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Abstract 

Unikernels offer an alternative to traditional virtual machines and containers as a 

lightweight virtualization mechanism for use in cloud computing. However, barriers to 

their widespread adoption include the difficulty in porting existing applications, and 

their lack of safety and security. Unikernels are typically categorized as either written 

in memory unsafe languages with easy application porting or written in a memory safe 

language with a significant cost to port applications. 

This project explores the possibility of having a unikernel written in the memory safe 

language Rust which can execute precompiled Linux binary applications. This would 

provide a unikernel which is both memory-safe and yet requires minimal to no effort to 

port existing Linux applications. Thus, eliminating two of the barriers to the adoption 

of unikernels in the cloud computing space. 

The project attempts to replicate some of the work in the existing binary compatible 

HermiTux unikernel written in C, applying this work to the RustyHermit unikernel which 

is written in Rust. 
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1 Introduction 

1.1 Motivation 

The explosion of cloud computing usage has resulted in an expansion in multi-tenancy 

servers from large cloud service providers such as Amazon, Google, and Microsoft 

[11]. Multi-tenancy allows many applications, such as Infrastructure as a Service 

(IaaS), Function as a Service (FaaS), Software as a Service (SaaS) products and 

microservices, from multiple users to run on a single physical server [3]. Container 

technology is an increasingly common choice for running applications due to their low 

start-up overheads and minimal memory footprint when compared to virtual machines 

(VMs) [3, 11]. 

Despite the advantages that containers provide they have less isolation than VMs and 

are therefore inherently less secure. This constitutes a risk of information leakage [3, 

11, 15]. Unikernels are a minimal operating system (OS) suitable for cloud applications 

and could provide both the performance and disk size advantages of a container and 

the security and safety of a VM. Unikernels can provide a minimal, lightweight kernel 

with only the system calls required to run the application and which terminates when 

the application finishes execution [11, 15]. They are short-lived so inherently more 

secure, due to the reduced attack surface, and more efficient than a long-lived VM, 

yet still have isolation for safety and security. 

There are two distinct categories of unikernel. Firstly, there are unikernels which 

support legacy applications and are language agnostic. They are written in a memory 

unsafe language such as C. Secondly are the unikernels written in a memory safe 

language providing greater security and safety but which only support applications 

written in a high-level language [19]. 

Unikernels are designed to run only a single application, this is usually compiled as 

part of the unikernel code [11]. This can limit the uptake of unikernels for running 

existing applications due to the effort required to create them. The desired application 

must be rewritten for the unikernel. This causes a significant amount of work for the 

programmer to port existing applications. It may even be impossible for applications 

where the source code is not available [15]. 
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A unikernel which can run existing applications without any porting effort could help 

with the uptake of unikernels as an alternative to containers. Such research projects 

exist in legacy languages such as C [15]. However, memory safety in C is difficult to 

enforce and prone to errors from the programmer [8]. It is also a significant source of 

vulnerabilities [8]. Although unikernels written in a memory safe language exist they 

still require the effort of porting the application to the unikernel [8]. A binary compatible 

unikernel written in a memory safe language would remove the burden on the 

programmer to port applications whilst also providing a safe and secure runtime 

environment. 

1.2 Aims 

The primary aim of the project is to modify a unikernel written in the memory safe 

language Rust so that it can execute a single Linux binary application passed to it at 

run-time. The ultimate target is the ability to run simple pre-compiled static C programs 

using this Rust unikernel which would allow the execution of NPB benchmarks and 

therefore measure the performance of the unikernel. 

1.3 Summary 

The project took the RustyHermit unikernel project and adapted it to run Linux binary 

applications using the work done with HermiTux on the HermitCore project as a 

reference. The exploratory nature of the project meant there were many unknowns 

about what was ultimately possible, and the potential challenges involved. Although 

we were not able to reach the goal of providing full binary compatibility with C 

programs, the ability to run compiled Linux applications written in assembly was 

demonstrated. The project was able to provide a proof of concept that it is possible to 

write a unikernel in Rust that can run statically compiled Linux binary applications and 

has laid much of the groundwork for compatibility with static C applications. 

2 Background & Related Works 

2.1 Background 

VMs running standard operating systems are very useful. They allow users to run 

unmodified application code as though directly on a physical machine [10]. The guest 

VM itself is an application running on a host, providing transparent access to system 
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calls through a hypervisor layer [6]. This is particularly useful in cloud computing where 

compute time is leased to a user and therefore a physical server can have many users 

running many different VMs. VMs provide a means of separating the running systems 

securely and safely [10]. 

 

Figure 1: A VM / hypervisor stack showing a traditional VM alongside a traditional unikernel and a binary-compatible 

unikernel. 

VMs are typically large, running full OSs which contain legacy code for supporting 

many years of software and hardware as well as adding an additional layer to the 

existing software layers [10]. The increasing need for an efficient way of running many 

applications on multi-tenancy servers has led to a widespread adoption of containers 

[3]. Like containers, unikernels are a form of lightweight virtualization but unlike 

containers they are still VMs so can benefit from isolation and therefore the security 

that comes with that [10]. 

Even though unikernels may solve some of the issues related to containers they are 

still immature, mostly existing as research projects, and their security has not been 

proven [13]. Whilst they do provide better isolation than containers, the application and 

kernel code run together in the same address space in privileged mode. Security 

mechanisms to protect against exploits have yet to be reliably developed [13, 16]. 

In addition to the security problems yet to be solved for unikernels another barrier to 

adoption is the requirement for applications to be rewritten and compiled as part of the 

unikernel. This can range from being reasonably straight-forward, for instance Lankes 
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et al. claim that porting a Rust application for RustyHermit is “almost trivial” [8], to being 

impossible in the case of proprietary software where the source code is unavailable 

[15]. Increasing compatibility of applications with unikernels is therefore an important 

area of research. If a unikernel can run existing binary applications, then one of the 

important hurdles to unikernels becoming production ready is overcome. 

Unikernels can be written in either legacy languages such as C or in a memory safe 

language such as Rust. Unikernels run on the hypervisor layer and need to replicate 

the interface between the OS and the application. Legacy languages such as C are 

commonly used for system-level development as it provides unchecked access to 

memory and allows for greater performance for certain tasks [8]. Avoiding errors when 

writing C can be difficult even for experienced programmers [8] and memory-related 

bugs contribute to a significant number of vulnerabilities [4, 14]. Writing a unikernel in 

a memory safe language such as Rust would help to reduce bugs and therefore 

vulnerabilities resulting from incorrect use of memory. 

Rust is a memory safe language; it uses the concept of ownership to manage memory 

instead of garbage collection or manually allocating and freeing memory as in other 

languages. This allows Rust to be safe as well as high performance [7]. These 

properties of Rust make it a good choice for developing system software such as a 

unikernel. 

On the one hand there are unikernels written in legacy languages which are unsafe 

but provide easy porting of applications. Whilst on the other hand there are unikernels 

written in memory safe languages, but which require costly application porting. The 

objectives of the project are to explore the possibility of creating a unikernel which can 

port applications with minimal effort in addition to providing memory safety. If this can 

be shown to be possible then we will be able to demonstrate the best features of both 

legacy and memory safe unikernels. 

2.2 Related Works 

Research projects exist which use unikernels to run a Linux binary application for 

instance HermiTux1 [15]. HermiTux is based on HermitCore2, a unikernel operating 

system written in C and therefore suffers from the security issues inherent in memory 

 
1 https://ssrg-vt.github.io/hermitux/ 
2 https://github.com/hermitcore/libhermit 

https://ssrg-vt.github.io/hermitux/
https://github.com/hermitcore/libhermit
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unsafe languages, such as memory leaks and vulnerabilities [15]. It is adapted to run 

native Linux binary applications written in several languages such as C, C++, Fortran, 

and Python [15]. 

RustyHermit3 is a project that has rewritten HermitCore in Rust for memory safety [8]. 

Rust provides a memory safety guarantee which it implements using the concept of 

ownership, the rules for which are checked at compile time [7], thus ensuring that 

memory leaks do not occur. RustyHermit is a lightweight kernel which runs on top of 

a hypervisor layer. In this case a KVM-based hypervisor called Uhyve. Adapting 

RustyHermit to load and run binary applications will provide both safety and 

compatibility. 

The Linux Application Binary Interface (ABI) determines the interface between two 

binary applications, for example between a library and a user program. It consists of 

a load-time element and a runtime element [15]. The load-time ABI determines what 

binary formats are supported, how an application is loaded, and how the stack and the 

registers should be initialised when the application is started. The runtime ABI defines 

how to make system calls; the instructions and registers to use [12]. The ABI 

conventions will need to be applied in the project to load and run the binary application. 

3 Design 

 

Figure 2: Graphical overview of the system 

The binary compatible RustyHermit project consists of a hypervisor layer and a guest 

layer. Within the guest layer the kernel is loaded in a separate area of memory from 

 
3 https://github.com/hermitcore/rusty-hermit 

https://github.com/hermitcore/rusty-hermit
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the binary application code and data. The loading of both the application and the kernel 

is performed by the hypervisor. The hypervisor then passes control to the kernel. The 

kernel initialises the stack and registers ready for the application to execute and finally 

hands over control to the binary application. These stages constitute the load-time 

ABI. The development work to achieve this was completed by Christopher Densham. 

When the application is running it requires the use of system calls. Unikernels always 

run in supervisor mode, therefore in the unikernel the system calls are simply function 

calls. For binary compatibility, the system calls need to be implemented as functions 

within the kernel. The runtime ABI determines how these system calls are 

implemented. Laurent Pool developed the system calls for the project. 

As RustyHermit is a rewrite of HermitCore written in Rust, and HermiTux is a binary 

compatible version of HermitCore it makes sense to study both the HermiTux and the 

RustyHermit projects. HermiTux provides the functionality and RustyHermit the base 

from which we can adapt. 

The RustyHermit binaries run on top of a hypervisor layer. There are two supported 

hypervisors for use with RustyHermit: Qemu and Uhyve. For this project Uhyve was 

selected as the hypervisor as the load process is much simpler and it would need to 

be amended. In addition, this is the same hypervisor used by HermiTux which was 

used as the example project. HermiTux uses a version of Uhyve written in C, whilst 

this project uses a version written in Rust, in keeping with the rest of the project. Uhyve 

was developed by the authors of HermitCore as a minimal hypervisor for running the 

unikernel on a Linux system using KVM [9, 15]. 

The hypervisor needs to initialise, allocate memory, and load the guest kernel into 

memory. In a traditional unikernel the kernel and application are compiled into a single 

binary. However, for binary compatibility, the application code and data are loaded 

separately from the kernel, although the kernel and the application will run in the same 

address space. For the project, the hypervisor will need to be adapted to load the 

application into a separate area of the address space, ensuring that the two binaries’ 

areas do not overlap. 

Once the hypervisor has initialised the system it can pass control to the kernel. The 

kernel then initialises, enabling system call support by setting a control register. The 

kernel can then set up a heap and a stack in memory and execute the application 
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code. For a binary compatible unikernel additional steps are required. The kernel 

needs to initialise the stack with the information expected by libraries to execute the 

application code. This can include command line arguments, environment variables, 

and the OS auxiliary variables that are expected by the early initialisation code that 

runs first in most modern application’s binaries. Once this has been initialised the 

kernel can pass control to the application to execute its code. 

The work to create a binary compatible unikernel in Rust was divided into two sections. 

The work to implement the runtime part of the ABI, and therefore the required system 

calls written in Rust was completed by Laurent Pool. A subset of all available system 

calls was chosen to be implemented. The choice was based on the most common 

system calls used in the kernel. Writing to stdout, file operations such as opening, 

closing and writing to files, and memory allocation. Implementing these common and 

basic system calls enables a wide range of binary applications to run. One of the 

focuses was on implementing the system calls required to run NPB benchmarks so 

that we could compare the performance of the binary compatible Rust unikernel with 

the performance of a standard Linux kernel. 

The application loader, implementing the load-time ABI, was completed by Christopher 

Densham. This required first ensuring that the kernel and application were loaded into 

separate areas of the same address space. It is important to ensure that the kernel 

and application are loaded far enough apart that they do not overlap. As the project 

focused on static binaries the application and kernel locations were hardcoded. Once 

the application and the kernel are loaded into memory then the stack must be initialised 

with the required variables expected by libc. Once these are loaded then the kernel 

can start execution of the application. 

4 Implementation 

This section will discuss the details of the implementation of the loader in the unikernel 

and the reasons for the decisions which were made. It will also discuss some of the 

challenges faced when implementing this. For details on the implementation of the 

system calls please refer to the project report by Laurent Pool. 
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4.1 RustyHermit 

There are two stages to initialising and loading a binary application in the unikernel, 

comprising of four main tasks.  

1. First stage 

a. Relocate the kernel from the original location in RustyHermit. 

b. Load the application alongside the kernel code in the same address 

space, ensuring that there is no overlap within the memory.  

c. Pass the application point and other metadata to the kernel. 

2. Second stage 

a. Craft the stack required for the application to execute and hand control 

to the application. 

In between the two stages the kernel initialises, writing to a control register to enable 

system call support. 

4.2 First-stage Loader 

The first stage requires three main tasks to be completed. First the start point of the 

kernel needs to be relocated. Secondly, the binary application needs to be loaded into 

memory. Finally, metadata about the application needs to be passed to the kernel, 

most crucially the application entry point. 

4.2.1 Relocate the Kernel 

In the original version of RustyHermit, the kernel, which also contains the application 

code, is loaded by Uhyve at the address 0x400000. This is at the start of the traditional 

user space for standard Linux static binaries. For simplicity, the project focused on 

static binaries, so we wanted to load the application at this address. The kernel space 

would usually occupy the second half of the virtual address space which is usually 48 

bits in modern x86-64 CPUs. In HermiTux it was noted that it was possible to fit the 

entire kernel into the address space below 0x400000 starting at 0x200000 [15]. This 

allowed the application code to be loaded at 0x400000 without any conflicts and gave 

the maximum amount of space for the application to use. As the project was studying 

HermiTux it was attempted to replicate this approach and load the kernel at the same 

location. The RustyHermit kernel already supports relocation so the option to move 

the kernel was explored. Unfortunately, the size of the kernel was 2.4 MB and therefore 
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larger than the available 2 MB of space, so it would not fit in the same location as in 

HermiTux. It is unclear if the kernel code can be refactored to fit in the 2 MB of available 

space. This is a potential area for future exploration. 

 

Figure 3: Guest address space. Showing separation of application and kernel. 

As it was still desired to load the application at 0x400000, and it was not possible to 

locate the kernel below this the decision was made to load the kernel higher up in the 

address space. The kernel would not have a separate address space to the application 

code so it was important that there would be no interference. The upper limit to the 

address space is dependent on the size of the guest memory. This can be declared at 

load time by setting the HEMIT_MEM environment variable before invoking the 

hypervisor, if this is not set it defaults to 64 MB. If it were attempted to load the kernel 

too high in the address space Uhyve would crash with an error that the size of the 

guest memory was not large enough. The final decision was to locate the kernel start 

at 0x1000000 leaving enough room for small applications to be tested and to also fit 

into the default memory. The option to load the application first and then locate the 

kernel based on the size of the application was explored. However, structures 

containing boot info are created at kernel load time and these need to be updated with 

information about the application when it is loaded so it was not possible to load the 

application first and then load the kernel. 

The hypervisor also allocates the remainder of the memory space above the kernel 

for the heap. It was felt that it was not necessary for the remainder of the memory to 

be allocated for the heap. Therefore, the heap space was initially reduced during the 

project. A subsequent change in the original RustyHermit project refactored the way 

heap allocation was performed. This change was incorporated into the project code 

base late in the project. As the reduction in the heap size was not essential for 

functionality the upstream changes were not rewritten. Future research could look at 

reducing the heap size. 
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4.2.2 Load the Application 

The hypervisor must load the application into memory. To begin, the hypervisor needs 

to know where to find the application code. The way this is provided is to pass the path 

of the application binary to Uhyve as a command line argument when it is invoked. 

When the hypervisor creates a new VM it needs to do several things. It first checks 

the relevant ELF headers to make sure it is a compatible executable for the specified 

architecture and that it does not require any additional libraries. Uhyve identifies the 

application’s loadable ELF segments and loads them into memory at the desired 

location. The application was loaded at 0x400000 for this project, leaving enough 

space to the start of the kernel. For dynamic position independent executables (PIE) 

the application code can be located anywhere in the guest memory. A future extension 

could be to place the application code at a random address. This would help with 

security through address space layout randomization (ASLR). This random layout 

would have to be coordinated with the kernel location to ensure that one does not 

corrupt the memory of the other. 

4.2.3 Pass Application Metadata to the Kernel 

Uhyve also reads values from the ELF metadata relating to the application and sets 

these values in the boot info structure in the kernel. The boot info structure is created 

when the kernel is loaded and is a struct containing variables shared between the host 

and the guest which are required by the kernel. The additional values required for the 

application are used to initialise the stack and jump to the application entry point. The 

structure was amended to accommodate the required values from the application. This 

includes the application start point, its size in memory, the entry point i.e. the first 

instruction in the application, as well as information about the program header tables. 

4.3 Second-stage Loader 

The second stage of the binary loader is run in the kernel itself. Once the hypervisor 

has finished initialising and loading the kernel and the application it hands control over 

to the kernel. The guest kernel first initialises and then it can run the second stage 

loader. The kernel needs to initialise the stack with certain values which include ELF 

auxiliary vectors, environment variables, and the command line arguments vectors 

and count argv and argc. ELF auxiliary vectors are a mechanism to transfer kernel 

information to the user application. The values need to be pushed to the stack in the 
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reverse order that they are to be read during execution. The ELF auxiliary vectors are 

pushed first, followed by the pointers to the environment variables, then the command 

line argument vectors argv, and finally the command line argument count argc. 

The initial approach was to create the second stage loader as a Rust application which 

would be compiled and bundled as part of the unikernel, in the same way that user 

code would be compiled with the unikernel in a traditional RustyHermit unikernel. This 

Rust application would define the constant variables to be pushed to the stack, define 

the value of argc, and create vectors of pointers to the environment variables and 

argument vectors. Rust provides access to the environment variables and the 

command line arguments through the std::env module. It would then use inline 

assembly code to push the values to the stack and jump to the entry point of the binary 

application. 

 

Figure 4: The initialised stack 

This approach had to be changed though as some of the system calls that were to be 

implemented required building with a feature called Newlib. Newlib is a C library 
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intended for embedded systems [20]. Building with Newlib required support for 

networking via lwIP. After consulting with one of the key developers of the RustyHermit 

project they advised that we could build and run in an environment called Hermit 

Playground4. This environment provided support for lwIP and was already configured 

to build with Newlib. lwIP is a small, lightweight implementation of the TCP/IP stack 

[1]. For further details on the reasons for building with Newlib and wishing to support 

lwIP please refer to the report by Laurent Pool. 

Unfortunately, Hermit Playground was not configured to run Rust applications with the 

unikernel, it is configured to run C, C++, Go and Fortran applications that can be 

compiled against Rust code in a traditional RustyHermit unikernel. Instead of creating 

a Rust application to load the binary application it was decided to move the initialisation 

of the stack to the kernel boot process. This provided the advantage that it was easier 

to access the application values in the boot info using helper functions created in the 

kernel during the development of the first stage. These helper functions were not 

accessible outside the kernel so were not available using the traditional Rust unikernel 

application method. 

The disadvantage of this was that the kernel uses a no_std Rust environment. This is 

a way of ensuring that the Rust library used is platform agnostic and is used for kernels 

and similar bootstrapping code [2]. This meant that there was no access to the 

std::env module which provides iterators over the environment variables and the 

command line arguments. The iterators were required to create the vectors of values 

which are subsequently pushed to the stack. No access to std also meant that it was 

not possible to use certain non-primitive types like CStrings which allows a 

representation of strings in a C-like format. These are required as they provide the 

expected format for the environment variables, command line arguments and auxv on 

the stack. The environ, argc and argv variables are available in the kernel through 

functions. These values can then be passed to the application-loading function. Due 

to the inability to use CStrings vectors had to be created manually with C-like strings 

by adding the characters to the vector as bytes and terminating with a null value. A 

pointer to the vector containing the string can then be created and passed as required. 

 
4 https://github.com/hermitcore/hermit-playground 

https://github.com/hermitcore/hermit-playground
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To push the values to the stack in the required order, a vector containing the pointers 

to environment variables and the command line arguments was created in the order 

that they would eventually be read. The ELF auxiliary vectors need to be pushed to 

the stack as a tuple containing a key (or type) and a value. The type is represented by 

a numerical value which is stored as a constant in the kernel code. A lot of the ELF 

auxiliary vector values are hardcoded as they are specific to the Linux system or can 

otherwise be stubbed. Other values are dynamic, for instance the ELF program header 

table values and the application entry point. The ELF auxiliary vectors are read last so 

they must be pushed to the stack first in reverse order. The environment variable 

pointers and command line argument pointers are pushed next, again in reverse order. 

The final value to be pushed is the command line argument count, argc. 

A separate function was created to push the ELF auxiliary vectors to the stack, as this 

required pushing the type-value tuple in reverse order. However, even though this was 

marked as inline assembly the local variables were becoming corrupted once the stack 

push began. It was attempted to write the assembly instructions directly into the loader 

code, but this did not resolve the problem either. The problem was found to be that 

the stack pointer was obviously being changed as we pushed values to the stack. This 

meant that the references to the local variables were now pointing to the incorrect 

location as they were addressed with an offset relative to the stack pointer. The 

solution was to force frame pointers by setting the environment variable 

RUSTFLAGS="-C force-frame-pointers=yes". Frame pointers use a separate 

register to store the beginning of the stack frame for each function. The location of 

local variables and arguments are addressed relative to the frame pointer and are no 

longer dependent on the stack pointer. The frame pointer is only updated on a function 

call or return and therefore is not affected by the stack crafting process. This problem 

was therefore not related to the use of the separate function so this could be used.  

Unfortunately, forcing frame pointers causes the Rust build process to recompile all 

its dependencies every time it is rebuilt. This became quite a bottleneck when 

developing. Every change, even if it was small, required several minutes to rebuild 

and run to test it. This is exacerbated when working with kernel code as even changing 

a print statement, which is often required for debugging due to the inability to run higher 

level debugging software, can cause a bug to appear or disappear. Further to this all 
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development and testing was done on a nested VM, which is slower than a traditional 

VM, which are themselves slower than native systems. 

Once the ELF auxiliary vectors are pushed to the stack successfully the environment 

variables and command line arguments can be pushed. These are stored as pointers 

in a single vector. As vectors can return an iterator it is possible iterate over the vector 

in reverse order and push the pointers to the stack. After this the only remaining value 

to push to the stack is argc. The stack is now initialised, and we can hand execution 

over to the application. This is simply a case of using an assembly instruction to jump 

to the application entry point. 

The program that was being used to test the success of the binary loading was a Hello 

World application, written in C and compiled using GCC with glibc. The program 

simply prints “Hello World!” to stdout and execution ends. As was mentioned earlier 

even seemingly unrelated changes could lead to undefined behaviour. Sometimes 

some parts of the code would work, and others fail, while a print statement placed after 

a failing block for debugging could cause it to work, but the previously working block 

would now fail. This made it very difficult to locate the causes of bugs or find successful 

solutions. Successful execution of a compiled binary version of Hello World written in 

assembly was achieved. When loading and executing the glibc version of the binary 

application the unikernel was crashing with the following error: 

thread '<unnamed>' panicked at 'called `Option::unwrap()` on a 
`None` value', /root/.rustup/toolchains/nightly-x86_64-
unknown-linux-
gnu/lib/rustlib/src/rust/library/std/src/sys/hermit/os.rs:143:
28 

stack backtrace: 

thread panicked while panicking. aborting. 

The error references code in the Rust std library which is not being called by the 

function. The stack was printed out for debugging and was determined to be initialised 

correctly. The error appears to happen after the final jump instruction to the application 

code. The output after an error provides limited details about why the application 

crashed but it does provide the exception type and the instruction pointer at the time 

of the crash. 

Using objdump it was possible to disassemble the code and examine the instruction 

which caused the error. In this case the exception was an invalid opcode exception, 
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and the instruction was a ud2 assembly instruction. The ud2 instruction simply 

generates an invalid opcode exception and is provided solely to supply this exception 

for software testing where an invalid opcode is needed [5]. It was not possible to 

determine why this instruction was being executed as the backtrace was unable to 

display the call stack. The std library referenced in the error message points to a 

function to get environment variables but was not part of the code that is called. The 

environment variables are acquired successfully and passed to the loading function 

before the jump to the application code. 

To eliminate any possible corruption from amending the stack a version of Hello World 

was tested which was compiled using MuslC LibC instead of GLibC. The advantage 

of this is that it is simpler and requires fewer elements of the stack to be set up to run. 

It was tested using a very basic stack initialisation using HermiTux and was shown to 

work. The same stack initialisation was tried in the project code. Only four of the ELF 

auxiliary vectors needed to be pushed to the stack and the values for command line 

arguments and environment variables were stubbed as though there were none. This 

meant simply pushing null to the stack twice to simulate two empty vectors, and then 

pushing zero for argc to simulate no command line arguments. This would provide 

the simplest possible stack alteration and avoid using functions to iterate over the 

vectors in reverse order. 

The MuslC-compiled version of Hello World also crashed, with a general-protection 

exception. Again, objdump was used to examine the instruction which had caused the 

exception and it was found to be a movaps instruction using the stack pointer as its 

source operand. The movaps instruction is used to move aligned floating-point 

numbers. It causes a general-protection exception if the memory operand is not 

aligned on a boundary [5]. It was still not providing a call stack to trace back the source 

of the error. The code in the objdump referenced functions from a module in the std 

Rust library related to backtraces std::backtrace. To try to prevent code related to 

this library from running as per the documentation backtracing was turned off by 

setting the environment variable RUST_LIB_BACKTRACE to zero. This did not solve the 

problem; the same instruction was causing the exception. In the end it was not possible 

to determine the cause of the problem with the C versions of the binaries before the 

project deadline. The reasons for the exceptions would be a good exploration for a 

future work. 
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Although it was not possible to get a version of RustyHermit working with C binaries it 

was possible to demonstrate the successful loading and execution of compiled 

assembly versions of programs. Testing with a Hello World program and a program 

which manipulates files were both successful. As a proof-of-concept the project was 

successful in demonstrating that it is indeed possible to use a Rust unikernel to load 

and execute a binary application passed to it at load time without the need to compile 

it as part of the unikernel. 

Whilst not being able to run C code means that it is not possible to run the NPB 

benchmark tests and evaluate the performance of the unikernel compared to a 

standard Linux system, we have created a starting point for future research. 

4.4 Challenges 

There were many challenges faced on this project. Not least the impact of Covid-19 

which has denied access to university equipment and resources and prevented face-

to-face contact with my supervisor and co-worker. 

4.4.1 Remote Access 

The first challenge that we faced was having an accessible machine with KVM enabled 

to run the hypervisor. The CS Linux appliance VM provided by the university does not 

allow nested virtualization so it was not possible to run the unikernel on that. As we 

had no access to university resources, we had to look at alternative approaches. One 

approach was to use cloud computing resources such as Amazon AWS EC2 

instances. After looking into this option, it became clear that the only cloud compute 

instances which supported KVM were the metal instances. This involves renting the 

entire physical server and was prohibitively expensive and inefficient in resource use. 

An ad hoc approach which was initially used to get started was to provide remote 

access to a VM on the project supervisor’s computer. This VM supported nested 

virtualization meaning that it was possible to create another VM inside of it. However, 

this comes at a performance cost and can cause problems when there is a lot of 

compilation to do. All development and testing had to be carried out over SSH on the 

remote machine. This solution worked and was used for the rest of the project. It did 

mean that we had no access to an IDE but as we were working on systems software 

this was less of a hindrance than it might have been for a higher-level software 

engineering project. 
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4.4.2 Learning a New Language 

Most of the code for the project was written in Rust with a small amount in x86 

assembly. Neither of which I had any experience in before. Rust uses a different 

paradigm to other programming languages I had written in before. It uses the concept 

of ownership to manage memory instead of garbage collection like in other memory 

safe languages. It also uses a different syntax to other languages I am familiar with 

which are generally all very similar to C. There was very little time to learn the 

fundamentals of Rust from scratch, so this had to be learned as I went along. 

4.4.3 Dependencies 

Another challenge that we faced was the dependencies on other repositories. At the 

start of the project RustyHermit was broken due to a change in Rust libstd. The code 

changes had been made in the RustyHermit repository but were awaiting a code 

review and acceptance into the main Rust repository. This meant we were not able to 

start experimenting with RustyHermit for a couple of weeks at the beginning of the 

project. 

In February 2021, a change to a dependency of Uhyve prevented it from installing. A 

significant amount of time was spent trying to locate the source of the error. It was not 

possible to simply lock the dependency to a working version in Uhyve due to a further 

dependency chain. An issue was raised by us on the Uhyve GitHub repository whose 

contributors then in turn raised an issue with the maintainers of the dependent 

repository for a change to lock the upstream dependency. A related issue occurred 

shortly after with another dependency but as the fix to lock the version was previously 

implemented it just required a code change at our end. 

This provided an opportunity to learn how to raise issues with an external project and 

communicate technically with repository maintainers. 

4.4.4 System Bugs 

Working with system software can produce unintended effects which are hard to 

determine why they happen. Changes to seemingly unrelated code can cause parts 

of the program to start or stop working unexpectedly. In part this seems to be related 

to the fact that some of the implementation of Rust code is not well defined in the way 

it needed to be used in the project. The Rust documentation is very good and makes 
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it clear when this may be the case. It is also partly related to performing changes to 

memory directly using assembly code. 

5 Functional Evaluation 

As explained in the previous chapter it was not possible to run NPB benchmarks 

against the unikernel to compare its performance to a standard Linux kernel or to other 

unikernels. This is due to the inability to support C code. In terms of functionality the 

project was successful in its aim of running pre-compiled binary applications written in 

assembly code. 

The implementation of system calls, the loading of the application into memory and 

the ability to transfer control from the hypervisor to the kernel and finally to the 

application were all demonstrated to work. Given further time and resources it should 

be possible to find the cause of the bug which prevents C code from executing 

properly. Much of the groundwork has already been laid to make this work. 

The project can successfully demonstrate the running of a Hello World application (see 

Appendix A). Printing a pre-programmed message to stdout. Operations on files has 

also been demonstrated using a simple application which can read the contents of a 

text file and print it to stdout whilst changing the last word in the file. Many more system 

calls have been implemented which binary applications can use. 

6 Comparison to Similar Work 

A similar project which looked at binary compatibility in a unikernel, albeit in a legacy 

language, is HermiTux. Although the HermiTux project was more sophisticated, using 

binary rewriting techniques and analysis of dynamic code it was often used as a 

comparison and a source of study for the project. In fact, the course of this project 

started off by studying both the HermiTux and RustyHermit projects. An understanding 

of how HermiTux loads the application and sets up the stack was crucial to 

understanding the steps required to run a binary application in a unikernel. Several 

unfamiliar, low level concepts of system software were illustrated through HermiTux, 

which were subsequently applied in the project. These include the ELF format, position 

independent code, the initialisation of kernels and applications in memory, the 

difference between kernel and user space, how the stack is arranged for execution 

and the workings of hypervisors. 
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The other project which required study was RustyHermit as this was the basis of the 

project. Being unfamiliar with Rust code, its package manager Crate and its build 

environments presented a steep learning curve. Using RustyHermit as a starting point, 

running the provided examples then extending and modifying them to run our own 

programs before learning the code base and making modifications was immensely 

useful. A lot of the development in Rust was quite advanced and this made it difficult 

for someone new to the language. The fundamentals of the language had to be 

learned on the fly and it often required using the language in esoteric and uncommon 

ways. Having existing code which could be studied and used as a guide was useful in 

a lot of situations, but a large amount of creativity and further research was still 

required. 

Although the project would have been easier in C, which is not only more familiar but 

provides much more unchecked access to low level functions, the advantages of 

writing in a memory safe language are clear. For an inexperienced developer writing 

system software in C, especially when handling memory, there are numerous pitfalls. 

Many of which would not be caught at compile-time, some of which may only occur 

occasionally at run-time and others which may never affect the functionality but could 

leave the software vulnerable to exploits and data leaks. Rust prevents many of these 

issues by checking and enforcing rules at compile-time. Given the same functionality 

as HermiTux the additional challenge of writing in Rust would be worth the extra effort. 

7 Conclusion & Future Works 

7.1 Future Works 

There are numerous opportunities to expand this project and take this research further. 

The first would be to investigate in more detail the bug which prevented the running of 

C code. If this could be identified, then the ability to run C code would not only easily 

expand the type of applications that could be run but also allow the running of NPB 

benchmarks and allow the assessment of the unikernel performance. 

Certain system calls require a feature called Newlib as well as lwIP. Providing support 

for lwIP would enable networking which would be a desirable feature. Support for lwIP 

and Newlib is available in Hermit Playground. Currently Hermit Playground does not 

support Rust applications and requires the C version of Uhyve, not the Rust version 
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which we amended. It should be possible to change Hermit Playground to support 

these which would give access to more system calls and networking. 

Another area for future research would be the ability to support even more 

applications. Develop more system calls, provide support for dynamic applications 

instead of just static binaries. It would also be possible to support more languages 

including interpreted languages such as Python. 

Security of unikernels is important if they are to be used in production. There are 

several different areas that could be investigated in future work. Some of these 

problems will be more challenging than others. A simple improvement would be 

implementing Address Space Layout Randomization (ASLR). Both the kernel and 

application can be easily relocated in the available address space. Care would have 

to be taken to keep them well separated as there is no separate kernel and user space. 

A more challenging security improvement related to the above would be preventing an 

adversary running code which could access protected memory space. All code in the 

unikernel runs in privileged mode, a mechanism is required to prevent exploitation of 

this fact. Recent attempts at intra-unikernel protection technologies include Intel 

Memory Protection Keys [16, 18]. 

7.2 Conclusion 

At the start of the project, I knew very little about many of the concepts we would be 

working with. I knew hardly anything about unikernels, I knew only the basics about 

hypervisors and VMs, I had no experience with Rust and had no knowledge of ELF. I 

had also not done any significant development work using an existing open code base. 

There was a lot to learn in a limited amount of time and it was at times challenging. 

The nature of the project was highly exploratory and was successful in achieving a 

proof of concept demonstrating the ability to build a binary compatible unikernel written 

in Rust. Even though the project may not have achieved all its aims of being able to 

run a binary application written in C and hence acquire benchmarks against the 

unikernel we have provided a starting point for further research and completed much 

of the groundwork towards this goal. 

The applications of unikernels are still relatively immature and this is an active area of 

research as an alternative to containers in the rapidly expanding cloud computing 
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sector. I am thankful to have been able to contribute to this research and will monitor 

the progress of unikernels and, in particular, those based on HermitCore. 

  



27 
 

Appendix A  hello_world_asm.s 

        .global _start 
 
        .text 
_start: 
        # write(1, message, 14) 
        mov     $1, %rax                # system call 1 is write 
        mov     $1, %rdi                # file handle 1 is stdout 
        mov     $message, %rsi          # address of string to output 
        mov     $14, %rdx               # number of bytes 
        syscall                         # invoke operating system to do the write 
 
        # exit(0) 
        mov     $60, %rax               # system call 60 is exit 
        xor     %rdi, %rdi              # we want return code 0 
        syscall                         # invoke operating system to exit 
message: 
        .ascii  "Hello, World!\n" 
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