a second for subtracting the con-

sumed amount.

SMs dependent on external stimuli are obtained using a library of specialized modules which couple to

a ‘Ship’ instance and access it to perform calculations. A simulation of fuel consumption includes mod-

ules for wave motion response, resistance, propeller interaction and engine fuel consumption:

• WaveMotion: wave motion response and bending moment due to waves are calculated using

closed-form expressions from Jensen et al. (2003). They estimate vessel RAO response as func-

tions of main dimensions, form coefficients and other parameters available in the early design

stage.

• HullResistance: the calm water component of hull resistance is calculated based on the Holtrop

(1984) method. Added wave resistance is calculated with a formula given by Kreitner for wave

heights up to 2 m, as suggested by ITTC (2005). For higher waves, a 20% wave margin is added

to calm water resistance. This is an analogous solution to that proposed by Bakke and Tenfjord

(2017).

• PropellerInteraction: propeller working condition is modelled as discussed in 3.1.

• FuelConsumption: power system working condition is modelled as discussed in 3.1. The fuel

consumption state module includes an algorithm for sharing loads among power sources cou-

pled to the same system. The underlying principle is that an additional power source is activated

when the previous one reaches 80% of its maximum capacity. This algorithm is heavily based

on work by Voldnes (2017).

A ‘Ship’ object instance received as argument by a state module constructor is linked to a property

inside the constructed object, which allows modules’ methods to access and modify ship states in an

encapsulated manner, as explained in Fig.4. States are modified with method writeResults. A specific

array, defined as a property for each state module lists which results should be written to shipState. It

can be edited according to the desired output. A memorisation pattern is used to store the results when

they are calculated. After stored, they will only be recalculated if the input ship or wave states changed

since the previous invoke.

 418

When calculating ship states during a simulation, it is necessary to reinforce a specific saving order to

assure they are updated correctly, as illustrated by Fig.5. A propeller interaction module requires hull

resistance and hull efficiency outputs to calculate the required shaft power, and a fuel consumption

module requires the shaft power to calculate a corresponding fuel consumption rate.

3.3. Process Model

A process model is handled by a master script which assembles and iterates over state modules and

external conditions to calculate ship states through time. The script may also evaluate and apply opera-

bility rules based on the calculated ship states. After the instantiation of the state modules, the script

iterates over them to advance the simulation until a final condition, say, maximum time or sailing des-

tination, is reached. A ‘Positioning’ object was created to aid calculation of sailed distance, however, it

does not follow the template of other SMs, as its depends on duration of iteration time steps and the

other modules do not.

Given the modular nature of the state calculations, it is possible to handle different parts of a simulation

independently. The same wave motion module, for example, can be used to calculate maximum bending

moment caused by incident waves, or to calculate the amplitude of vertical motion response and then

use it to trigger an operability rule.

It is also possible to assemble state modules to update different parts of the simulation at different rates.

For instance, one could be interested in calculating motion amplitude response every few seconds but

would want to update sailing draft due to fuel consumption only every few hours. Some process models

illustrating those use cases will be introduced in 4.2.

Fig.4: Some of the hullResistance module properties. Method writeResults reads array results and

updates the shipState inside the ‘ship’ property.

Fig.5: Interdependence between state modules. State calculation and saving sequence should follow

numbering to assure results are properly updated. Module waveMotion can be used

independently.

419

The final simulation results are a series of states, collected by time step or other label, depending on the

simulation. It contains calculated ship states at the very least but can be expanded to include states of

derived objects, such as fuel tanks, if relevant.

3.4. A Simple Simulation Example

This section exemplifies a simulation with a simple process model example where the ship travels

through a path while updating fuel tank level and draft, as shown in the flowchart in Fig.6. The code

was simplified for easier comprehension.

Fig.6: Flowchart of the fuel consumption simulation

A process model script starts with instantiation of a ship object:

var myShip = new Vessel.Ship(shipSpec);

The ‘Ship’ object handles the EM and performs SM analyses which are not dependant on external stim-

uli. It also stores current vessel states. State models which interact with external stimuli, in this case

wave condition, are calculated with additional modules. In the example below, the modules are instan-

tiated and the initial states are written to the vessel’s state cache following the update sequence in Fig.5

(resistance, propeller interaction and fuel consumption):

var hullRes = new HullResistance(myShip, wagProp, waveDef);

var propInt = new PropellerInteraction(myShip, wagProp);

var fuelCons = new FuelConsumption(myShip);

hullRes.writeResults();

propInt.writeResults();

fuelCons.writeResults();

The script will simulate the PM until the vessel reaches its destination. At every iteration, the script

calculates the consumed fuel for the last time step, subtracts it from the fuel tanks, calculates a new

draft and updates the ship state accordingly.

while (stateHistory[time].travelDist < pathDist) {

 consumedFuel = timeStep * shipState.consumptionRate;

 myShip.subtractFuelMass(consumedFuel);

 hullRes.setDraft();

 hullRes.writeResults();

 propInt.writeResults();

 fuelCons.writeResults();

 position.advanceShip(timeStep);

 Object.assign(stateHistory[time], shipState.state);

}

 420

In the example above, states are saved to ‘stateHistory’ at each time step. It becomes a record of ship

states through the process model, which can later be downloaded as the final simulation result.

4. Fuel Consumption Simulations with Vessel.js

The following subsections will demonstrate how different fuel consumption simulations can be per-

formed over multiple designs with Vessel.js. Following the taxonomy, a design library of vessels and

propulsion system objects will be created by reusing modified versions of the same physical system

templates, or entity models. Two different process models will be assembled using the state modules

presented in the previous section.

4.1. Design Library: Ship and Propulsion System

The ship library was planned to allow exploration of main dimension combinations during the concep-

tual design stage. It includes a visualization based on Three.js (https://threejs.org/) which receives a

parent ship specification and allows the user to linearly scale it inside a given ratio range for length,

beam and depth, as shown in Fig.7. When one dimension is modified, the others are automatically

adjusted so as to keep displaced volume constant for a scaled draft. It is also possible to fix one dimen-

sion and vary another, for instance, fix length, vary beam, and let depth be automatically adjusted by

the app to keep volumes constant.

Fig.7: Visualization of different PSV designs created by parametric transformation

The app derives ship object instances based on the design space explored through the visualization. It

fixes the beam at a base value, loops through the length, steps over the beam, loops again through the

length, and so on. Weights of hull, decks and bulkheads are scaled with their areas. Lightweights of

tanks and compartments are assumed to remain constant. As capacities of tanks and compartments scale

with volume, they also remain constant. Fixing the scaling ratio range from 0.9 to 1.1 of the parent

specification main dimensions and using a scaling step of 0.01, a total of 441 ship instances are gener-

ated. Many of them were discarded due to being out of the validity range for the Holtrop method, but

valid instances still summed up to 209 for the parent PSV specification used in this work.

The propulsion library contains propeller and power plant objects stored as JSON specifications. The

propeller library comprises a selection of Wageningen B-series propellers with typical parameters for

ship propulsion (3 to 5 blades, pitch ratio 1.2, expanded area ratio from 0.55 to 0.65).

421

The power plant library comprises two power plants. The first has two medium speed diesel mechanical

systems each linked to one propeller, and two diesel electric systems for auxiliary power. The second

power plant has the same four engines as the first one, but all linked as a diesel electric system which

shares power loads from propulsion and auxiliary systems. This power plant library was partially

adapted from work by Voldnes (2017).

4.2. Process Models for Fuel Consumption

In this section we present two process models for different fuel consumption simulations, both relying

on the taxonomy and state modules previously introduced. The first model, path, simulates the vessel’s

fuel consumption sailing through given route and wave conditions. The second model, lifecycle, simu-

lates a yearlong trip through the sea states listed on an input annual scatter diagram. The path model

can be used for calibration of the simulation based on previously known data for a given trip or, in the

future, for practical estimations of fuel consumption. The lifecycle model can be used for evaluation of

design suitability for a given operating region.

4.2.1. Path

The path simulation has different update rates for the verification of a new wave state (10 s), fuel tank

levels (1 min) and sailing draft due to fuel consumption (1 hour) by default, which can be modified on

the HTML interface. The script also contains a rule to slow down the vessel speed by 10% if a vertical

acceleration threshold is exceeded, and then try to return to default sailing speed when the wave state

changes. This is intended to simulate a voluntary speed reduction in case of excessive motions.

A method was added to change the wave definition back and forth between two different regular wave

states at every hour. In the future, this method could be elaborated to incorporate stochastic representa-

tions of wave state.

The script starts with the instantiation of a ‘Ship’ object from a specification and assignment of depar-

ture fuel tank levels. Then, it instantiates state modules and calculates initial states akin to what was

shown in 3.4. The script then iterates with a base time step of 1 s. It assigns results from the previous

time step to the current one and proceeds to verify if it should update states related to time steps for fuel

tank levels, draft, and wave state. If so, then it executes the necessary commands for the update and

writes the results down to the state cache. By the end of an iteration loop, the operational rule for the

vertical acceleration threshold is reinforced and the ship advances one time step in the sailing course.

For each change in vessel or tank state, the results are also updated in the current time step of stateHis-

tory. The simulation continues until the ship reaches its destination or runs out of fuel. Fig.8 presents a

simplified flowchart of the model.

Fig.8: Simplified flowchart of the path process model. A complete flowchart can be consulted in the

 Vessel.js online repository.

4.2.2. Life Cycle

The lifecycle script simulates the ship traveling through all the wave states listed on the scatter diagram

for a geographic region. It assumes an equal share of the yearlong trip time for each sea state occurrence

on the diagram.

 422

The algorithm is very similar to that presented previously, but instead of iterating until a destination is

reached, it iterates through the sea states. Also, the model does not consider fuel tank level or sailing

draft variations, as these are not specific to a given sea state.

For each sea state, the script creates a regular wave matching the given characteristics (peak period and

significant wave height). A simulation then starts with the vessel sailing through that wave, if necessary

reducing the speed until the acceleration threshold criterion is fulfilled. When the motion criterion is

fulfilled, the algorithm uses the ship state to calculate travelled distance and consumed fuel for that sea

state. Finally, it calculates total fuel consumption and average speed for a yearlong trip. Fig.9 presents

a simplified flowchart of the model.

Fig.9: Simplified flowchart of life cycle process model

5. Results Exploration

The life cycle process model was simulated for the 209 ship specifications and 2 power plant specifi-

cations introduced, with 2 different propeller configuration options, totalling 836 designs. At this stage,

we do not focus on quantitative values, as the model still needs to be validated before results are deemed

reliable. The focus is on the utilisation of the same taxonomy to perform different types of simulations

for different design proposals, and then on exploration of the performance trade space based on the

results.

Two different result visualizations were built for this work using the open source JavaScript library

D3.js, Bostock et al. (2011): a parallel coordinates plot, Fig.10, and a scatter plot with Pareto frontier,

Fig.11. These are used as example, but there are several other ways to visualize and explore ship design

information, Calleya et al. (2016).

423

Fig.10: Parallel coordinates plot for a life cycle simulation of 836 diferent designs, colours to

 differentiate power plants

The parallel coordinates plot has axes for ship main dimensions, fuel consumption, average traveling

speed, propeller characteristics and power plant identification number. It has functionalities to support

design space exploration, such as reordering of the axes to identify correlation among variables and

filtering through selection to answer questions such as “what is the most efficient design among the

fastest ones?” or “what is the most efficient design with diesel-electric main propulsion?”. The scatter

plot shows fuel consumption and average attainable speed with a corresponding Pareto frontier.

The analyses yielded feasible results: long ships with narrow beams tended to achieve better fuel effi-

ciencies than short ships with wide beams. Naturally, in a design context, stability requirements and

roll motions would at some point become compromised when choosing designs with narrower beams.

The exploration proposed here can be expanded to tackle those concerns using the Vessel.js library. For

example, the metacentric height could be plotted on an additional axis in the parallel coordinates plot,

or designs with a GM below a certain threshold could be discarded.

Fig.11: Scatter plot with Pareto frontier for fuel consumption and average ship speed. Dominated

 solutions appear with opaque filling.

The lifecycle and path apps can be accessed on the project’s repository. The online version of the path

app reduces the number of simulated ship instances to some dozens to keep running time in accordance

with what is generally expected from a web app. Nevertheless, the path app is still capable of simulating

several hundreds of designs when running locally on the client side, but it may take a little longer.

 424

6. Guidelines for Extending the Taxonomy and Library

This paper introduces the first step in the simulation of marine operations using the open source Ves-

sel.js library. This is done with a taxonomic framework which divides the simulation in three interde-

pendent models. The entity model is handled with objects for ship and propulsion system. State models

which are dependent solely on internal stimuli are calculated with methods embedded into a ‘Ship’

object instance. State models which also depend on external stimuli are handled with a library of mod-

ules which perform calculations using the ‘Ship’ object. The process model is a script which calculates

ship states, wave states and operational rules to perform a simulation.

The simulation models used here are quite simple, but they are created with features to foster collabo-

rative development, such as standardisation, modularisation and, in the future, reference documentation.

This means the models can be either modified, adapted for specific use cases, or improved by anyone

who wishes to make public contributions.

The next applications should expand the taxonomy to deal with motions and other states which evolve

through time. The simulations presented in this work relied mostly on sequences of stationary states.

They did not model transitions between consecutive states; even wave motion response was calculated

as amplitudes. An improved handling of motions and positioning will open the way to the simulation

of manoeuvring and interaction between multiple entity models, for instance, a multibody simulation

of two or more vessels keeping station next to each other.

In terms of accuracy, the fuel consumption simulation model should be validated with operational data

before it is used for practical applications. One suggestion is to compare it to PSV operational data

studied by Voldnes (2017), which could also be used as a reference to expand the simulation to a com-

plete operational profile, rather than simply fuel consumption in transit condition. This would include

expansion of the entity model to better represent PSV propulsion, including dynamic positioning capa-

bilities.

Furthermore, the current calculation of traveling speed in waves can be improved by coupling it to an

attainable ship speed model such as the one proposed by Kwon (2008).

In terms of computational capabilities, all the simulations presented in this work were performed with

web browsers running on client-side. A natural step for the future will be to make the library compatible

with a server-side framework, most probably Node.js (https://nodejs.org/). This will allow the simula-

tions to access higher computational power and execute heavier models. A strip theory model, for ex-

ample could be integrated to the library either as native JavaScript code or as an external open-source

module, for example PDSTRIP, Bertram et al. (2006).

Acknowledgements

The Vessel.js source code benefited heavily from Elias Hasle’s (NTNU, Norway) expertise in

programming. This research is connected to the Ship Design and Operations Lab at NTNU in Ålesund,

which is partly supported by the EDIS Project, in cooperation with Ulstein International AS (Norway)

and the Research Council of Norway. BMT for the support of Mr. Christopher Ryan’s PhD studies.

References

ANDREWS, D.; DICKS, C. (1997), The building block design methodology applied to advanced naval

ship design, Int. Marine Design Conference (IMDC), Newcastle

BAKKE, M.Ø.; TENFJORD, P.S. (2017), Simulation-Based Analysis of Vessel Performance During

Sailing-Describing a simulation platform applied in early stage ship design, Master’s Thesis, NTNU,

Trondheim

425

BERTRAM, V.; VEELO, B.; SÖDING, H.; GRAF, K. (2006), Development of a freely available strip

method for seakeeping, 5th Conf. Computer and IT Applications in the Maritime Industries (COMPIT),

Leiden, pp.356-368

BOSTOCK, M.; OGIEVETSKY, V.; HEER, J. (2011), D³: data-driven documents, IEEE Trans.

Visualization and Computer Graphics 17, pp.2301-2309

CALLEYA, J.; PAWLING, R.; RYAN, C.; GASPAR, H.M (2016), Using data driven documents (D3)

to explore a whole ship model,11th System of Systems Engineering Conf. (SoSE), pp.1-6

FONSECA, Í.A.; GASPAR, H.M. (2015), An object-oriented approach for virtual prototyping in

conceptual ship design, 29th European Conference on Modelling and Simulation (ECMS) Conf., Varna,

pp.171-177

GASPAR, H.M.; RHODES, D.H.; ROSS, A.M.; ERIKSTAD, S.O. (2012), Addressing complexity

aspects in conceptual ship design: A systems engineering approach, J. Ship Production and Design 28,

pp.145-159

GASPAR, H.M. (2017), JavaScript Applied to Maritime Design and Engineering, 16th Conf. Computer

and IT Applications in the Maritime Industries (COMPIT), Cardiff, pp.428-443

GASPAR, H.M. (2018), Vessel.js: an open and collaborative ship design object-oriented library, Int.

Marine Design Conf. (IMDC), Helsinki

HE, B.; WANG, Y.; SONG, W.; TANG, W. (2015), Design resource management for virtual proto-

typing in product collaborative design, Proc. Institution of Mechanical Engineers, Part B: J. Eng.

Manufacture 229, pp.2284-2300

HOLTROP, J. (1984), A statistical re-analysis of resistance and propulsion data, Int. Shipbuild. Prog.

31, pp.272-276

ITTC (2005), Full Scale Measurements, Speed and Power Trials, Analysis of Speed/Power Trial Data

(7.5-04-01-01.2), ITTC - Recommended Procedures and Guidelines.

JENSEN, J.J.; MANSOUR, A.E.; OLSEN, A.S. (2004), Estimation of ship motions using closed-form

expressions, Ocean Eng. 31, pp.61-85

KWON, Y.J. (2008), Speed loss due to added resistance in wind and waves, Nav. Arch. 3, pp.14-16

LEVANDER, K. (2012), System based ship design, NTNU Marine Technology, Trondheim

VOLDNES, B. (2017), Simulation of marine hybrid machinery systems based on vessel operational

data, Master’s Thesis, NTNU, Trondheim

XANTIC (2001), SFI Group System - A system for classification of technical and economic ship

information - Product Description, Xantic, Svendborg

