The signal transduction mechanisms underlying the pathophysiological activities of transforming growth factor-β (TGF-β) have been extensively studied since its discovery nearly 30 years ago. TGF-β ligands belong to a large superfamily of cytokines that bears its name (TGF-β Superfamily) and includes bone morphogenic proteins, activins, inhibin, growth/differentiation factors, Mullerian inhibiting substance, Nodal, and several other structurally-related polypeptides. Mammals express three TGF-β isoforms (i.e., TGF-β1, TGF-β2, and TGF-β3) that are encoded by distinct genes in a tissue-specific and developmentally-regulated manner. TGF-β was identified originally via its stimulation of morphological transformation and anchorage-independent growth in fibroblasts; however, this cytokine is now recognized as being a potent tumor suppressor that prevents the dysregulated growth and survival of epithelial, endothelial, and hematopoietic cells. In addition, numerous studies have clearly established TGF-β as a multifunctional cytokine that plays essential roles in regulating virtually all aspects of mammalian development and differentiation, and in maintaining mammalian tissue homeostasis. The pleiotropic nature of TGF-β is highlighted by the fact that every cell in the metazoan body can produce and respond to this cytokine. Even more remarkably, malignant cells have evolved a variety of complex mechanisms capable of circumventing the tumor suppressing activities of TGF-β, and in doing so, typically convert the functions of TGF-β to that of a tumor promoter, particularly the induction of carcinoma epithelial-mesenchymal transition, invasion, and dissemination to distant organ sites. This peculiar conversion in TGF-β function is known as the "TGF-β Paradox", which underlies the lethality of TGF-β in metastatic cancer cells. Thus, elucidating the effectors and signaling modules activated by TGF-β may offer new insights into the development of novel neoadjuvants capable of effectively targeting the TGF-β pathway to significantly improve the clinical course of patients with cancer, fibrosis, or immunologic disorders. TGF-β is secreted from cells as a latent homodimeric polypeptide that becomes tethered to the extracellular matrix by latent-TGF-β-binding proteins. Mature TGF-β isoforms are activated and liberated from extracellular matrix depots by a variety of mechanisms, including proteolysis, reactive oxygen species, changes in pH, and physical interactions with integrins, thromobspondin-1, or SPARC. Once activated, mature TGF-β initiates transmembrane signaling by binding to two distinct transmembrane Ser/Thr protein kinases, termed TGF-β type I (TβR-I) and type II (TβR-II) receptors. In some cells and tissues, TGF-β also binds to a third cell surface receptor, TGF-β type III (TβR-III), which transfers TGF-β to TβR-II and TβR-I. Full activation of these cytokine:receptor ternary complexes transpires upon TβR-II-mediated transphosphorylation and activation of TβR-I, which then phosphorylates and activates the latent transcription factors, Smad2 and Smad3. Afterward, phosphorylated Smad2/3 interact physically with Smad4, with the resulting heterotrimers translocating into the nucleus to regulate the expression of TGF-β-responsive genes. These Smad-dependent events are subject to fine-tuning and crosstalk regulation in the cytoplasm by their interaction with a variety of adapter molecules, including SARA, Hgs, PML and Dab2, and with Smad7, whose inhibitory activity is modulated by STRAP, AMSH2, and Arkadia; and in the nucleus by their interaction with a variety of transcriptional activators and repressors that occur in a gene- and cell-specific manner. In addition to activating canonical Smad2/3-dependent signaling, accumulating evidence clearly links the development of a variety of human pathologies to aberrant coupling of TGF-β to its noncanonical effector molecules. Included in this ever expanding list of noncanonical signaling molecules stimulated by TGF-β are PI3K, AKT, mTOR, integrins and focal adhesion kinase, and members of the MAP kinase (e.g., ERK1/2, JNK, and p38 MAPK small GTP-binding proteins (e.g., Ras, Rho, and Rac1). The interactions and intersections between canonical and noncanonical TGF-β signaling systems are depicted in the pathway map. Please access this pathway at NetSlim database. If you use this pathway, please cite the following paper: Kandasamy, K., Mohan, S. S., Raju, R., Keerthikumar, S., Kumar, G. S. S., Venugopal, A. K., Telikicherla, D., Navarro, J. D., Mathivanan, S., Pecquet, C., Gollapudi, S. K., Tattikota, S. G., Mohan, S., Padhukasahasram, H., Subbannayya, Y., Goel, R., Jacob, H. K. C., Zhong, J., Sekhar, R., Nanjappa, V., Balakrishnan, L., Subbaiah, R., Ramachandra, Y. L., Rahiman, B. A., Prasad, T. S. K., Lin, J., Houtman, J. C. D., Desiderio, S., Renauld, J., Constantinescu, S. N., Ohara, O., Hirano, T., Kubo, M., Singh, S., Khatri, P., Draghici, S., Bader, G. D., Sander, C., Leonard, W. J. and Pandey, A. (2010). NetPath: A public resource of curated signal transduction pathways. Genome Biology. 11:R3 d3a Mediates epithelial-mesenchymal transition GO:0045217 Type your comment here Type your comment here Ubiquitination of SMAD2 by ITCH promotes phosphorylation of SMAD2 transforming growth factor-beta superfamily mediated signaling pathway PW:0000329 Pathway Ontology 20067622 PubMed NetPath: a public resource of curated signal transduction pathways. Genome Biol 2010 Kandasamy K Mohan SS Raju R Keerthikumar S Kumar GS Venugopal AK Telikicherla D Navarro JD Mathivanan S Pecquet C Gollapudi SK Tattikota SG Mohan S Padhukasahasram H Subbannayya Y Goel R Jacob HK Zhong J Sekhar R Nanjappa V Balakrishnan L Subbaiah R Ramachandra YL Rahiman BA Prasad TS Lin JX Houtman JC Desiderio S Renauld JC Constantinescu SN Ohara O Hirano T Kubo M Singh S Khatri P Draghici S Bader GD Sander C Leonard WJ Pandey A