{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 第十讲 四个基本子空间\n", "\n", "对于$m \\times n$矩阵$A$,$rank(A)=r$有:\n", "\n", "* 行空间$C(A^T) \\in \\mathbb{R}^n, dim C(A^T)=r$,基见例1。\n", "\n", "* 零空间$N(A) \\in \\mathbb{R}^n, dim N(A)=n-r$,自由元所在的列即可组成零空间的一组基。\n", "\n", "* 列空间$C(A) \\in \\mathbb{R}^m, dim C(A)=r$,主元所在的列即可组成列空间的一组基。\n", "\n", "* 左零空间$N(A^T) \\in \\mathbb{R}^m, dim N(A^T)=m-r$,基见例2。\n", "\n", "例1,对于行空间\n", "$\n", "A=\n", "\\begin{bmatrix}\n", "1 & 2 & 3 & 1 \\\\\n", "1 & 1 & 2 & 1 \\\\\n", "1 & 2 & 3 & 1 \\\\\n", "\\end{bmatrix}\n", "\\underrightarrow{消元、化简}\n", "\\begin{bmatrix}\n", "1 & 0 & 1 & 1 \\\\\n", "0 & 1 & 1 & 0 \\\\\n", "0 & 0 & 0 & 0 \\\\\n", "\\end{bmatrix}\n", "=R\n", "$\n", "\n", "由于我们做了行变换,所以A的列空间受到影响,$C(R) \\neq C(A)$,而行变换并不影响行空间,所以可以在$R$中看出前两行就是行空间的一组基。\n", "\n", "所以,可以得出无论对于矩阵$A$还是$R$,其行空间的一组基,可以由$R$矩阵的前$r$行向量组成(这里的$R$就是第七讲提到的简化行阶梯形式)。\n", "\n", "例2,对于左零空间,有$A^Ty=0 \\rightarrow (A^Ty)^T=0^T\\rightarrow y^TA=0^T$,因此得名。\n", "\n", "采用Gauss-Jordan消元,将增广矩阵$\\left[\\begin{array}{c|c}A_{m \\times n} & I_{m \\times m}\\end{array}\\right]$中$A$的部分划为简化行阶梯形式$\\left[\\begin{array}{c|c}R_{m \\times n} & E_{m \\times m}\\end{array}\\right]$,此时矩阵$E$会将所有的行变换记录下来。\n", "\n", "则$EA=R$,而在前几讲中,有当$A'$是$m$阶可逆方阵时,$R'$即是$I$,所以$E$就是$A^{-1}$。\n", "\n", "本例中\n", "\n", "$$\n", "\\left[\\begin{array}{c|c}A_{m \\times n} & I_{m \\times m}\\end{array}\\right]=\n", "\\left[\n", "\\begin{array}\n", "{c c c c|c c c}\n", "1 & 2 & 3 & 1 & 1 & 0 & 0 \\\\\n", "1 & 1 & 2 & 1 & 0 & 1 & 0 \\\\\n", "1 & 2 & 3 & 1 & 0 & 0 & 1 \\\\\n", "\\end{array}\n", "\\right]\n", "\\underrightarrow{消元、化简}\n", "\\left[\n", "\\begin{array}\n", "{c c c c|c c c}\n", "1 & 0 & 1 & 1 & -1 & 2 & 0 \\\\\n", "0 & 1 & 1 & 0 & 1 & -1 & 0 \\\\\n", "0 & 0 & 0 & 0 & -1 & 0 & 1 \\\\\n", "\\end{array}\n", "\\right]\n", "=\\left[\\begin{array}{c|c}R_{m \\times n} & E_{m \\times m}\\end{array}\\right]\n", "$$\n", "\n", "则\n", "\n", "$$\n", "EA=\n", "\\begin{bmatrix}\n", "-1 & 2 & 0 \\\\\n", "1 & -1 & 0 \\\\\n", "-1 & 0 & 1 \\\\\n", "\\end{bmatrix}\n", "\\cdot\n", "\\begin{bmatrix}\n", "1 & 2 & 3 & 1 \\\\\n", "1 & 1 & 2 & 1 \\\\\n", "1 & 2 & 3 & 1 \\\\\n", "\\end{bmatrix}\n", "=\n", "\\begin{bmatrix}\n", "1 & 0 & 1 & 1 \\\\\n", "0 & 1 & 1 & 0 \\\\\n", "0 & 0 & 0 & 0 \\\\\n", "\\end{bmatrix}\n", "=R\n", "$$\n", "\n", "\n", "很明显,式中$E$的最后一行对$A$的行做线性组合后,得到$R$的最后一行,即$0$向量,也就是$y^TA=0^T$。\n", "\n", "最后,引入矩阵空间的概念,矩阵可以同向量一样,做求和、数乘。\n", "\n", "举例,设所有$3 \\times 3$矩阵组成的矩阵空间为$M$。则上三角矩阵、对称矩阵、对角矩阵(前两者的交集)。\n", "\n", "观察一下对角矩阵,如果取\n", "$\n", "\\begin{bmatrix}\n", "1 & 0 & 0 \\\\\n", "0 & 0 & 0 \\\\\n", "0 & 0 & 0 \\\\\n", "\\end{bmatrix} \\quad\n", "\\begin{bmatrix}\n", "1 & 0 & 0 \\\\\n", "0 & 3 & 0 \\\\\n", "0 & 0 & 0 \\\\\n", "\\end{bmatrix} \\quad\n", "\\begin{bmatrix}\n", "0 & 0 & 0 \\\\\n", "0 & 0 & 0 \\\\\n", "0 & 0 & 7 \\\\\n", "\\end{bmatrix}\n", "$\n", ",可以发现,任何三阶对角矩阵均可用这三个矩阵的线性组合生成,因此,他们生成了三阶对角矩阵空间,即这三个矩阵是三阶对角矩阵空间的一组基。" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }