--- template: overrides/main.html title: AOLS - Visão Geral --- # AOLS - Visão Geral Exemplo criado por Wilson Rocha Lacerda Junior > **Procurando mais detalhes sobre modelos NARMAX?** > Para informações completas sobre modelos, métodos e uma ampla variedade de exemplos e benchmarks implementados no SysIdentPy, confira nosso livro: > [*Nonlinear System Identification and Forecasting: Theory and Practice With SysIdentPy*](https://sysidentpy.org/book/0%20-%20Preface/) > > Este livro oferece orientação aprofundada para apoiar seu trabalho com o SysIdentPy. ```python import pandas as pd from sysidentpy.utils.generate_data import get_siso_data from sysidentpy.metrics import root_relative_squared_error from sysidentpy.basis_function import Polynomial from sysidentpy.utils.display_results import results from sysidentpy.utils.plotting import plot_residues_correlation, plot_results from sysidentpy.residues.residues_correlation import ( compute_residues_autocorrelation, compute_cross_correlation, ) from sysidentpy.model_structure_selection import AOLS # gerando dados simulados x_train, x_test, y_train, y_test = get_siso_data( n=1000, colored_noise=False, sigma=0.001, train_percentage=90 ) ``` ```python basis_function = Polynomial(degree=2) model = AOLS(xlag=3, ylag=3, k=5, L=1, basis_function=basis_function) model.fit(X=x_train, y=y_train) ``` ```python yhat = model.predict(X=x_test, y=y_test) rrse = root_relative_squared_error(y_test, yhat) print(rrse) r = pd.DataFrame( results( model.final_model, model.theta, model.err, model.n_terms, err_precision=8, dtype="sci", ), columns=["Regressors", "Parameters", "ERR"], ) print(r) ``` 0.0018996279285613828 Regressors Parameters ERR 0 y(k-1) 1.9999E-01 0.00000000E+00 1 x1(k-2) 9.0003E-01 0.00000000E+00 2 x1(k-1)y(k-1) 9.9954E-02 0.00000000E+00 3 x1(k-3)y(k-1) -2.1442E-04 0.00000000E+00 4 x1(k-1)^2 3.3714E-04 0.00000000E+00 ```python plot_results(y=y_test, yhat=yhat, n=1000) ee = compute_residues_autocorrelation(y_test, yhat) plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$") x1e = compute_cross_correlation(y_test, yhat, x_test) plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$") ``` ![png](../../../en/user-guide/tutorials/aols-overview_files/aols-overview_4_0.png) ![png](../../../en/user-guide/tutorials/aols-overview_files/aols-overview_4_1.png) ![png](../../../en/user-guide/tutorials/aols-overview_files/aols-overview_4_2.png)