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Abstract Automatic patch generation is often described as a search problem of
patch candidate space, and it has two major issues: one is search space size, and
the other is navigation. An effective patch generation technique should have a
large search space with a high probability that patches for bugs are included, and
it also needs to locate such patches effectively.

We introduce ConFix, an automatic patch generation technique using context-
based change application. ConFix collects abstract AST changes from human-
written patches with their AST contexts to provide abundant resources for patch
generation. These collected changes are only applied to possible fix locations with
the same contexts for patch generation. By considering changes with a matching
context only, ConFix selects a necessary change for a possible fix location more
effectively than considering all the collected changes. Also, ConFix filters out fix
locations with no collected changes in the same context, which means that such
locations have not been modified in human-written patches, hence they are not
desirable for modifications.

We evaluated ConFix with 357 real bugs from Defects4j dataset. ConFix suc-
cessfully fixed 22 bugs including six bugs which were not fixed by compared existing
techniques. With context-based strategy, ConFix checked average 48% less fix lo-
cations than a strategy using only a spectrum-based fault localization technique
until patches were generated. Also, it ranked changes required for patches at the
top for 63.6%, and within top-3 for 81.8% of the fixed bugs.

Keywords automatic program repair - automatic patch generation - context-
based change application
1 Introduction

Automatic Program Repair (APR) techniques have shown great progress recently.
Many of these techniques are automatic patch generation techniques, which usu-
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ally generate a source code patch by modifying buggy code. One popular approach
of automatic patch generation is the generate-and-validate approach used in many
techniques [9}|15}(1823}[28,/30L[45H47,[56L58,|60], which keeps generating and vali-
dating patch candidates until a patch - a candidate passes all given test cases - is
found.

Automatic patch generation is often described as a search problem in a patch
candidate space [28130}33]. In the candidate space of a technique, each point
corresponds to a patch candidate which the technique can generate. Two key
axes of this space represent where to fix (fix locations) and how to fix (applicable
changes), which are defined by the technique’s design. Then the patch generation
is considered as an exploration of the space from a point to another point, by
producing candidates until it reaches to a genuine patch.

The search problem has two major issues: one is search space size, and the other
is navigation. A technique’s search space may not contain a patch for a bug, if it
only has limited pre-defined changes for patch generation [9}/18,23)/2830,{47}/54./56],
or it modifies only certain types of fix locations [9,{18,/28,30]. To expand the search
space and generate various patch candidates, recent techniques mine changes from
human-written patches [15120,/27.33,/58] or collect code fragments from software
repositories to provide resource for patches [17}/52,/60].

However, such expansion makes the navigation for a patch even more difficult,
since actual patches which can fix a bug are very sparse in a huge search space [29].
To address this navigation issue, automatic patch generation techniques employ
various strategies such as using natural distribution of changes [151[33,/58], integer
linear programming [27], or leveraging syntactic and semantic characteristics of
code |144[17,/211|60].

To address both issues in the search problem, we introduce a novel automatic
patch generation technique ConFiz, which uses Context-based Change Application
technique (CCA) to generate patch candidates. The key idea of ConFix is that it
collects abstract changes as well as their Abstract Syntax Tree (AST) contexts,
and applies a collected change to a possible fix location only if their AST contexts
are matched. For example, consider a change which inserts a null checker before a
statement.

n = t.getNode(label);

+ if(n !'= null) //Example 1
p = n.getParent ();
+ if(n != null) //Example 2

Node v = new Node();

In the above code snippet, n might be null if t.getNode(1abel) returns null. Then
n.getParent() will cause NullPointEzception (NPE), but inserting a null checker
before it (Example 1) will fix the problem. However, for Example 2, the variable
declaration will not cause NPE, which indicates that the null checker will be
useless. Even worse, it may introduce a new error since the change makes variable
v no longer available for the following statements.

Note that these two changes are identical null checker insertions. Without con-
sideration of contexts, an automated technique probably will apply this change
anywhere and produce many patch candidates like the second case. On the con-
trary, it is unlikely that human developers make changes like the second example,
since it is error-prone and not meaningful to solve the NPE issue.
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ConFix uses AST contexts to avoid the second example and to produce more
candidates like the first example. ConFix compares AST contexts of a change and
a target location defined by parent, left and right nodes, and applies the change
to the location only if their contexts are matched. In ASTs, these nodes represent
nearby code fragments, hence ConFix can verify whether code fragments around
a target location is similar to nearby code fragments when a change was collected.

Context-based strategy provides two advantages to ConFix for search space
navigation. Firstly, ConFix can avoid changes which developers may not produce,
and tries to mimic collected human-written changes more similarly. For each possi-
ble fix location, ConFix only considers changes which have been applied to similar
locations by developers, and it will reduce the search area by filtering out the
other undesirable changes. Secondly, ConFix can also avoid to select fix locations
which developers may not want to modify. If a possible fix location has no collected
changes with the same context, it means that developers have not modified such
locations to fix bugs in collected patches. ConFix’s search area can be even more
reduced by filtering out such unlikely fix locations. Therefore, ConFix can expand
its search space by collecting more changes, while it can navigate through them
effectively with the guidance of contexts.

We evaluated ConFix with 357 real Java bugs from Defects4j dataset [16]. To
provide changes for patch generation, we collected over 6K human-written patches
from nine different projects and identified about 216K abstract AST changes (44K
unique changes). We also identified 38K (more specific) and 2.4K (more abstract)
contexts for the collected changes. ConFix exploited these changes and contexts
to generate patch candidates until it found a patch for each bug. When using more
specific AST contexts, ConFix only needed to consider average two changes per
each possible fix location, instead of selecting one of the 44K unique changes.

We manually inspected generated patches to assess correctness, and compared
them with patches of existing techniques [15,/58,/60]. ConFix correctly fixed 22
bugs which is comparable to 18-26 bugs of the compared techniques. Also, 6 out
of 22 fixed bugs are fixed only by ConFix. We also found that ConFix fixed about
74% of all bugs whose patches - necessary changes - were included in the collected
changes. This result indicates that ConFix might fix even more bugs if we collected
more changes for patch generation.

We also analyzed the effectiveness of ConFix’s strategies. With context-based
strategy, ConFix checked average 48% less fix locations until it fixed bugs, com-
pared to a strategy which used a spectrum-based fault localization only. By filtering
applicable changes with contexts, ConFix also ranked changes applied to fix bugs
within top-1 for 63.6%, and top-3 for 81.8% of the fixed bugs.

The followings are major contributions of this study.

— We introduce ConFix, an automatic patch generation technique which lever-
ages human-written changes and their contexts for patch generation.

— We provide empirical evaluation results of ConFix and generated patches on
Defects4j benchmark dataset.

— We present a detailed analysis on the effectiveness of ConFix’s strategy to
leverage collected contexts and changes for patch generation.

Remainder of this paper is organized as follows. First we introduce our context-
based change application technique in Section [2] Then we elaborate how ConFix
generates patches with the change application technique in Section [3] We provide
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experimental setup for evaluation in Section [4 and analyze its results in Section [f]

After that, we discuss about threats to validity of this study (Sectio

n(6) and related
work (Section . Finally we conclude with future work in Section |8}

2 Context-based Change Application Technique
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Fig. 1: The Overview of Context-based Change Application Technique

Fig. [I] shows the overview of the context-based change application technique.
Our context-based change application technique consists of change collection and
application phases. In change collection phase, the technique mines abstract AST
subtree changes as well as their AST contexts from human-written patches to
build a change pool. In change application phase, a target location should be
given for modification. Then it retrieves changes with the same AST context as
the location’s context, and one of the changes is selected and applied to the target
location.

2.1 Change Collection

The main purpose of change collection is building a change pool by collecting
changes which are generally applicable to other locations. However, changes rep-
resented by source code form (e.g., unified diff format) are not suitable for this
purpose, since they are easily affected by specific user-defined identifiers or coding
style. To avoid this issue, we extract AST subtree changes from human-written
patches by applying a source code differencing technique (Change Extraction). Then
the extracted changes are further polished to more generally applicable form by
several steps of conversion (Change Conversion). Finally, the changes are catego-
rized by their AST contexts and stored in a change pool (Change Context Identifi-
cation).
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Change collection is the key step of the technique, since change application will
be highly dependent to how changes and their contexts are collected. A change
pool is the final outcome of change collection phase, and it will be used repeatedly
as a repository of fix ingredients during change application phase.

2.1.1 Change Extraction

public String getHashString(Node node){
StringBuffer sb = new StringBuffer();
//Add parent node.
- sb.append(node.parent);
+ if (node.parent != null)
+ sb.append (node.parent) ;
//Add node label.
- sb.append(node.type);
+ sb.append(node.label);
//Add child node hash.
for(Node child : node.children){
sb.append (getHashString (child));
}
- sb.append ("\n");
return sb.toString();

(a) An Example Source Code Patch

1:insert (IfStatement, Block)
insert (InfixExpression:!=, IfStatement)
insert (QName :node.parent, InfixExpression:!=)
insert (NullLiteral, InfixExpression:!=)
2:move MethodInvocation from Block to IfStatement
:update (QName :node.type, QName:node.label)
4:delete (MethodInvocation, Block)
delete(SimpleName:sb, MethodInvocation)
delete (SimpleName:append, MethodInvocation)
delete(StringLiteral:"\n", MethodInvocation)

w

(b) An Edit Script with Four Edit Operations

Fig. 2: An example source code patch and an edit script generated from the patch.
In the edit script, indentations indicate the hierarchy of the changed AST subtree.
Note that the move operation only shows the root node for simplicity.

Fig.[2ais an example source code patch represented in unified diff format. There
are three change hunks in the example. The first hunk represents an insertion of
a null checker, the second one shows that a field type is updated to 1abel, and the
last one is a method call deletion. During change collection step, each change hunk
will be extracted and converted to an individual AST subtree change.

Note that one patch may consist of several individual changes applied to mul-
tiple locations. We collect separate individual changes rather than the entire patch
as one single change. Since we are leveraging the repetitiveness of changes, using
small changes increases the probability that such changes are repeatedly used to
generate other patches [41]. Also, dividing a patch into small individual changes
and composing them for another patch is proven to be effective |33}/64].
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To extract individual changes from two versions of source code (i.e., one source
code change), we used a source code differencing tool [19] which generates AST
subtree edit operations. First, it matches AST nodes between old and new ASTs
to identify unchanged nodes. Then unmatched nodes in the old AST indicate that
they are deleted, and unmatched nodes in the new AST means they are inserted.
Hence delete and insert operations are generated for those nodes. If there exist
matched nodes which have different positions in the two ASTs, they are considered
moved, and move operations are generated for them. Update operations represent
matched nodes with different node values such as the second hunk of Fig. which
updates a variable name. Although we employed a specific tool for implementation
of our technique, any source code differencing technique works on ASTs (e.g.,
GumTree [10]) can be adapted for our technique.

Fig. 2B shows a string representation of an edit script generated from the
example patch in Fig. Each line represents a node edit operation, consists of
change type and label of a changed node and its parent. Each node label has the
form of node type:node value. Node type is AST node type, and node value indicates
specific identifiers, literals or operators represented by a node. An indented line
means that the line (i.e., an edit operation) is a child of a previous less indented
line. Hence lines with the same type of edit operations form a tree to represent a
subtree edit operation.

2.1.2 Change Conversion

Source code differencing techniques are originally designed to describe changes
with pre-defined edit operations. However, our purpose of change extraction is to
obtain changes applicable to other locations to reproduce similar changes. Gener-
ated edit operations are often not suitable for our purpose, hence they need to be
polished further.

For instance, the first hunk in Fig. is represented by the first two edit
operations in Fig. The insert operation only represents the first added line of
the hunk. The deleted and added method calls (sb.append(node.parent)) in the first
hunk are considered moved since they are identical, and represented by the move
operation. These insert and move operations are inseparable and represent one
single change. If the insert operation is applied to somewhere else independently,
it may cause errors since the added code fragment is not a complete if statement.
Also, the move operation itself is more meaningful when it is combined with the
inserted if statement.

To address this issue, we employ replace change type, and convert such edit
operations into one replace type change. We can express the insert and move oper-
ations with one replacement which replaces the method call with the if statement.
Replace type changes can be also used to combine delete and insert pairs happened
at the same location.

The change conversion is done by the following steps.

1. Divide move operations into a pair of delete and insert operations.

2. Extend each insert or delete operation to all descendant nodes of its changed
nodes.

3. Remove any operation if a changed AST is a subtree of another operation’s
changed AST.
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4. Find all insert-delete pairs applied to the same location, and combine them
into one replace type change.

Change conversion basically combines insert-delete pairs whose changed sub-
trees are overlapped. For example, the insert operation in Fig. consists of four
AST nodes, which only indicate the first added line of the first hunk. The moved
method call is divided to delete and insert operations by Step 1, and the inserted
method call is overlapped after Step 2, since it belongs to the inserted if statement.
By Step 3, the method call insertion is removed, and the remaining method call
deletion is combined with the if statement insertion at Step 4 to generate a replace
type change.

l:replace l:replace
sb.append(node.parent) var0.append (varl)
with with
if (node.parent != null) if (var0 != null)
sb.append (node . parent) varl.append (var0)
2:update 2:update
node . type varO
to to
node. label varO
3:delete 3:delete
sb.append ("\n") var0.append (str0)
(a) Combined Changes (b) Normalized Changes

Fig. 3: Combined and Normalized Changes obtained from Edit Operations during
Change Conversion

Fig. [3a] shows the string representation of changes after overlapped edit opera-
tions are combined. For each change, we present related code fragments instead of
AST subtrees to show changed parts in source code more clearly. As we explained,
the insert and move operations in Fig.|2blare combined to one replace type change
in Fig. 34

In CCA for ConFix, we discarded all delete and move operations after edit
operations are combined. Recent study showed that using delete and move opera-
tions often produces incorrect patches and not helpful to patch generation [15,55].
During change conversion, some of the delete and move operations are already
combined to more generally applicable replace changes. Hence we decided to ig-
nore remaining delete and move operations which may not be helpful. Note that
we show a delete change in Fig. |3 only for an example, although it is not actually
collected.

After edit operations are combined, we have three types of AST subtree changes.

Definition 1 (AST Subtree Changes)

— insert ¢: insert a subtree t.
— update v; to ve: update a node’s value from v; to va.
— replace t; with ¢5: replace a subtree t1 with ¢s.

Combined changes are still not ready for general application, since they contain
many concrete values such as variable, type, method names and string literals.
These values are usually dependent to codebase where changes are extracted, and
not available at different locations. By normalizing changes, we can adapt these
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changes to their applied locations with variables, types, and methods available at
the locations. String literals are also normalized, since they are often log messages
which are not useful at other locations. Also, if they are not normalized, identical
changes with different string literals will be considered different changes, which
may lead to ineffective dispersion of changes.

The technique normalizes changes with two principles: consistency and order
preserving. Consistency means that the same identifier or string literal should be
replaced with the same unique abstract name. For example, if variable node is
used twice in an AST subtree, the two occurrences must be replaced with the
same abstract name such as varo0. If there is another variable sb is used in the
same subtree, it should be replaced with another abstract name like vari, other
than varo. Order preserving indicates that the technique should assign the same
abstract name to user-defined names or string literals shown in the same location
of two identical subtrees. For instance, variables sb and strBuf in two inserted
code fragments sb.append() and strBuf.append() should be replaced with the same
abstract name var0. In this way, the technique groups changes with the same
changed code structure into one single change.

During normalization, additional information about normalized names are col-
lected to support change concretization. This information is mostly related to
types, such as variable types, the signature of methods - which consists of return
type and parameter types. At the time of change concretization, the collected in-
formation can work as requirements for each abstract name which ConFix should
consider when it assigns a concrete name for the abstract name.

Fig. 3] shows changes normalized from the combined changes in Fig. [3a] Note
that old and new subtrees related to a change are normalized separately. For
instance, in replace change, variable sb is normalized to var0 and vari in old and
new subtrees respectively, since the two subtrees were separately normalized.

These subtrees are normalized separately since the purpose of normalization
is different. During change application, only abstract values on a new subtree are
replaced with concrete values. Hence CCA normalizes the new subtree and collects
necessary information. On the other hand, an old subtree is normalized to identify
the same changes and aggregate them. Two changes are considered identical if their
change types are equal and their corresponding subtrees are label-isomorphic. Since
a node’s label contains specific names, they should be normalized to aggregate
changes with the same changed subtrees regardless of user-defined names used in
them.

In case of replace type changes, abstract names are not consistent in both
subtrees with this method, but we chose flexibility over strict reproduction. When a
replace type change is applied, original concrete names of abstract names appeared
on both subtrees will be fixed if the abstract names are consistent in both subtrees.
This leads to the strict reproduction of collected replace changes. However, our
main purpose is providing various changes to generate various patches. If a new
subtree is normalized separately, one abstract replace change can produce various
concrete replacements by assigning different concrete names regardless of abstract
names in an old subtree. Therefore, separate normalization is more suitable for
our purpose.
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2.1.8 Change Context Identification

After individual changes are obtained from source code patches, the next step is
identifying AST contexts of the changes. A context of a change describes code
fragments near the change, hence we can apply changes to target locations with
similar neighbor code fragments by comparing contexts. In this way, we can avoid
meaningless or erroneous modifications such as inserting a statement after a return
statement, which will turn into unreachable code.

To define AST context, we use neighbor nodes of a changed AST subtree. More
precisely, we use the parent of the subtree’s root, the root’s left and right nodes
to define contexts. Since both change collection and application happen in AST
level, it is more convenient to define contexts with AST nodes. In source code
level, these nodes represent code fragments near a change. Parent node represents
the location where a changed code fragment belongs. Left and right nodes indicate
code fragments before and after the changed code fragment respectively.

Note that we will use contexts to verify that code fragments near a target
location is similar to code fragments near a change. To achieve this goal, we employ
source code finger-printing techniques [6] which often used to identify similar code.
More specifically, we use the node type and node type hash of nodes to define the
AST context. The node type is the AST node type of an AST node, which simply
represents the type of code fragments (e.g., assignment, method call). The node
type hash is more specific representation which can represent the structure of the
whole AST subtree rooted at an AST node.

We use Dyck word hashing [6] to obtain node type hash value.

Definition 2 (Dyck Word Hash) Dyck word D, of node n with node type n.type
is defined as follows.

Dy = {n.type{Dc¢,, Dc,, -+, D¢, } }, where c1,ca, ..., cx, are child nodes of n. (1)

A hash value contains both type and structure of AST nodes which correspond
to a code fragment. Parent-child relation is represented by surrounding each node’s
child nodes with brackets, and each node is represented by its node type. Expres-
sions with operators also include specific operators (e.g., +, -, ==, etc.) in its node
type. By comparing two nodes’ hash values, we can check whether they are the
roots of two type-isomorphic AST subtrees. Hence contexts using hashes provide
tighter constraints than using node type.

There are various possible combinations of nearby nodes with their node type
or node type hash for contexts. Among them, we use two specific combinations,
Parent Type, Left and Right Hash (PTLRH) and Parent, Left, Right Type
(PLRT) contexts in this study. PTLRH and PLRT contexts are the simplest form
of contexts using all three nodes (parent, left, right) with node type hash and node
types, and they showed promising performance in a preliminary experiment with
a few hundreds changes to find a right change for a location. Context types more
simpler than PTLRH and PLRT cannot distinguish contexts enough, hence there
are too many applicable changes for each context. On the other hand, context
types which are more specific than them scatter changes excessively, hence it is
difficult to find matched context in other locations. Therefore, we decided that
PTLRH and PLRT contexts are suitable for ConF'ix.
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Definition 3 (PTLRH and PLRT Contexts) For a given change change and
its changed subtree’s root ¢, let nodes p, I, r be the parent, left and right nodes
of ¢ respectively. Then PTLRH and PLRT contexts of change are strings of the
following form.

— PTLRH = P:p.type|c.loc], L:l.hash, R:r.hash
— PLRT = P:p.type[c.loc], L:l.type[l.loc], R:r.type[r.loc]

where n.type indicates the AST node type, n.loc represents syntactic location, and
n.hash denotes Dyck word hash of n.

Parent
PTLRH Context
P:IfStmt [then],
L:{Infix<={SName ,Num}},
’ expr H then H else ‘ R:{Return{SNamel}}
Left Right

PLRT Context
P:IfStmt [then],
L:Infix<=[expr],

@ @ @ R:Return([else]

(b) An Example Change
(a) An AST representing The Change

Fig. 4: PTLRH and PLRT context identified from a code change. Node C is the
root of a changed AST subtree. Rectangular nodes represent syntactic locations.

Fig.[da]shows PTLRH and PLRT contexts of an example AST which represents
the following code change.
if (count <= 10) {
+ count++;
}elsed

return sum;

}

Node C is the root of the changed AST subtree representing count++, IfStmt node is
the parent node, Infix<= is the left node and Return is the right node. Rectangular
nodes are virtual nodes to show nodes’ syntactic location. For example, the inserted
node is under the if statement’s then-block, and the return statement belongs to
the else-block. Without the virtual nodes, we cannot distinguish each node belongs
to which block.

PTLRH context shows the type and syntactic location of the parent node and
the hash of left and right nodes. The technique actually uses the syntactic location
of node C (then) as the parent node’s syntactic location p.loc, since the changed
subtree’s syntactic location is the one we are actually interested, not where the
parent node belongs. In PLRT context, syntactic locations of left and right nodes
are their own syntactic locations. If any of the parent, left or right nodes is missing,
the technique simply ignores missing nodes and uses the rest for the context.

When we match contexts of a change and a target location, both PTLRH and
PLRT contexts ensure that the change and location are under the same kind of
code fragment. The difference between PTLRH and PLRT contexts is that PTLRH
contexts distinguish code fragments, while PLRT contexts can only recognize the
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kind of code fragments. For example, consider the following code change and its
application at another location:

//0riginal Change
Type var = new Type();
+ var.method () ;

//PTLRH: prevented, PLRT: allowed
Type var = method0();
+ var.method () ;

When PTLRH context is being used, applying the change after Type var =
method0() is not allowed, since it is actually a different code fragment from the
original change’s context. As a result, PTLRH context prevents a change which
may cause an error if methodo() returns null. If we use PLRT context, the original
and new changes are both after a variable declaration, hence the new change is
allowed. We still need PLRT context, since many changes can be applied without
any errors although nearby code fragments are slightly different.

One exceptional case in context identification is Block nodes. Normally, a Block
node simply groups statements and does not specify the type of code block. There-
fore, using a Block node as the parent node of the changed AST subtree cannot
provide enough information about the context. To avoid this issue, we use a Block
node’s parent to represent the context. In this way, we can distinguish whether a
change is applied to a block under a while loop or an if statement.

Once a change’s context is identified, the change is stored in a change pool un-
der the identified context. We can retrieve this change from the change pool when
we need to apply a change at the same context. Note that we have two types of
change pools categorizing changes with PTLRH and PLRT contexts respectively.
After contexts are identified and change pools are built, change collection step is
finished and changes are ready for application.

2.2 Change Application

In this section, we explain how the technique applies a change to a given target
location. Basically, it first identifies the target location’s context. Then changes
with the same context are retrieved from a change pool. One of these changes
are selected (change selection) and all normalized values are replaced with con-
crete values (change concretization) available at the target location. After that, the
concretized change is applied to the target location.

2.2.1 Target Location Context Identification

The first step of change application is identifying the context of a given target
location. Since all changes operate on ASTSs, a target location is also an AST node
which a change will be applied. Hence our method of location context identification
is similar to change context identification.

The most important requirement of location contexts is that they should be
compatible with change contexts. If a target location has the same parent, left
and right nodes as a changed AST subtree, contexts of the location and change
must be identical. For update and replace type changes, there exists a changed
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AST subtree in an old AST before the change is applied. We can simply identify
location contexts for such changes just like we identify change contexts, by using
parent, left and right nodes of a target location. However, the context of an insert
change only describes the situation after the change is applied. Hence we need to
assume cases a new subtree is inserted before or after a target location to match
the location context with contexts of insertions.

. Parent - Paren

(a) Default (b) Insert Before (c) Insert After

Fig. 5: Default, Insert Before and Insert After Target Location Contexts. Node
N indicates a target location which contexts are identified. Node C represents a
placeholder for Insert Before and Insert After contexts where a change will be
actually applied.

Fig. shows how we identify Default context, which is identical to change
context. Node N is a target location, and nodes P, L, R represent parent, left and
right nodes of node N respectively. Then we can use these nodes to identify Default
context of the target location defined by Definition[3] Insert Before and Insert After
contexts are the contexts for cases which a new AST subtree is inserted before and
after node N respectively. In Fig. [fb and node C indicates the actual location
where a subtree will be inserted. Then node N is considered as right node (Insert
Before) and left node (Insert After) of contexts, to be matched with the inserted
subtree’s right and left nodes respectively.

2.2.2 Change Selection and Concretization

Next step is Change Selection, which literally means that one of the collected
changes is selected for application. In a change pool, changes are categorized by
their contexts and their frequencies are also stored. Hence CCA can easily retrieves
a list of changes with the same context as the target location in descending order
of their frequencies.

Various strategies for change selection can be used to select a change from
the retrieved list. However, all these strategies should check whether the target
location is actually matched to the old changed subtree of changes except for insert
type changes. For instance, when replace var0 with var0.method0() is applied to a
method argument, matching context does not guarantee that the target location
(i-e., the method argument) is actually a variable min or a method call str.length().
For the latter, ConFix cannot apply the replacement, hence such changes should
be removed from the list. Filtering can be done by comparing node type hash of
a target location and a change’s old subtree. ConFix’s change selection for patch
generation will be explained in Section

After a change is selected, CCA needs to replace all normalized values of the
change with concrete values. We call this step as Change Concretization, which
adapts changes to given target locations. Similar to change selection, CCA does
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not specify a certain change concretization strategy, but it only provides informa-
tions related to normalized values obtained during collection. ConFix’s strategy
for change concretization will be explained in Section [3-3]

Once the change is concretized, the last step is applying the change to the
target location. Change application itself is straightforward since it simply inserts
or replaces a subtree or updates a value of a node. After change application is
finished, we have a modified AST which can be reverted to modified source code.

3 Patch Generation
3.1 Patch Generation Process

ConFix is a generate-and-validate technique, which keeps generating patch candi-
dates one by one until one of the candidates passes all given test cases. To generate
a patch candidate with CCA, ConFix first needs to identify fix location candidates,
and select one of them. Once a fix location is selected, ConFix also selects one of
the applicable changes retrieved from a change pool. Then ConFix concretizes the
selected change for the target location and applies the change to generate a patch
candidate. Finally, the generated candidate is compiled and verified by given test
cases.

The actual patch candidate generation with a change pool is done by the
following process.

1. ConFix identifies all code lines covered by given test cases.

2. For each covered line, ConFix identifies fix location candidates from the lines.

3. For each fix location candidate, ConF'ix tries to apply a certain number (maz-
ChangeCount) of applicable changes.

4. For each change, ConFix tries to concretize them for mazTrials times.

Such candidate generation continues until one of the following termination
criteria is satisfied.

— Current patch candidate passed all given test cases.

— ConFix generated and validated a certain number (mazCandidates) of patch
candidates.

— ConFix consumed all time budget.

The first case means that ConFix successfully generated a patch. The next two
conditions limit time and resources, and ConFix considers patch generation is
unsuccessful if it cannot find a candidate passing all test cases.

3.2 Identifying Fix Location Candidates

To identify fix location candidates, ConFix needs to identify and order lines cov-
ered by given test cases. First, ConFix uses Ochiai |40], a spectrum-based fault
localization (SBFL) technique to compute each code line’s suspiciousness score
ranges from 0 to 1 - close to 1 is more suspicious. Then lines with score greater
than 0 are sorted on descending order of their scores.

For each covered line, ConFix identifies fix location candidates in the code line.
ConFix first lists up all AST nodes correspond to the covered line and identifies
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their contexts (Section . Note that for each AST node, CCA finds three
different types of contexts. Then ConFix filters out contexts with no applicable
changes in a change pool. Each of the remaining contexts can represent a fix
location candidate with applicable changes.

After fix location candidates are identified, ConFix uses these candidates and
their frequencies to sort covered lines with the same score.

Definition 4 (Context and Line Frequency) Let F(c) be the frequency of a
change c. Then the frequency of a context xz can be defined as follows.

Fo(z) = Z F(c),where C' is a set of applicable changes under context z. (2)
ceC

A covered line I’s frequency Fy (1) can be defined with Fg.

Fr(l) = Z Fo(x), where L is a set of all contexts appeared in line I.  (3)
€Ll

A covered line with higher frequency means that this line has been more fre-
quently modified by past patches. ConFix uses this information to sort the same
score lines in descending order of their frequency, to break ties in the score. In
this way, ConFix tries to modify covered lines which have been modified more
frequently in the past.

Fix location candidates in each line is sorted by ascending order of their number
of applicable changes. Each covered line usually contains only several fix location
candidates. However, some of these fix locations have a lot of various applicable
changes including low frequency changes, and result in generation of many patch
candidates and a waste of time budget. This is not desirable, since if applying
some changes to the current location did not fix a bug, it is more probable that
the rest of the changes also cannot fix the bug. We found that ordering fix locations
with their frequency cannot prevent such bottleneck. Therefore, ConFix checks fix
location candidates with less changes first to avoid bottleneck and increase the
number of completely checked fix locations.

However, prioritizing candidates still cannot prevent that ConFix stays on a
certain covered line, since all fix location candidates on the line will be checked
eventually. Hence we employed mazChangeCount, to limit the number of changes
applied for each location candidate and investigate more fix locations within lim-
ited resources and time.

3.3 Concretization Strategy

To use CCA for patch candidate generation, ConFix needs to specify how to
convert abstract changes to concrete changes. Change concretization can be done
by assigning concrete values to abstract values in a change. ConFix employs Hash
Match and Type Compatible (TC) methods, to collect and assign concrete values.
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8.8.1 Hash Match Method

Hash match method first collects code fragments and their node type hash (Defi-
nition [2)) from buggy code. When concretizing a change, hash match method lists
up code fragments with the same node type hash for a changed subtree of the
change. Then it replaces all abstract values with concrete values of corresponding
AST nodes representing one of the code fragments. With this method, ConFix
can borrow code fragments closely related to buggy code as human-written usage
examples.

Consider a situation which ConFix tries to concretize a change replace var0==0
with var0>0 for buggy code with two code fragments as follows.

strLen == 0 // buggy code
varO > 0 // a replacement

index > -1 // fragment 1
strLen > 0 // fragment 2

For change concretization, ConFix needs to assign a concrete variable name
to var0 in var0>0. Instead of finding a concrete variable alone, it tries to find code
fragments with the same structure by comparing node type hashes. Suppose that
ConFix found two code fragments with the same node type hash {Infix{SName,Num}}
as shown in the example. Note that node type hash for change concretization does
not include specific operators as shown in Fig. [a] If we considered operators and
literals in type hash, changes might not have any matched code fragments, hence
we added a little flexibility in borrowing code fragments.

After code fragments are listed, ConFix selects a code fragment most closely
related to the buggy code. To compute closeness of the buggy code and a code
fragment, ConFix breaks all identifiers appeared in both of them into tokens,
and creates token vectors containing token frequencies. Buggy code and fragment
1 have three tokens (str, Len, index), and token vectors are (1,1,0) and (0,0,1)
respectively. Similarly, for buggy code and fragment 2, token vectors are both (str,
Len)=(1,1). Then ConFix simply computes the distance between token vectors,
and selects fragment 2, since it is more close to the buggy code. Note that in case
of the same distance, ConFix tries more frequent code fragment first.

However, this method might not work with single node changes such as update
type changes or inserting a variable. Since their changed subtrees only have one
node, any node with the same node type will be listed. Hence human-written code
fragments are less useful as usage examples.

To address this issue, ConFix estimates a code fragment after a single node
change is applied, and tries to find code fragments which can be used for the
estimated code fragment. Consider the following buggy code from Defects4j:

return solve(min, max); // buggy code
insert var0 // a single node change
solve(var0, min, max) // an estimated code fragment

In this example, the single node change is an insertion of a variable. Sup-
pose that ConFix inserts var0 before variable min. The estimated code fragment
corresponds to the inserted variable’s parent node and its subtree. Since varo0 is
inserted as a method argument, its parent is a method call in the example, and
the estimated code fragment after the insertion is solve(var0, min, max). To decide
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var0’s concrete value, ConFix lists up all code fragments same as the estimated
code fragment except for a variable at var0’s location (e.g., solve(f, min, max) or
solve(g, min, max)). ConFix selects one of them and replaces var0o with a concrete
variable at the same location. For instance, if solve(f, min, max) is selected, var0
will be replaced with variable f.

Note that all listed code fragments have the same token vector distance, since
they are only different for one single node. ConFix selects one of the most fre-
quently appeared code fragments. Frequent code fragments indicate that they are
commonly used in buggy code, hence it is safer to use them in other locations.

ConFix treats update changes similarly. If variable min is updated in the ex-
ample buggy code, ConFix finds code fragments of the form solve(var0, max), and
assigns the concrete variable appeared at var0’s position in the most frequent code
fragment.

ConFix uses two sets of code fragments collected from two different scopes.
One is code fragments from the buggy class which the current fix location belongs
(hash-class). The other is code fragments from the other classes in the same package
of the buggy class (hash-package). Code fragments from the same buggy class is
more likely to be related to fix locations and they will cause less compilation errors
than some random code fragments. The other classes in the same package might
be helpful since they often implement similar functionalities, and some classes
inherited from the same class may share code fragments. ConFix first checks the
buggy class, and if there is no usable code fragments, it expands the search to the
same package classes.

3.8.2 Type Compatible Method

TC method collects identifiers from buggy code, and selects a concrete name for
each abstract name by considering type compatibility. Suppose that ConFix ap-
plies insert method0(var0). There are constraints for concrete methods and variables
to replace method0 and var0 without violating type compatibility. For instance, a
concrete method must have one parameter, and the parameter type should be
compatible to the type of a concrete variable assigned to varo. In addition, if this
method call is inserted to another method as a method argument, the method’s
return type needs to be compatible to the expected parameter type.

In TC method, ConFix first assigns concrete methods to abstract methods.
Assigning a concrete method to an abstract method usually needs to consider
more constraints due to various types (e.g., return type, parameter types) used in
methods. Hence ConFix replaces abstract methods with compatible concrete meth-
ods first, then it selects concrete types and variables according to fixed concrete
methods. Since all user-defined types are normalized, ConFix uses the abstract
signature of a method to check method compatibility.

Definition 5 (Abstract Signature) AbsSigm, the abstract signature of a method
m is a string defined as follows.

AbsSigm = Taeer = Tret = [T, Ty ooy Ty (4)

where Tye. is a normalized type which m is declared, Tres is the return type of
m, and Ty, i = 1,...,n are the parameter types of m. Note that only user-defined
types are normalized.
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Definition [5| defines the abstract signature of a method. Basically, the ab-
stract signature is a method signature with normalized types. Types appeared
in a method signature are normalized in the same way we normalized a change
described in Section [2.1.2] For example, suppose that we are trying to obtain the
abstract signature of the method call getHashString(child) shown in Fig. The
concrete signature of the method getHashString() iS TreeUtils::String: :Node, where
TreeUtils is the class which the method is declared, and Node is the user-defined
class of its parameter. In the abstract signature, user-defined types are normalized
to TypeO: :String::Typel. If we find a concrete method with the same abstract sig-
nature, then at least it will not cause compile errors and can be replaced with the
normalized method.

Definition 6 (Assignable Types) Type T3 is assignable to type T, if |Vi| >
[Va| (|V;] is the number of available variables of T;), and T1,T> satisfy one of the
following conditions.

— Both 71 and T» are normalized types.
— T} is a type from Java Standard Library(JSL) and T% is normalized type.
— Both 77 and T» are from JSL and they are compatible.

Definition |§| shows the conditions to assess whether T) is assignable to Ts.
ConF'ix considers both type compatibility and the number of variables of the types.
Assessing type compatibility of two concrete types are simple and identical to
typical judgment, such as a subtype is compatible to its super type, and primitive
types (e.g., int, double, etc.) are mutually compatible to their wrapper types (e.g.,
Integer, Double, etc.). Normalized types are considered as wildcard characters,
which means that they can be assignable to either normalized types or JSL types.

ConFix considers the number of variables in each type to prevent the situation
that variable concretization is blocked by the type assignment. For example, sup-
pose that ConFix assigns a concrete type T1 to a normalized type T to concretize
a change. If there are three normalized variables of type T5 in the change and only
two variables of type T7 are available, then ConFix cannot concretize one of the
three normalized variables. Hence ConFix decides a type is assignable to another
type only if there exist enough variables for assignment.

Finally, the compatibility between normalized and concrete methods is defined
by their abstract signatures and assignable types. For each normalized method,
ConFix lists up compatible concrete methods and randomly selects one of them
to replace the abstract method.

Definition 7 (Method Compatibility) A normalized method m, and a concrete
method mc are compatible if and only if they have the same abstract signatures
and types Ty, and T/ appeared in signatures are all assignable for all i = j.

After concrete methods are fixed, ConFix decides concrete types for remain-
ing normalized types, and then selects concrete variables for normalized variables.
If abstract types are appeared in abstract signatures of the normalized methods,
their concrete types are already fixed. Hence ConFix randomly selects one of the
assignable types only for the remaining normalized types. Once all normalized
types are replaced with concrete types, the type of each normalized variable is
fixed, and ConFix selects one of the concrete variables with the same type ran-
domly.
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One remaining part of change concretization is normalized string literals. Con-
Fix collects string literals from buggy code - in the same buggy class - and assigns
one of the collected string from the same buggy class to each normalized string.
Since there is no type constraints for strings, ConFix only considers the frequency
of the collected strings. More specifically, ConFix uses roulette wheel selection [24]
with string’s frequencies as weights.

Similar to hash match method, ConFix considers different sets of identifiers
collected from different scopes. First, ConFix considers identifiers more closely
related to the current fix location. This neighbor set contains identifiers appeared
in neighbor statements and declared method parameters. Neighbor statements
include the statement which is currently being modified, and its parent statement
as well as statements before and after the statement.

Suppose that ConFix tries to update argument pos in the following example
from one of the Defects4j bug.

for (int pt = O0; pt < consumed; pt++) {
pos += Character.charCount (Character.codePointAt (input, pos));

}

The current statement is an assignment of pos, and its parent statement is a
for statement. There is no statement before and after it, but if there was any
statement right before and after the current statement, ConFix would also collect
identifiers from them. To exchange pos with another variable, it is reasonable
to consider variables appeared in neighbor statements since they are related to
functionalities implemented by this area of code. Also, a parameter of a method
- input in this example - is often used throughout the method, since a method’s
role is usually taking inputs and processing them with its statements to generate
expected outputs. Hence using identifiers from neighbor statements and method
parameters can adapt a change more close to the current fix location.

If ConFix cannot find enough concrete names to replace abstract names, it
expands the scope to all local variables in the same method and member variables
and methods declared in the same class (local). Local variables are declared in a
method since they are necessary within the method. Similarly, member variables
and methods are declared in a class since they are related to the class. Although the
relevance may be lower than the first set of identifiers, it is worth to consider using
them to adapt a change to the current method or class. Even this attempt fails to
find sufficient concrete names, ConFix finally considers any identifiers appeared in
the current buggy class (class).

3.4 Patch Prioritization Strategy

As ConFix generates patch candidates one by one, it is important to decide which
candidate should be generated first. Patch prioritization is important in ConFix
because (1) modifying the wrong locations or applying the wrong changes reduces
the probability of generating a patch within the time budget; and (2) ConFix ter-
minates execution after finding the first plausible patch [47], instead of generating
all possible patch candidates.

We already discussed about the order of covered lines in Section [3-2] In ad-
dition, ConFix applies Tested First heuristic using failed test class names to sort
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suspicious lines. Sometime actual buggy lines have lower scores with SBFL tech-
niques, if they are also executed by passing tests frequently. To mitigate this issue,
ConFix predicts classes executed by failed test classes based on their name similar-
ity. The names of failed test classes and classes covered by them are tokenized, and
the number of common tokens between each pair of a buggy class and a test class
is computed. For instance, for a failed test class ProcessClosurePrimitivesTest oOf
package com.google. javascript.jscomp, a class ProcessClosurePrimitives of the same
package is selected since seven tokens - four package names and Process, Closure,
Primitives - are common, and all the other classes have less common tokens than
this class. Hence ConFix lists up all covered lines of the selected class in descend-
ing order of the score, then all the other lines are ordered after that in the same
descending order.

For each fix location candidate, ConFix applies mazChangeCount of changes
in the descending order of their frequency. This prioritization simply tries more
popular changes in past patches first. The reason for a limited number of change
application is to avoid bottleneck and investigates more fix location candidates as
explained in Section [3.2

Since one abstract change may produce different concrete changes based on
change concretization, ConFix also tries to concretize the same change mazTrials
times. For change concretization, ConFix first tries hash match method to generate
patch candidates more similar to human-written code fragments. Each collected
code fragment is used for concretization in ascending order of its distance to buggy
code and descending order of their frequency for the same distance (Section .
If there is no available code fragments for hash match method, ConFix applies TC
method, which can introduce a new code fragment which have not been appeared
in buggy code.

4 Evaluation Design

In this section, we provide information of subjects for evaluation and experimental
setup to generate patches with ConFix.

4.1 Subjects

To evaluate ConF'ix, we need a set of bugs to be fixed, and a set of human-written
patches to collect changes for patch generation. Table [I| shows simple statistics of
collected human-written patches used for the evaluation.

Table 1: The Information of Subjects for Change Pools

Project Patches | Changed Files Project | Patches | Changed Files
collections 79 256 wy 357 691

derby 1,270 3,355 lucene 1,446 13,932
groovy 1,535 6,141 mahout 265 1,102
hadoop 465 6,479 pdfbox 1,004 1,883
hama 64 177 Total 6,485 34,016
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We collected changes with PTLRH and PLRT contexts from nine Java open
source projects in Apache Software Foundation. We first listed issue numbers cat-
egorized as bugs from Apache’s issue tracking systenﬁ for each project. Then we
identified bug-fix commits (patches) containing the issue numbers in their commit
log. Patches and Changed Files columns show the number of identified human-
written patches and changed files in those patches respectively. We collected over
6K human-written patches with about 34K changed files as resources for patch
generation.

For a set of bugs, we used 357 real Java bugs in Defects4j 0.1.0 dataset |16,32], a
popular benchmark for APR technique evaluation. Defects4j dataset provides bugs
and test cases for evaluation of automatic patch generation technique. These bugs
were collected from five different software projects, JFreeChart, Closure, Commons
Lang, Commons Math and Joda-Time. It also contains human-written patches for
the bugs, hence we can evaluate the quality of generated patches based on these
patches.

Note that we selected a completely different set of projects for change resources
from the projects in Defects4j dataset. It guarantees that changes from actual
human-written patches of Defects4j bugs are not included in ConFix’s change
pools. Hence ConF'ix’s patch generation was only dependent to general population
of changes collected from human-written patches, without influence of the original
human patches.

4.2 Experimental Setup

For the evaluation, we applied ConFix to 357 bugs from Defects4j dataset with
PTLRH and PLRT change pools, on an Amazon EC2 instance (méb.zlarge) with 4
CPUs and 16 GB memory. To prepare the experiments, we first checked for flaky
tests by executing all given test cases on both buggy code and human-written
patches. Since Defectsdj dataset also provides a list of failing tests, these tests
should be failed on buggy code and passed on patches. We found that there were
12 Closure bugs whose failing tests were always failed even with human-written
patches in our environment. For these bugs, even if ConFix generated an identical
patch to a human-written patch, it cannot be verified with the given test cases.
Therefore, we did not apply ConFix to these bugs and considered them un-fixed.

After all bugs and their test cases were checked, we ran ConFix for each bug.
ConFix first tried to generate at most 20K candidates with PTLRH change pool.
If it failed to generate a patch, it tried the same with PLRT change pool. Although
ConFix was allowed to generate at most 40K candidates, the actual number of gen-
erated candidates might be smaller based on the number of possible fix locations
and applicable changes after filtering with contexts.

For each fix location, ConFix tried 25 frequent changes which is the average
number of changes per context in PLRT change pool (Table. In this way, ConFix
can check sufficient changes while skipping some exceptional fix locations with a lot
of applicable changes. For each abstract change, ConFix concretized it maximum
five times to apply various concrete changes for patches.

1 /Apache’s JIRA issue tracker (https://issues.apache.org/jira).
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We also set time budget to two hours, which means that ConFix terminated
after two hours even if generated candidate number was less than the maximum
candidate number. This time budget did not provide significant advantage to Con-
Fix, compared with 1.5 to 5 hours of other compared existing techniques [15,58}60].

To apply fault localization technique, coverage information was necessary. We
used the coverage information of 357 bugs and their tests from a previous fault
localization study [43] obtained by GZoltar [4] to prevent any advantage or disad-
vantage about coverage information.

5 Results
5.1 RQ1: Characteristics of Change Pools

From collected human-written patches, we built two change pools with PTLRH
and PLRT contexts respectively. Table [2] shows the information of the PTLRH
and PLRT change pools.

Table 2: The Information of PTLRH and PLRT Change Pools

PTLRH | PLRT
Total Changes 216,274 216,274
Unique Changes 44,205 44,205
Contexts 38,160 2,474
Context-Change Pairs 76,597 62,310
Avg. Changes per Context 2.01 25.19

In both change pools, ConFix identified about 216K abstract AST subtree
changes from the collected patches. Among them, 44,205 changes are unique. AST
subtree changes preserve the structure of changed subtrees, hence the number of
unique changes is large. If we only consider change type and changed entity type
like Change Type and changed Entity Type (CTET) repair model of a previous
study [33], there are only 549 different changes, which is much less than the unique
changes, but greater than 173 of the previous study. The difference is mainly due
to replacements, since there are two changed entity types (i.e., old and new) and
more variants. These large number of more specific changes not only provide the
information that which kind of changes are popular in bug-fixes, but also supply
abstract code fragments which can be directly used for patch generation.

Collected changes are categorized by 38,160 PTLRH contexts and 2,474 PLRT
contexts in change pools respectively. If we consider one unique change appeared
in different contexts (context change pairs) as different changes, there are 76,597
and 62,310 changes for PTLRH and PLRT change pools respectively. It means
that for each PTLRH and PLRT context, there are only 2.01 and 25.19 unique
changes which ConFix needs to consider for each context. This is huge reduction
from the entire set of 44K unique changes, which greatly saves the effort to select
a change to be applied.
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Table 3: Change Type Distribution and Frequent Changes

Type Count Freq. CTET Freq. | Change Freq.
insert 45.03% | 44.71% | update SN 8.45% | update var0O 4.81%
replace | 52.08% | 36.55% | insert MI 5.81% | update TypeO 3.68%
update 2.89% 18.74% | insert ASGN | 5.56% | update method0 | 2.82%

SN: SimpleName, MI: MethodInvocation, ASGN: Assignment

Table [3] shows the distribution of change types and frequent changes in the
collected changes. Count column shows how many unique changes belong to a
certain change type. Freq. columns indicate the ratio of each change to all collected
changes. Type, CTET and Change column represent change types, change and
entity types, and abstract AST changes respectively.

There are many variants (i.e., different changed subtrees) for insert and replace
changes, while update changes occupy less than 3% of the unique changes. Unlike
the others, update changes can vary only for values such as update 0 to 1 or 0 to
-1, hence unique change number is smaller. However, in terms of frequency, update
changes take 18.74% of all collected changes. This indicates that each update is
more frequent than the other type changes, which is consistent to the result that
the most frequent CTET is update SimpleName in Table

In actual abstract subtree changes (Change column), update changes are even
more frequent. In CTET, the second and third most frequent changes are insert
changes. However, for subtree changes, all top 3 frequent changes are updating
variable, type and method. Insertion of method calls or assignments are more
diverse when we consider actual inserted subtrees. Hence each change’s frequency
can be smaller than updates, which represent a single node change with limited
variations. This result is consistent to the finding of a previous study that smaller
changes are more frequent [41].

Such high frequency of update changes can be an obstacle for change selection
based on natural distribution of changes. If we consider each change’s frequency
as the probability that the change is selected, small changes always have higher
priority than bigger changes. If ConFix only considered change’s frequency, it
would try update changes many times before other various changes are applied to
generate patch candidates. In terms of patch generation, this is not desirable.

ConFix leverages local change distribution represented by the frequency of
changes in a specific context to resolve this issue. For example, consider a PTLRH
context P:MethodInvocation[arguments],L:{SimpleName},R:, which represents a method
call’s argument as a change location. The most frequent change of this context is
insert var0 (Freq. 1,687), which is different from the frequent changes shown in Ta-
ble The next most frequent change is update varo (Freq. 1,056), whose frequency
is 37% less than the insertion. In other contexts for statement level changes, up-
date changes are not even appeared in the contexts. This result shows that local
change distribution is different from global change distribution, hence ConFix’s
change selection can be more customized to a specific context.
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5.2 RQ2: Bug-Fixing Performance of ConFix and Comparison to Existing
Techniques

To evaluate ConFix’s performance, we manually inspected all generated patches
and assessed their correctness, then compared them with generated patches of
three other techniques, ssFix [60], CapGen [58] and SimFix [15].

These three techniques are closely related to ConFix. ssFix adapts collected
code fragments to generate patches, which is similar to ConFix using abstract
changes preserving the structure of changed code fragments. However, ConFix
considers contexts to find changes more probable to generate patches, while ss-
Fix computes syntactic similarities of code fragments to buggy code for the same
purpose. CapGen considers three different contexts, and its genealogy context is
similar to ConFix using AST contexts. However, both CapGen and SimFix mine
high-level abstract changes and concretize them with code fragments obtained
from buggy source code. Unlike them, ConFix employs more fine-grained change
representation which preserves code structure, hence it can provide new code frag-
ments not in buggy code, and concretizes them with TC method to generate
patches which might not be generated by CapGen and SimFix.

During evaluation, we found that correctness assessment of generated patches
for the compared techniques was not sufficient. Some of the generated patches only
addressed a part of issues compared to human patches, but still they were con-
sidered correct. For example, Fig. [f] shows patches by human developers, ConFix
and ssFix for C1 bug. Note that bug will be referenced as “Project’s Identifier +
Bugld” (e.g., C1 indicates the first bug of Chart) with project identifiers shown
in Table [

- if (dataset != null) { //Buggy
+ if (dataset == null) { //Human, ConFix
- return result; //ssFix

}

Fig. 6: Human, ConFix and ssFix patches for C1 bug.

Human and ConFix patches modify the operator !'= to ==, while ssFix patch
removes the return statement. This patch of ssFix was considered valid, since it
does not return result when dataset is not null and passes all given test cases.
However, its behavior is different from the human patch when dataset is null,
which is actually incorrect.

Hence we evaluated the correctness of generated patches for ConFix as well
as the other techniques with the following criteria. We marked a bug is fixed by
a generated patch, if the patch is syntactically or semantically equivalent to the
human patch. Also, we considered a generated patch is incorrect, if we found a
case which the generated patch shows different outcome than the human patch or
the generated patch is only partial (e.g., modified only one of the two fix locations
in human patch).

Table 4] shows the number of correctly fixed bugs by patches generated by Con-
Fix and other techniques. Note that ConFix only generates one plausible patch
for each bug, hence the fixed bug number is identical to the correct patch number.
After re-evaluation, if the numbers are different from the originally reported num-
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Table 4: Number of Correctly Fixed Bugs

Project ConFix | ssFix | CapGen | SimFix
Chart(C) 4 2(3) 4 3(4)
Closure(CL) 6 2 N/A 6
Lang(L) 5 5 5 5(9)
Math(M) 6 9(10) 11(12) 12(14)
Time(T) 1 0 0 0(1)
Total 22 18(20) 20(21) 26(34)

bers of ssFix [60]|, CapGen [58] and SimFix [15], we show the original results in
parentheses. For CapGen, Closure was not a subject for its evaluation, hence no
patches are available. Individual patch assessment used to compute the numbers
are publicly availableE]

ConFix correctly fixed 22 bugs in total, which is comparable to the existing
techniques. In terms of numbers, ConFix generated the most number of correct
patches for all projects except Math. For Time, only ConFix generated a correct
patch for one bug (T19). SimFix reported that T7 was fixed by a generated patch,
but we found that the patch was incorrect. Actually, ConFix generated the exactly
same patch for T7 too. For Chart, Closure, and Lang, ConFix generated the same
number of correct patches as the other best technique.

For Math, ConFix did not generate many patches compared to the other tech-
niques. We analyzed bugs and their human patches which were fixed by the others
but not by ConFix. For these bugs, generated patches are not complicated and
usually consist of simple changes, but the changes are not included in change pools
with the same context of fix locations. This is a trade-off of using context to re-
duce the difficulty of change selection. By checking context, ConFix only needs to
consider a small number of changes, but sometimes it cannot generate a simple
patch since a necessary change is only included in different contexts. However, this
issue can be addressed by collecting more changes, if ConFix can find necessary
changes effectively.

The number of fixed bugs does not represent the fixed bug set. For instance,
all four techniques fixed five bugs in Lang, but it is not necessary that they fixed
the same five bugs. If ConFix fixes bugs which have not been fixed by the other
techniques, ConFix can be complimentary and worth to use with others.

Table 5: Bugs Fixed by ConFix Only and Also Fixed by Compared Techniques

Project ConFix Only Also Fixed By Others
Chart(C) C10 C1, C11, C24
Closure(CL) | CL38, CL92, CL93, CL109 | CL14, CL73

Lang(L) L24, L51 L6, L26, L57

Math(M) M34 M5, M30, M33, M70, M75
Time(T) T19 None

Total 9 Bugs 13 Bugs

Table [5| shows the full list of bugs fixed by ConFix. “ConFix Only” column
shows bugs fixed by ConFix only. “Also Fixed By Others” Column represents bugs

fixed by ConFix, as well as at least one of the other techniques.

2 https://github.com/thwak/confix2019result/
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There are nine bugs which are only fixed by ConFix. ConFix fixed at least
one bug for all projects which was not fixed by the others. We also checked bugs
reported as fixed by other existing techniques (jGenProg [23], jKali [47], Nopol [9],
ACS [62], HDRepair [20], Jaid [5], AVATAR |25]). We inspected fixed bugs in [32],
[60], [62], [5] and [25], to obtain the result for all 357 bugs, since each study
only contains results for a part of the techniques or the bugs. For AVATAR, we
used results for Supplemented_FL-based APR [25], since it assumed the same
configuration for fault localization as ConFix. If any of them reported a bug was
fixed by a technique, we considered the bug is fixed by the technique. Based on
the inspection, we found that L24 (Jaid, ACS), L51 (Jaid, HDRepair) and CL38
(AVATAR) are also fixed by the others. Still, ConFix fixed six bugs which have not
been fixed by the existing techniques. This result indicates that ConFix is capable
of generating patches which cannot be found by the existing techniques, and it
can complement the others.

5.3 RQ3: The Effectiveness of Search Space Navigation

ConFix uses various strategies to effectively navigate its patch search space. It fil-
ters out candidate fix locations and changes to narrow down search areas, and
leverages frequencies of contexts and changes to decide which area should be
searched first. To concretize abstract changes, it also collects code fragments and
identifiers from different range of code. We analyzed how these strategies con-
tribute to fix the bugs.

5.8.1 Precision and Recall

First, we computed precision and recall of ConFix. Precision is the ratio of correct
patches to all generated patches. Recall represents that how many patches included
in ConFix’s search space are actually found.

ConFix generated 92 plausible patches and 22 of them are correct. The pre-
cision is 23.9%, which is lower than ssFix (30.0%, 18/60), SimFix (46.4%, 26/56)
and CapGen (80.0%, 20/25). Since ConFix leverages over 62K to 76K changes,
the probability that one of these changes accidentally generates a plausible, but
incorrect patch is quite high. This overfitting issue [53] is a weakness of ConFix
since its ability to generate various patch candidates comes from a large set of col-
lected changes. However, there have been several studies [55//591/61,/63] to mitigate
the issue, and ConFix can benefit from such studies.

To compute recall, we identified which bugs have patches in ConFix’s search
space. We first extracted changes from human patches in the same way we collected
changes for changes pools. If a bug’s human patch consists of one single change,
and the change is included in PTLRH or PLRT change pool, this patch is included
in ConFix’s search space. Of course, it is possible that a bug can be fixed by a
change different from an extracted change. However, identifying all possible fixes
is infeasible, hence we only consider explicit changes identical to human patches,
which is a reasonable approximation.

Table |§| shows the number of bugs whose patches in the search space (Total)
and how many of them have been correctly fixed by ConFix (Correct). Incor-
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Table 6: Number of Patches in ConFix’s Search Space and Fixed Bugs

Project Total | Correct | Inorrect | No Patch
Chart(C) 4 4 0 0
Closure(CL) 7 3 0 4
Lang(L) 7 5 1 1
Math(M) 4 4 0 0
Time(T) 1 1 0 0
Total 23 17 1 5

rect column indicates that ConFix generated incorrect patches for bugs, and “No
Patch” column represents that ConFix failed to generate a plausible patch.

There are 23 bugs whose patches are in ConFix’s search space, and ConFix
fixed 17 of them, which leads to 73.9% recall. It means that ConFix can correctly
fix about three-quarters of bugs, if necessary changes are included in change pools.
Therefore, we can expect more correct patches by providing more collected changes
due to ConFix’s effective search space navigation. Note that there is only one bug
which has a patch in the search space, but ConFix generated an incorrect patch.
This result indicates that ConF'ix’s patch prioritization effectively ranks existing
correct patches to make them found as the first plausible patch for each bug.

For the five bugs without patches, we analyzed which features of ConFix is
not effective for successful patch generation. We found that the failure is closely
related to fix location identification and prioritization for 4 out of 5 bugs. Among
these four bugs, ConFix failed to fix three Closure bugs (CL1, CL10, CL66), since
the right fix location has very low suspiciousness score. ConFix consumed all time
budget and assigned patch candidates before it even tried to modify the right
fix location. The remaining bug L29 has a patch updating the return type of a
method, but this code line is not included in the coverage of test cases. We used
coverage information from [43], which was obtained by GZoltar [4]. However, a
code line corresponds to a method declaration was not treated as executed, hence
the fix location was not even on the list of candidate locations.

These fix location issues are more close to the limitation of SBFL technique
rather than ConFix’s patch generation strategy. This issue can be resolved by
increasing candidate limitation, or providing missing coverage information. We
applied ConFix with increased time budget and the maximum candidate number,
and confirmed that ConFix generated correct patches for the Closure bugs. 1.29
bug was also correctly fixed after we added the modified line in human patch into
the coverage information.

The one remaining bug with no patch has high patch generation difficulty. It
requires a replacement of a string literal with another string literal. The required
string literal was not appeared in codebase, hence ConFix could not generate a
correct patch. However, any existing techniques leveraging specific code fragments
from buggy code may suffer the same issue, since generating a specific string literal
can be a tricky problem.

5.8.2 Fix Locations

In addition to the SBFL technique’s suspiciousness score, ConFix uses several
strategies to further reduce and prioritize fix location candidates. We analyzed
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whether these strategies were actually useful to correctly fix the bugs. As a base-
line, we consider a strategy (FL) which considers all fix location candidates with
suspiciousness score greater than 0. In FL strategy, lines are sorted in descend-
ing order of scores, and the same score lines are sorted in ascending order of line
numbers. Fix location candidates on the same line are sorted in depth-first order.

For analysis, we come up with three strategies CTX, FLFreq, and TestedFirst.
CTX strategy further filters out fix locations with no applicable change in change
pools. FLFreq strategy prioritizes lines and fix locations as explained in Section 3.2}
without special treatment for suspicious classes. TestedFirst is the actual strategy
with prioritizing suspicious classes, which was used by ConFix to generate patches
(Section . We compared these four strategies for the number of checked lines
and fix locations until each strategy reaches to the actual fixed line or location of
a patch.
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Fig. 8: Reduced Number of Checked Fix Locations for Fixed Bugs

Fig. |Z| and [8| represent reduced number of checked lines and locations for bugs
respectively. A positive number indicates that each strategy tried less number of
lines or locations than FL strategy until it actually found the fix location. In Fig.|7]
CTX shows the straight line at 0, which means that it always checked the same
number of lines as FL. CTX only filters out lines and locations from FL if there
is no applicable change, but the order of lines and locations are the same. This
result indicates that there is at least one fix location candidate for every lines with
applicable changes, and using CTX alone does not helpful to reduce the number
of checked lines.

However, although CTX examined the same number of lines, the number of
checked locations is significantly reduced. CTX checked less locations than FL
except for one bug. For the one exception, FL. and CTX both checked just one
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location to generate a patch. The average reduction of checked locations is 48%,
which means that ConFix only needs to check about a half of all fix location
candidates on average. Therefore, using context effectively reduced search area
and contributed to ConFix’s patch generation.

FLFreq strategy shows improved performance in both checked lines and loca-
tions. In terms of lines, FLFreq checked 1-34 less lines for 15 bugs, but 1-10 more
lines for four bugs than FL and CTX. FLFreq basically works as a tie-breaker,
which only re-orders lines if they have the same suspiciousness score computed by
Ochiai, hence the improvement is limited for lines. In terms of locations, the perfor-
mance improvement is a bit mixed. To assess the effectiveness of frequency-based
prioritization, we compared FLFreq with CTX. FLFreq checked less locations than
CTX for 12 out of 22 bugs, but checked more locations for the remaining 10 bugs.
The differences between FLFreq and CTX strategies - at most 118 locations - are
smaller than CTX and FL, since CTX checked 256 less locations than FL on av-
erage. These results show that the reduction of checked lines and fix locations are
mainly due to contexts, but using frequency is still effective for some cases. Note
that we did not include a graph for the case if ConFix did not sort locations on
each line in ascending order of change count [3:2] We found that if this strategy
was not used, ConFix checked average 0.41 more locations, which is negligible.

TestedFirst shows mixed performance in both lines and locations. Since Tested-
First speculates classes under test and tries to modify them first, the improvement
highly depends on the correctness of speculation. In Fig.[7]and [§] TestedFirst lines
are clearly above FLFreq for C1, CL92, CL93, M30, T19 bugs, which means that
the speculation was useful. There exist other bugs CL38, CL73, M33 that Tested-
First picked incorrect classes and needed to check more lines and locations than
FLFreq. In total, TestedFirst checked less locations than FLFreq for 10 bugs while
it checked more locations for only five bugs. Hence applying TestedFirst was not
harmful for 77% of the fixed bugs. If we compare TestedFirst to the baseline (FL),
it checked average 65% less locations for 17 bugs, which proves that ConFix’s
strategy is quite effective compared to a strategy only relying on suspiciousness
scores.

In addition, we found that L24 and T19 bugs would not be fixed without the
reduction of fix locations due to TestedFirst strategy. Note that we limited the
number of patch candidates to 20K for each change pool. Since ConFix applies
at most 25 changes to each location at most five times, it is possible that ConFix
exceeds the limit before it tries to modify the actual fix location. For L24 bug,
ConFix (i.e., TestedFirst) generated 24,231 patch candidates (20K for PTLRH,
4,231 for PLRT) to fix the bug, while FLFreq only reached to the same fix location
after generating 44,431 (20K for PTLRH, 24,431 for PLRT). For T19 bug, the 9th
bug which ConFix generated was the correct patch, while FLFreq required 20,900
patches to reach the fix location. With our experiment settings, these two bugs
could not be fixed if ConFix used FLFreq strategy.

5.8.8 Change Selection

For each fix location candidate, ConFix applies changes with the same context in
descending order of their frequency. We analyzed changes used to generate patches
to assess this change selection strategy was effective. First, we identified changes
used to fix bugs and their change pools. We found that 19 out of 22 (86%) bugs
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were fixed by changes from PTLRH change pool, and the rest three bugs were
fixed by PLRT change pool. Note that PTLRH and PLRT changes pools have the
same set of unique changes. Theoretically, patches generated with PTLRH change
pool can also be generated by PLRT change pool, but it will require much more
resources. If PTLRH contexts do not overly filter out necessary changes, it is more
efficient than PLRT, since ConFix needs to check only two changes on average for
each location, which is much lower than 25 changes of PLRT. Therefore, this result
indicates that using PTLRH context is effective and efficient, and some missing
patches were still found by ConFix’s extended search with PLRT context.

ConFix also leverages local change distribution to prioritize changes. To assess
the effectiveness of local distribution, we compared changes’ local ranks (rank in
a context) with global ranks (rank in all collected changes) based on frequency.
ConFix used 15 different changes in 21 different contexts for 22 patches. This
result shows that ConFix applied various changes for patch generation, and did
not favor a few popular changes. ConFix ranked the changes at top 1-15 in a list
of changes retrieved for the fix location of the patches. For 14 out of 22 (63.6%)
patches, ConFix ranked the applied changes at the top, and it ranked the changes
within top-3 for 81.8% of the patches.
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Fig. [0 shows the differences of local and global ranks of the changes. A change’s
global rank indicates its frequency rank in all unique collected changes. If a change
has global rank 10, it means that this change is the 10th most frequent change
among all collected changes. There are only four patches whose change’s local
rank is identical to global rank. All same rank patches used update var0 to var0 in
different contexts, which is the most frequent change globally (Table . For 13
out of 22 (59.1%) patches, the rank difference is at least 30, which is even higher
than the maximum number of changes ConFix applied for each location. These
low global rank changes might not be found if they were chosen from all changes
based on their frequency.

One interesting observation is that sorting local changes with their global fre-
quency does not show significant difference. Originally, ConFix sorted changes in a
certain context, based on their frequency on that context only. We re-ordered the
changes based on their global frequency, but ranks of the changes used to fix bugs
were not altered significantly. Using local frequency placed changes for 4 out of 22
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patches at 1-3 higher position than global frequency, while it ranked 1-3 position
lower for changes of 5 out of 22 patches. For the other 13 patches, change ranks
were not changed, since most of them are already at rank 1, except for one change
which has rank 16. The situation is similar for all generated patches, since local
frequency provides higher ranks to necessary changes for 23 patches, while it gives
lower ranks for 22 patches and the same ranks for the rest.

This result indicates that the performance improvement is mainly due to filter-
ing of changes based on context. Once changes have been filtered out, about 82%
of the changes necessary to fix bugs are ranked within top-3 whether local or global
frequency is used. It also means that ordering changes based on their frequency
itself (either local or global) is also an effective strategy for change selection, since
the changes are at high rank although there are about 18 changes on average for
each fix location of the correct patches.

5.8.4 Change Concretization

Table 7: Number of Patches for Concretization Methods

Methods hash-class  hash-package | neighbor  local  class | none | Total
Correct 8 1 4 3 1 5 22
Incorrect 22 2 23 4 5 14 70
Total 30 3 27 7 6 19 92

We inspected how changes were concretized for all plausible patches. In Table
Methods row shows concretization method and the scope of material collection
which was explained in Section [3.3] Hash-class and hash-package indicate con-
cretization with hash matched code fragments from a buggy class and package re-
spectively. Type compatible concretization is divided into three categories - neigh-
bor, local, and class, which represent scope where concrete identifiers were col-
lected. none indicates a change without normalized values, which does not require
concretization, such as updating 0 to 1.

Overall, hash match (33, 35.9%) and TC methods (40, 43.5%) take about 80%
of all generated patches. The remaining 20% of the patches were generated by
changes without concretization. Note that ConFix only expands search area for
concretization if there is no material in the current scope. Hence methods with
narrower scope might contribute to more patches. However, every methods are
responsible for at least one correct patch, which means that ConFix’s search area
extending strategy works effectively.

Interestingly, hash match methods take higher portion than TC methods, while
there are more patches generated with TC methods for incorrect or all patches.
Hash match methods generated 9 out of 22 (40.9%) correct patches, and TC
methods produced 8 out of 22 (36.4%) patches. This is reversed in incorrect patches
since hash match takes 34.3% and TC is responsible for 45.7%. Based on this result,
we can expect more correct patches when hash match methods are used.

However, it does not mean that we should not use TC methods, since they
generated almost same number of correct patches as hash match. Hash match
methods can generate patches only if there exists a code fragment in buggy code
which can be a part of the patch, similar to CapGen and SimFix which use high-
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level changes and concretize them with code fragments in buggy code. On the
other hand, TC methods collect concrete names from buggy code and generate
a patch with a code fragment which has not been appeared in the buggy code.
Because ConFix’s concretization strategy applies hash match methods first and
tries TC methods later, this strategy can exploit the advantages of both methods.

6 Threats To Validity

Errors which might reside in our implementation of ConFix and nondeterminis-
tic features of the technique could be one validity threat to this study. For in-
stance, TC methods uses random and roulette wheel selections, hence repeated
experiments may provide different results from the results reported in the study.
However, the majority of the correct patches were generated without TC methods
(Table (7)), and these patches can be generated again in repetitions, since the same
prioritization will be applied for patch generation. Also, we carefully implemented
ConFix that a random seed value controls all nondeterministic features of ConFix,
hence replication of our experiment is possible when the same seed is given. Our
implementation used for evaluation is also publicly available. E|

Another concern is that our evaluation results might be different if we used
other collected changes from different human-written patches. However, to prevent
a human-written patch for a bug is included in the collected changes, we did not
choose any projects in Defects4j dataset for change collection. Also, ConFix has
high recall (Section , which means that we might also obtain even improved
results if we collected more patches for change pools. Hence selection of patches
does not undermine our evaluation results significantly.

Manual assessment of patches could be another issue, since we do not have do-
main knowledge and the judgement about patch might be subjective and biased.
We tried to be conservative and carefully compared generated patches with cor-
responding human-written patches, but we cannot perfectly guarantee that there
is no mistake. However, as we explained in Section [5.2] we set up certain criteria
to decide whether a patch is correct or incorrect. All ConFix-generated patches,
their correctness assessment and other related information are publicly available. E|
The correctness assessment also includes the detailed reasons of our judgement on
ConFix-generated correct patches, and why we decided some of the patches gen-
erated by the other techniques were actually incorrect.

7 Related Work
7.1 Automatic Program Repair

Many APR techniques leverage human-written code and bug-fixes collected from
software repositories. We already discussed about ssFix [60], CapGen [58] and
SimFix [15] in Section

There are other APR techniques which leverage human patches or mined fix
patterns. Genesis |27] infers code transforms for certain defect classes such as NPE

3 https://github.com/thwak/ConFix
4 https://github.com/thwak/confix2019result
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or class cast issue from human-written patches and uses them to generate patches.
The search space of Genesis is inferred by integer linear programming, which maxi-
mizes the number of validation patches generated by a set of code transforms. Then
it applies all applicable code transforms to each fix location candidate to generate
a patch. In addition to changes, ConFix explicitly defines and uses AST contexts
to find fix locations and select necessary changes more effectively. ELIXIR [51]
uses method calls with local variables, fields, or constants to synthesize patches. It
also leverages the machine-learnt model using code surrounding buggy locations
and bug reports. The approach is similar to ConFix in high level idea which ex-
ploits code surrounding fix locations and local variables or constants. ConFix’s
TestedF'irst prioritization may play similar role as using information from bug re-
ports. However, ConFix does not favor certain popular changes (Section ,
but it applies various changes if they belong to the same context. Prophet [30]
and HDRepair [20] leverage human patches to prioritize modifications for patch
candidates with pre-defined mutations. Although their prioritization methods are
effective, their ability to generate various patch candidates is limited compared to
ConFix, which can employ a huge number of changes collected from human-written
patches. PAR [18], SPR [28|, and relifix [54] also use pre-defined fix templates ob-
tained from human intuition or manual inspection on human-written patches, and
have the same limitations unlike the techniques which can provide more changes
or code fragments from a collection of software repositories. AVATAR [25] uses
fix patterns of static analysis violation to obtain more reliable set of bug fixes.
One of the key ideas of AVATAR is polishing a set of patches by executing static
bug detection tool in pre-processing. Such polishing could be useful to increase
ConFix’s precision by removing unprofitable changes.

There exist a line of techniques which are known as semantics-based program
repair techniques [7}/17,[21}35,/36L|42]. These techniques use semantic analysis and
a given test suite to obtain semantics of a buggy program and synthesize code
to satisfy some constraints identified from the semantics. S3 [21] tried to address
the patch overfitting [22,/53] and scalability issues of semantic-based repair by
constrained search space and ranking functions. ConFix also tries to constrain its
search space using AST contexts, hence its context-based change application can
collaborate with S3’s ideas to synthesize patches more efficiently. SearchRepair [17]
is an automatic program repair technique which generates patches with semantic
code search. ConFix and SearchRepair both try to leverage human-written patches
for new patch generation, but the difference is that SearchRepair uses SMT con-
straints to find alternative code fragments to fix bugs, while ConFix uses syntactic
context to guide a search for appropriate changes. Identifying AST contexts is less
costly than deriving SMT constraints, but these contexts still provide syntactic
information which also imply some of program semantics, although it does not
fully represent program’s semantics like SM'T constraints.

There are more techniques trying a semantic-based repair [9,35136},42], which
usually leverages SMT constraints solvers to generate bug fixes. Although such
techniques use a quite different method, ConFix and these techniques can be com-
plementary to each other. These semantic-based repair techniques often synthesize
new expressions for branch conditions or assignments. For instance, ConFix may
use alternative concretization strategy which refers to semantic-based repair’s syn-
thesized expressions to concretize changes. Semantic-based repairs also may obtain
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some hints for the structure of new expressions needed to be synthesized for patch
generation.

Many other automatic program repair techniques using generated-and-validate
approach also have been proposed [1,8l/91|13}[23}|44H47/56,/57]. ConFix differs from
these previous techniques due to the point that it can automatically collect abstract
individual changes in large scale and it uses them to generate patch candidates,
instead of generating patch candidates with several pre-defined modifications or
mutation operations with limited resource of code fragments.

7.2 Studies on Human-written Patches

There are studies to reveal various characteristics of human-written patches and
their usefulness for patch generation. Nguyen et al. found that changes in bug
fixes are repetitive, and smaller changes are even more repetitive [41]. The rational
behind ConFix is consistent to this finding, which implies that changes collected
from human-written patches can be repeatedly used for patches of other bugs. We
also design the change application technique to collect small individual changes
from one patch to increase repetitiveness. Martinez et al. proposed a repair model
based on repair actions collected from human-written patches [33]. They tested
their repair model in their simulations to recommend changes necessary for patch
generation. We further develop this idea and introduce ConFix, which is a complete
technique to generate source code level patches with changes collected from human-
written patches. Zhong et al. studied real bug fixes, and found that bug fixes
often require multiple dependent changes [65]. ConFix does not address this issue
yet, but it shows impressive results with single change patches, and it could be a
starting point to be extended to generating patches with multiple changes. There is
another study investigating the usefulness of past fixes in composing new fixes [64].
This study revealed that an APR approach which composes new fixes by reusing
code structures of past fixes can show promising performance. ConFix also collects
abstract changes preserving the structure of changed code and applies them to
generate new patches.

There exist other studies on changes and source code’s uniqueness which imply
the potential of techniques leveraging existing code fragments or changes [2,|12}[34]
49]. Empirical evaluation of ConFix and fixability analysis results provide similar
implication that we can obtain necessary changes for new bug-fixes from existing
patches.

7.3 Change Collection and Application

There are studies about code transfer or mining bug-fix patterns which might play
a similar role as the context-based change application technique [3}26431137-391/50].
The key role of the change application technique in ConFix is collecting changes
from human-written patches for new patch candidate generation. Hence we may
consider to use these code transfer techniques to develop new methods for patch
candidate generation in ConFix.

Another line of work we may discuss is AST differencing techniques. Although
we employs a specific technique, other AST differencing techniques [10,/11,/48| can
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be also used to obtain individual changes from source code patches written by
human developers. In this case, it may be required to adjust our design of change
collection and application for a new differencing technique. However, it is possible
to apply the high level ideas such as collecting abstract changes with their AST
contexts regardless of adjustment. Since the context is defined by AST nodes near
a changed AST subtree, the technique can identify similar contexts from a changed
AST subtree identified by other AST differencing techniques.

8 Conclusion

In this paper, we introduce ConFix, an automatic patch generation technique lever-
aging human-written patches with our context-based change application technique
used by ConFix. In the evaluation on 357 bugs from Defects4j dataset, ConFix
correctly fixed 22 bugs with generated patches. We also found that 6 out of 22
bugs are not fixed by the compared existing techniques. Our analysis on ConFix’s
patch generation strategy shows that ConFix effectively explores its search space
to generate correct patches.

Although we demonstrated the promising results of automatic patch genera-
tion using changes collected from human-written patches, still there exist some
opportunities for improvement. For example, we may try to generate patches with
multiple changes to improve partial patches up to acceptable patches, or use more
sophisticated concretization methods to effectively generate high quality patches.
We hope these opportunities will be explored in future work.
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