{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "###### Content under Creative Commons Attribution license CC-BY 4.0, code under MIT license (c)2014 W.G. Lamont" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Aerospace Propulsion\n", "=====\n", "\n", "\n", "\n", "#####Version 0.1\n", "\n", "\n", "Welcome to *Aerospace Propulsion*. The full Github repository is available at [https://github.com/wlamont/aerospace_propulsion](https://github.com/wlamont/aerospace_propulsion). Please feel free to contribute" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Chapter 1: Background\n", "======" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ">*With sufficient thrust, pigs fly just fine.* \n", "\n", ">-R. Callon, The Twelve Networking Truths" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The background required for the subsequent chapters falls into two categories: gas dynamics and combustion. If the reader has experience with these subjects this chapter can be safely skipped. Note both gas dynamics and combustion are vast fields with many textbooks and full courses dedicated to each. For a more in-depth treatment of gas dynamics I would recommend Prof. Zucrow's *Gas Dynamics* and for a good detailed book on combustion I would recommend Prof. Glassman's *Combustion*. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Gas Dynamics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Gas dynamics is the overlapping area of fluid mechanics and thermodynamics and is concerned with the motion of gases and its effects on physical structures. Before we begin, we must define our approach (statistical or continuum) and perspective (Eulerian or Lagrangian) for defining the governing equations and our framework for solving problems. For this text, we will use the *continuum approach* -- we will ignore individual molecules and treat the substance as being continuously distributed in space. The continuum approach is valid when the smallest macroscopic length scale is much larger than the microscopic length scale (usually the mean free path of a molecule). Conversely, the *statistical approach* considers individual molecules and the solution requires probability and statistics (this is the approach taken in Statistical Mechanics). In terms of perspective, a moving fluid can be studied by either looking at a control volume (Eulerian point of view) or a control mass (Lagrangian point of view). In the control volume (Eulerian) perspective, a stationary control volume is created in space and we observe the change in fluid passing through the control volume. In the control mass (Lagrangian) perspective, we consider a specific mass as it moves and changes with time. Note: the control mass is allowed to deform and change with time but once defined the control volume is not. For this text, we will use the control volume (Eulerian) perspective. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The most important parameter in aerospace propulsion (and arguably gas dynamics) is the Mach number (M), which is a dimensionless number representing the ratio of the flow velocity ($V$) to the local speed of sound ($a$):" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "Ma \\equiv \\frac{V}{a}\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we will see, the Mach number can be used to recast the governing equations into forms that are better suited for aerospace propulsion. The Mach number can also be used to classify flows:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{eqnarray}\n", "Ma < 0.3 \\; \\rm{ incompressible} \\\\\n", "Ma \\approx 1 \\; \\rm{transonic} \\\\\n", "Ma = 1 \\; \\rm{sonic} \\\\\n", "Ma > 1 \\; \\rm{supersonic} \\\\\n", "Ma > 5 \\; \\rm{hypersonic}\n", "\\end{eqnarray}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we define the speed of sound we first need to introduce the equation of state which describes the relation between various thermodynamic properties. For this text we will use the ideal gas law:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "PV = n R_u T\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $P$ is the pressure, $V$ is the volume, $n$ is the number of moles, $Ru$ is the universal gas constant($Ru = 8314$ kJ /(K$ \\cdot$mol)), and $T$ is the temperature. This equation can be recast into a more useful form by: (1) replacing the number of moles ($n$) with the mass ($m$) divided by the molar mass ($MW$), (2) dividing the mass ($m$) by the volume ($V$) and replacing by the density ($\\rho = m/V$), and (3) replacing the universal gas constant by the specific gas constant ($R = Ru / MW$):" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "P = \\rho R T\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Conservation of Mass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The conservation of mass (also sometimes called continuity) states that matter can not be created nor destroyed. For control volume analysis, the conservation of mass states that mass change within the control volume must equal the net rate at which mass enters and exits the control volume:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "\\left.\\frac{\\partial m}{\\partial t} \\right\\vert_{CV} = \\dot{m}_{in} - \\dot{m}_{out}\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a steady state process, as depicted in figure, the time dependence drops out and the conservation of mass reduces to the simple:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "\\dot{m}_{1} = \\dot{m}_{2}\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"files/cons_mass4.jpeg\">\n", "####Figure 1. Conservation of mass where the control surface (c.s.) for the control volume is shown by the dashed line" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The mass flow rate by definition is: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{eqnarray}\n", "\\dot{m} = \\rho u A\n", "\\end{eqnarray}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $\\rho$ is the density, $u$ is the velocity and $A$ is the area normal to the flow. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{eqnarray}\n", "\\dot{m} = \\rho u A = \\sqrt{\\frac{\\gamma}{R}} \\frac{P^o A D(M)}{\\sqrt{T^o}}\\\\\n", "\\end{eqnarray}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{eqnarray}\n", "D(M) = \\frac{M}{\\left(1+\\frac{\\gamma-1}{2}M^2\\right)^{\\frac{\\gamma+1}{2(\\gamma-1)}}} \\\\\n", "\\frac{D(M)}{dM} = \\frac{D}{M}\\frac{1-M^2}{1+\\frac{\\gamma-1}{2}M^2}\n", "\\end{eqnarray}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above two equations can be programmed into Python to create the *D Function*." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def d_function(gamma, MW, M):\n", " '''\n", " Calculates D(M) and D(M)/dM \n", " where \n", " gamma is the ratio of specific heat\n", " MW is the molecular weight\n", " M is the Mach Number\n", " '''\n", " D = M / (1+(gamma-1)/2*M**2) ** ((gamma+1)/(2*gamma-2))\n", " dD = D / M*(1-M**2) / (1+(gamma-1)/2*M**2)\n", " return D, dD" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXa+PHvHSD0GIr0GlxwaaJLUVHJoiKKgq/oGhUF\ny8pr2X1ta/mxu6jru2JD3LUiArYVFpEqYAGioL5SIyBdQCECUWmhJpD798dMspOQNsmcOc8k9+e6\n5iJncmbmSwJ5Ms8zc46oKsYYY0yuOL8DjDHGuMUGBmOMMfnYwGCMMSYfGxiMMcbkYwODMcaYfGxg\nMMYYk4/nA4OI9BeR9SKyUUQeKmKfZBFZKSJrRGSh103GGGOKJl6+j0FE4oCNwIXAj8BSIEVV14fs\ncwrwJdBPVdNFpKGq/uxZlDHGmGJ5/YyhJ7BJVb9X1WxgEjCowD7XA1NVNR3ABgVjjPGX1wNDc2B7\nyPaO4HWh2gP1RWShiCwVkRs9bjLGGFOMqn4HEGg4C+gL1Aa+EpGvVHWzv1nGGFM5eT0wpAOtQrZb\nBK8LtQP4WVWPAkdF5HPgDCDfwCAidlAnY4wpA1WVcPb3eippKXCaiLQWkXggBZhZYJ8ZwHkiUkVE\nagG9gHWF3Zmq+n4ZOXKkNTjU4UKDKx0uNLjS4UKDKx1l4ekzBlU9ISJ3Ax8TGITeUNV1IjI88Gkd\nq6rrReQjYBVwAhirqmu97CqPbdu2+Z3gRAO40eFCA7jR4UIDuNHhQgO40xEuz9cYVHUe0KHAda8V\n2H4WeNbrFmOMMSWzdz6HadiwYX4nONEAbnS40ABudLjQAG50uNAA7nSEy9M3uEWSiGistBpjjCtE\nBHVs8bnCSU1N9TvBiQZwo8OFBnCjw4UGcKPDhQZwpyNcNjCUwokTJxg3bhzt2rVj1KhRfPfdd34n\nGWOMZ2wqqQTz58/nvvvuIyEhgb/97W989tln/POf/2TQoEE8/vjjNG9e8I3cxhjjjrJMJdnAUIy5\nc+dy22238cILLzB48GBEAl/bvXv38sQTT/DJJ5+wZMkSatSoEdUuY4wpLVtjiKDjx4/zwAMP8Npr\nr3H11VfnDQqpqanUq1ePZ599lg4dOvDwww9Hvc2VeUsXOlxoADc6XGgANzpcaAB3OsJlA0MRxo8f\nT+PGjRkwYEChnxcRxo4dy7Rp05gzZ06U64wxxjs2lVSIzMxM2rdvz+zZs/nNb35T7L6ff/451157\nLWlpaTRu3DgqfcYYU1o2lRQhzzzzDBdddFGJgwLABRdcwK233sptt90WhTJjjPGeDQwFpKen89JL\nL/G///u/hX6+sDnDkSNH8u233/Lll196XFd0gx9c6HChAdzocKEB3OhwoQHc6QiXDQwFjB49mltu\nuYVWrVqVvHNQtWrVePDBB3nyySc9LDPGmOiwNYYQqkpSUhIzZ86kS5cuYd326NGjJCUlMXfuXM44\n4wyPCo0xJjy2xlBO33zzDXFxcXTu3Dns29aoUYP77ruPUaNGeVBmjDHRYwNDiGnTpvFf//Vfee9Z\nKExxc4bDhw/n008/ZdOmTR7Ula4hmlzocKEB3OhwoQHc6HChAdzpCJcNDCGmT5/OlVdeWebb161b\nl7vuuounn346glXGGBNdtsYQtGXLFs4991zS09OpUqVKme/nl19+4Ve/+hWrV6+24ygZY3xnawzl\nMH36dAYOHFiuQQGgQYMGpKSkMGHChAiVGWNMdNnAEDRt2rRSTSOVZs7w5ptvZuLEiWU+EXckGqLB\nhQ4XGsCNDhcawI0OFxrAnY5w2cAAZGRksHr1ai688MKI3F/37t2pUaMGixYtisj9GWNMNNkaAzBu\n3Dg++eQTJk+eHLH7HD16NKtWrWLixIkRu09jjAlXWdYYqnoVE0umT5/OkCFDInqfQ4YMoUOHDmRm\nZlK3bt2I3rcxxnip0k8lHT9+nM8++4x+/fqVav/Szhk2atSIPn36MGXKlHLUla/Bay50uNAAbnS4\n0ABudLjQAO50hKvSDwzffvstzZs3p379+hG/71tuuYXx48dH/H6NMcZLlX6NYezYsXzxxRe8+eab\nEb/v7OxsWrZsyeeff0779u0jfv/GGFMSex9DGXz99df06tXLk/uuVq0aQ4YM8WTQMcYYr9jAEObA\nEO6c4fXXX8/kyZMj+p4GV+YtXehwoQHc6HChAdzocKEB3OkIV6UeGA4cOMC2bdvo2rWrZ49x5pln\noqqkpaV59hjGGBNJnq8xiEh/YAyBQegNVX2qwOf7ADOALcGrPlDVJwq5n4ivMcyfP5+RI0eyePHi\niN5vQY888giAncjHGBN1zq0xiEgc8CJwCdAJuE5ETi9k189V9azg5aRBwSteri+Euuaaa5gyZYpn\nh8gwxphI8noqqSewSVW/V9VsYBIwqJD9whrNIqUsA0NZ5gwjPZ3kyrylCx0uNIAbHS40gBsdLjSA\nOx3h8npgaA5sD9neEbyuoHNEJE1EPhSRjh43AYHTeEbrGYOI5D1rMMYY13m6xiAig4FLVPX24PYQ\noKeq/jFknzpAjqoeFpFLgRdU9aQX/Ud6jeH777+nV69e7Ny5s9gztkXKihUr+N3vfsemTZui8njG\nGANuHispHWgVst0ieF0eVT0Y8vFcEXlZROqr6p6CdzZs2DDatGkDQGJiIt26dSM5ORn4z1O20m6/\n8cYbnHbaaXk/pMO9fbjb+/fv5/Dhw6SlpXHmmWd6/ni2bdu2XTm3U1NT8w7emfvzMmyq6tkFqAJs\nBloD8UAa8OsC+zQO+bgnsK2I+9JIuvfee/Xvf/972LdbuHBhmR/zoYce0kceeaTMt49EQyS50OFC\ng6obHS40qLrR4UKDqhsdwZ+dYf3s9nSNQVVPAHcDHwPfApNUdZ2IDBeR24O7XS0ia0RkJYGXtV7r\nZVOuaK0vhLJXJxljYkGlPFZSdnY2iYmJ7Ny5k4SEhIjcZ2moKm3btuXDDz+kU6dOUXtcY0zl5dz7\nGFy1evVq2rRpE9VBAQLfoIEDBzJjxoyoPq4xxoSjUg4M3377bZkPg5G7yFNWgwYNKvfAUN6GSHGh\nw4UGcKPDhQZwo8OFBnCnI1yVcmBYu3YtHTtG5e0SJ7ngggvYtGkTP/74oy+Pb4wxJamUawyDBg3i\npptuYvDgwRG5v3DdcMMNXHDBBQwfPtyXxzfGVB62xlBKfj5jgMhMJxljjFcq3cBw9OhRduzYwWmn\nnVam20dizrB///4sXryYzMxM3xoiwYUOFxrAjQ4XGsCNDhcawJ2OcFW6gWHjxo20bduWatWq+daQ\nkJDAueeey7x583xrMMaYolS6NYZJkybx/vvv8/7770egquxeeeUVvvjiC9555x1fO4wxFZutMZSC\n3+sLuQYOHMicOXPIzs72O8UYY/KxgSFMkZozbN68Oe3atWPRokW+NZSXCx0uNIAbHS40gBsdLjSA\nOx3hqnQDw7p165x4xgBwxRVX8OGHH/qdYYwx+VSqNYbs7GwSEhLYu3cvNWrUiFBZ2a1YsYKUlBQ2\nbtzod4oxpoKyNYYSbN68mRYtWjgxKEDglJ+HDh2ygcEY45RKNTBEYuE5knOGIsLll1/O7NmzfWso\nDxc6XGgANzpcaAA3OlxoAHc6wmUDg8/KMjAYY4yXKtUaw/XXX8+ll17KjTfeGKGq8jt8+DBNmjTh\nhx9+IDEx0e8cY0wFY2sMJXDxGUOtWrU4//zz+eijj/xOMcYYoBINDCdOnGDjxo2cfvrp5bofL+YM\nr7jiirCmk1yZt3Shw4UGcKPDhQZwo8OFBnCnI1yVZmDYunUrjRo1onbt2n6nnGTAgAHMnTuXEydO\n+J1ijDGVZ41h5syZvPrqq8yZMyeCVZHTrVs3XnrpJXr37u13ijGmArE1hmK49I7nwlx++eXMmjXL\n7wxjjKk8A8OGDRvo0KFDue/HqznDyy+/vNSHx3Bl3tKFDhcawI0OFxrAjQ4XGsCdjnBVmoFhy5Yt\nJCUl+Z1RpB49erB7926+//57v1OMMZVcpVljaN26NampqbRt2zaCVZE1dOhQevXqxZ133ul3ijGm\ngrA1hiJkZWWxa9cuWrZs6XdKsexd0MYYF1SKgeH777+nRYsWVK1atdz35eWcYb9+/Vi8eDGHDh3y\nrSEcLnS40ABudLjQAG50uNAA7nSEq1IMDK6vL+Q65ZRT6N69OwsWLPA7xRhTiVWKNYZXXnmFtLQ0\nXnvttQhXRd7o0aPZuHEjr776qt8pxpgKwNYYihArzxgg8C7o2bNnEysDtjGm4vF8YBCR/iKyXkQ2\nishDxezXQ0SyReSqSDdEcmDwes6wffv21KxZk2+++ca3htJyocOFBnCjw4UGcKPDhQZwpyNcng4M\nIhIHvAhcAnQCrhORk45iF9xvFODJIUa3bNni9MtUQ4kIAwYMsHNBG2N84+kag4icDYxU1UuD2w8D\nqqpPFdjvf4AsoAcwW1U/KOS+yrTGoKokJiaydetW6tevX5a/RtR9+umn/OUvf+Grr77yO8UYE+Nc\nXGNoDmwP2d4RvC6PiDQDrlTVV4Cw4ktjz549iAj16tWL9F175oILLmDdunVkZGT4nWKMqYTK/8L+\n8hsDhK49FDk4DBs2jDZt2gCQmJhIt27dSE5OBv4zl1dwu3bt2iQlJfHZZ58V+vlwt3OvK+vtS7Md\nHx/PGWecwejRoxk1atRJny/YEunHL+12Wloa99xzj2+PH/o18Ovxc7fHjBlTqn+PFf374cq/Txe+\nH6Ffg2h//SdOnAiQ9/MybKrq2QU4G5gXsv0w8FCBfbYEL1uBTGAXMLCQ+9KymDRpkg4ePLhMty3M\nwoULI3ZfxZk4cWKR3dFqKIkLHS40qLrR4UKDqhsdLjSoutER/NkZ1s9ur9cYqgAbgAuBncAS4DpV\nXVfE/hOAWRrBNYZRo0axZ88enn766bBv66eMjAzat2/P7t27qV69ut85xpgY5dwag6qeAO4GPga+\nBSap6joRGS4itxd2k0g3xNJ7GEI1atSIjh075k2BGWNMtHj+PgZVnaeqHVT1V6o6Knjda6o6tpB9\nbyns2UJ5RPqlqqFzh14r6qB60WwojgsdLjSAGx0uNIAbHS40gDsd4arw73yO1WcMAFdccQWzZs2y\nd0EbY6KqQh8rKTs7mzp16pCZmUl8fLxHZd5RVdq2bcvs2bPp3Lmz3znGmBjk3BqD37Zv306TJk1i\nclCAwDfUztFgjIm2Cj0weDGNFO05w9zpJD8biuJChwsN4EaHCw3gRocLDeBOR7hsYHBccnIya9as\n4aeffvI7xRhTSVToNYaHH36YunXrMmLECI+qouOqq65i0KBBDB061O8UY0yMsTWGAmLpqKrFGTRo\nEDNmzPA7wxhTSVT4gSHW1xggcPKe+fPnc+TIEd8aCuNChwsN4EaHCw3gRocLDeBOR7gq9MCwbdu2\nCvGMoWHDhnTr1o358+f7nWKMqQQq7BrD4cOHqV+/PkeOHEEk4kfzjrrRo0ezbt06Xn/9db9TjDEx\nxNYYQmzfvp0WLVpUiEEBAusMs2bNIicnx+8UY0wFV6EHhpYtW0b8fv2aM2zXrh0NGzbk66+/dmbe\n0oUOFxrAjQ4XGsCNDhcawJ2OcNnAEEPs1UnGmGiosGsMjz/+OEePHuXvf/+7h1XRtWTJEoYOHcq6\ndYWezsIYY05iawwhKuIzhu7du7N//342btzod4oxpgIrdmAQkQMlXDJFxMmfUhVtjQEgLi6OQYMG\nMXr0aN8aQrkwf+pCA7jR4UIDuNHhQgO40xGukp4xfKeqCcVc6gKHohEaror4jAHgyiuvZNGiRX5n\nGGMqsGLXGEQkSVW3FHsHpdgnEsJdY0hISGDbtm3Ur1/fw6roy8rKokmTJqxZs4ZmzZr5nWOMcVzE\n1xgK+4EvIpeXtI/f9u/fz4kTJ6hXr57fKREXHx/PgAEDmDZtmt8pxpgKqiyLz49HvCLCcqeRvHhz\nmwtzhh06dGDq1Kl+ZzjxtXChAdzocKEB3OhwoQHc6QhXWQYG599KXFHXF3L16NGD5cuX8/PPP/ud\nYoypgMJ+H4OI9FTVJR71FPe4pV5jeP311/nqq68YP368x1X+ueaaa+jfvz+33nqr3ynGGIdFfI1B\nRM4qeF3BQaGwffxW0Z8xAAwePJgPPvjA7wxjTAVU0lTSBBGpJyL1i7oAb0QjNBxeDgwuzBmmpqZy\n2WWXsWjRIvbv3+9rh99caAA3OlxoADc6XGgAdzrCVbWEz58CLKf4dQXnTkZcGZ4xJCQk0KdPH2bP\nns0NN9zgd44xpgKpkMdK6tChA9OmTaNjx44eV/lr4sSJzJo1y4lXKBlj3FSWNYYKNzCoKrVr12b3\n7t3UrVs3CmX++eWXX0hKSiI9PZ06der4nWOMcZAdRA/Ys2cP8fHxng0KLswZ5jY0aNCAc845h9mz\nZ/va4ScXGsCNDhcawI0OFxrAnY5weT4wiEh/EVkvIhtF5KFCPj9QRL4RkZUiskREepfn8SrD+kKo\na6+9lsmTJ/udYYypQEo1lSQiccAZQDPgCLBGVTNKebuNwIXAj8BSIEVV14fsU0tVDwc/7gL8W1V/\nXch9lWoqadasWbzyyivMmTOnxH0rgn379tG6dWu2b99OQkKC3znGGMd48T6GdiIyFtgMjAKuA+4E\nPhWR/xORm4M//IvSE9ikqt+rajYwCRgUukPuoBBUByjXSY0r2zOGxMRE+vTpY2d2M8ZETElTSU8A\n7wDtVPUSVR2iqleraldgIIGXs95YzO2bA9tDtncEr8tHRK4UkXXALOCWcP4CBXk9MLgwZ1iwwa/p\nJBe/Fn5xocOFBnCjw4UGcKcjXMW+j0FVryvmcxnAmEhEqOp0YLqInEdgMLq4sP2GDRtGmzZtgMBv\nyt26dSM5ORn4zzdg+/btXHzxxXnbBT9f3u1cXt1/WbYHDhzI7bffzsyZMxk4cGDUHj8tLc33v38u\nv78faWlpvj6+K98PV7Zd+H6Eiubjp6amMnHiRIC8n5fhKul8DFcVd2NVLfaYDCJyNvCoqvYPbj8c\nuJk+VcxtvgN6qOqeAteXao2hT58+jBw5kr59+5a4b0UyePBgLrvsMjt2kjEmHy9ervo+8Gfg8uDl\nipDL5cXcLtdS4DQRaS0i8UAKMLNAdLuQj88C4gsOCuGobGsMuVJSUuzVScaYiChpYLiKwKuKugJb\ngf9V1ZuDlxLXAlT1BHA38DHwLTBJVdeJyHARuT2422ARWSMiK4B/Ar8r618mJyeH9PR0WrRoUda7\nKFHBp4h+KKxhwIABLFmyhIyMEl8s5mlHtLnQAG50uNAAbnS40ADudISrpDO4TVfVFKAP8B3wnIgs\nFpE+pX0AVZ2nqh1U9VeqOip43WuqOjb48dOq2llVz1LV3qr6VVn/MhkZGSQkJFCzZs2y3kXMqlWr\nFpdddhlTpkzxO8UYE+NK+z6GKkB/AlNBXYCHVPUjj9sKNpS4xrB06VKGDx/OihUrolTllg8//JAn\nnniCr74q89hqjKlgvHgfQ9/g+xiWA78FXlDVbtEeFEorPT2d5s1PejVspdGvXz+2bNnCpk2b/E4x\nxsSwktYYPiXwJrXFQHXgJhH5R+7F87ow7dy5k2bNmnn6GC7MGRbVUK1aNVJSUnjnnXd87YgmFxrA\njQ4XGsCNDhcawJ2OcJV0PoZbgNg4/Crw448/ej4wuO7GG2/k2muv5dFHH0XE+dNzG2McVKEOu33r\nrbdy9tln8/vf/z5KVe5RVTp27Mi4cePo3btcxyM0xlQAXqwxvC4inYv4XG0RuUVEnDl9mD1jCPwj\nuPHGG3n77bf9TjHGxKiS1hheAv4qIutEZIqIvCwi40VkEfAlUJfAm+CcEI2BwYU5w5IahgwZwpQp\nUzh27JivHdHgQgO40eFCA7jR4UIDuNMRrpKOlZQG/E5E6gDdgaYEDru9TlU3RKEvLPaMIaBVq1Z0\n7dqVDz/8kKuuKvaoJsYYc5JSrzGIyKkAqvqTp0VFP36xawxZWVnUqVOHo0ePEhdX4U5MF7bx48cz\nc+ZMpk+f7neKMcZHXqwxiIg8KiI/AxuAjSLyk4j8tTyhXti1axeNGjWyQSHommuu4bPPPmPXrl1+\npxhjYkxJP0XvBXoTONppfVWtB/QCeovIvZ7XhSFa00guzBmWpqFu3boMHjyYN99809cOr7nQAG50\nuNAAbnS40ADudISrpIHhRuA6Vd2ae4WqbgGGADd5GRYuW1842W233ca4ceOIlZckG2PcUNL5GNao\nalEvVy3yc14oaY3hxRdfZO3atbz88svRSnKeqtKlSxdeeukl+vQp9XEPjTEViBfnY8gq4+eizp4x\nnExE8p41GGNMaZU0MJwhIgcKuWQSOMqqM2yNoXBDhgxh1qxZ7N2719cOr7jQAG50uNAAbnS40ADu\ndISrpPMxVFHVhEIudVW1WrQiSyMaB9CLRQ0bNqR///7861//8jvFGBMjKsyxkrp06cI777zDGWec\nEcWq2PDpp5/ywAMPsHLlSjuwnjGVjBdrDDHD1hiK1rdvXzIzM/n666/9TjHGxIAKMTAcPXqUzMxM\nGjRo4PljuTBnGG5DXFwcd955Jy+99JKvHV5woQHc6HChAdzocKEB3OkIV0nnY4gJO3fupGnTpvau\n52LcfPPNJCUlsXv3bho3bux3jjHGYRVijeGLL77ggQcesHMdl+C2226jbdu2jBgxwu8UY0yUVNo1\nBltfKJ277rqLV199lePHj/udYoxxWIUYGKL5UlUX5gzL2nDmmWfSunVrZsyY4WtHJLnQAG50uNAA\nbnS40ADudISrQgwM9oyh9O6++25efPFFvzOMMQ6rEGsMN910E3379mXYsGHRjYpBWVlZtG7dmk8+\n+YTOnaN2qCtjjE9sjcGUKD4+njvuuIMxY8b4nWKMcZQNDGFyYc6wvA133nknU6dOZefOnb52RIIL\nDeBGhwsN4EaHCw3gTke4bGCohBo2bMgNN9zAP//5T79TjDEO8nyNQUT6A2MIDEJvqOpTBT5/PfBQ\ncDMTuENVVxdyP4WuMRw+fJj69etz5MgROw5QGLZs2ULPnj3ZunUrdevW9TvHGOMR59YYRCQOeBG4\nBOgEXCcipxfYbQtwgaqeATwBvB7OY+S+VNUGhfAkJSXRt29fO1eDMeYkXk8l9QQ2qer3qpoNTAIG\nhe6gqv+nqvuDm/8HNA/nAaI9jeTCnGGkGv70pz/x/PPPk52d7WtHebjQAG50uNAAbnS40ADudITL\n64GhObA9ZHsHxf/gvw2YG84D/PjjjzRt2rQMaaZHjx60a9eOf//7336nGGMc4sxB9ETkt8DNwHlF\n7TNs2DDatGkDQGJiIt26dct7xpA7MicnJwNU6O3k5OSI3d+DDz7Igw8+mHcQwnBvn8ulr48f27nX\n+d0T2uLH40f632esfz/82E5NTWXixIkAeT8vw+Xp4rOInA08qqr9g9sPA1rIAnRXYCrQX1W/K+K+\nCl18/tOf/kTDhg156KGHCrmVKYmq0qNHDx555BEGDx7sd44xJsKcW3wGlgKniUhrEYkHUoCZoTuI\nSCsCg8KNRQ0Kxck95Ha0FPzNzA+RbBARHn30UR577DFycnJ86ygrFxrAjQ4XGsCNDhcawJ2OcHk6\nMKjqCeBu4GPgW2CSqq4TkeEicntwt78A9YGXRWSliCwJ5zF27dplawzlNGDAAOLj45k2bZrfKcYY\nB8T8sZI6d+7Me++9R5cuXXyoqjhmz57NiBEjWLlypZ3wyJgKxMWpJM/t2rWLJk2a+J0R8wYMGEC1\natWYPn263ynGGJ/F9MCQlZXFgQMHonKu51wuzBl60VCWtYaK+rUoCxc6XGgANzpcaAB3OsIV0wND\nRkYGp556qk19RMiAAQOoXr06kydP9jvFGOOjmF5jWLZsGcOHD2f58uU+VVU8qamp3Hzzzaxfv57q\n1av7nWOMKadKt8Zg6wuRl5ycTOfOnXn55Zf9TjHG+MQGhjC5MGfodcOoUaN48skn2bdvn68dpeFC\nA7jR4UIDuNHhQgO40xEuGxjMSTp16sSgQYMYNWqU3ynGGB/E9BrD3XffTYcOHfjDH/7gU1XF9eOP\nP9KlSxdWrlxJq1at/M4xxpSRrTGYiGnWrBl33XWXHYPKmErIBoYwuTBnGK2Ghx9+mC+//JKFCxf6\n2lEcFxrAjQ4XGsCNDhcawJ2OcNnAYIpUq1Ytnn/+ee6+++4yn8zHGBN7YnqNoU6dOuzcudPOWewh\nVaV///7069eP+++/3+8cY0yYyrLGELMDw8GDB2ncuDEHDx608z17bOPGjZx77rmsWrUqqqdRNcaU\nX6VafM6dRor2oODCnGG0G9q3b8/tt99+0jOGyvi1KIoLHS40gBsdLjSAOx3hivmBwUTHiBEjWLJk\nCbNmzfI7xRjjsZidSnr//fd57733mDp1qo9VlUtqaipDhgxhzZo1JCYm+p1jjCmFSjmVZKInOTmZ\ngQMHct999/mdYozxkA0MYXJhztDPhqeeeooFCxYwb968Sv+1COVChwsN4EaHCw3gTke4YnZg2Llz\npz1j8EHdunV5/fXXGT58OAcPHvQ7xxjjgZhdYxgwYAD//d//zRVXXOFjVeV15513sm/fPt599117\nubAxDrM1BhM1zz33HKtWreKtt97yO8UYE2E2MITJhTlDFxpq1qzJ/fffzwMPPMDGjRt963DhawFu\ndLjQAG50uNAA7nSEKyYHhpycHDIyMmjUqJHfKZVa27Zteeyxx0hJSeHYsWN+5xhjIiQm1xh++ukn\nTj/9dH755Refq4yqctVVV9GyZUv+8Y9/+J1jjCmg0qwx2PqCO0SECRMmMHfuXFtvMKaCsIEhTC7M\nGbrQAP/pSExMZPr06dx///0sW7bMlwa/udDhQgO40eFCA7jTES4bGExEdOrUiddee43BgweTkZHh\nd44xphxico3hmWeeYdeuXTz33HM+V5mC/vznP7No0SI+/vhjqlev7neOMZWek2sMItJfRNaLyEYR\nOekEwiLSQUS+FJGjIlKqg/Ds2rWLpk2bRj7WlNvjjz/OqaeeyrBhw8jJyfE7xxhTBp4ODCISB7wI\nXAJ0Aq7aDGWyAAARs0lEQVQTkdML7PYL8AfgmdLer60x+N8AhXfExcXx9ttvs337dh555BFfGvzg\nQocLDeBGhwsN4E5HuLx+xtAT2KSq36tqNjAJGBS6g6r+rKrLgeOlvVNbY3BbzZo1mTFjBjNmzODF\nF1/0O8cYEyZP1xhEZDBwiareHtweAvRU1T8Wsu9IIFNVRxdxX3lrDJ06dWLy5Ml07tzZs3ZTflu3\nbuW8887jueeeIyUlxe8cYyqlsqwxVPUqxkv2jCE2tG3blnnz5nHxxRdTrVo1Bg8e7HeSMaYUvB4Y\n0oFWIdstgteVybBhw2jTpg0XXXQRb731FmeddRbJycnAf+byvN7OvS5aj1fYdsGWaD9+7nZaWhr3\n3HNPifvPmzeP3/72t6xfv54RI0ZEtKfg18Svr8eYMWPo1q1bTHw/vN524d+nC9+P0K9BtL/+EydO\nBKBNmzaUiap6dgGqAJuB1kA8kAb8uoh9RwL3F3Nf6oKFCxf6neBEg2p4HUuXLtVGjRrp7NmzfWvw\nkgsdLjSoutHhQoOqGx3Bn51h/ez2/H0MItIfeIHAQvcbqjpKRIYHY8eKSGNgGVAXyAEOAh1V9WCB\n+1GvW423vv76awYOHMiYMWO47rrr/M4xplIoyxpDTL7BzcSu1atXc+mllzJixAjuuOMOv3OMqfCc\nfINbRRM6d1iZG6BsHV26dOHzzz/n2Wef5YknnqC8g30sfy0qYgO40eFCA7jTES4bGEzUJSUlsXjx\nYqZOncqtt95KVlaW30nGmBA2lWR8c+jQIYYMGcIvv/zCBx98QMOGDf1OMqbCsakkE1Nq167N1KlT\n6d27N7169WLVqlV+JxljsIEhbC7MGbrQAJHpiIuL48knn+Txxx/nwgsvZMKECVFviAQXOlxoADc6\nXGgAdzrCZQODccINN9zAZ599xjPPPMMtt9zC4cOH/U4yptKyNQbjlIMHD3LHHXewfPly3nrrLbp3\n7+53kjExzdYYTMyrU6cOb7/9Nn/961+57LLLeOyxx8jOzvY7y5hKxQaGMLkwZ+hCA3jbkZKSwsqV\nK/nyyy8555xzWLlyZdQbwuFChwsN4EaHCw3gTke4bGAwzmrevDnz5s3jjjvu4JJLLuG+++7j4MGD\nJd/QGFMutsZgYkJGRgYPPPAAqampPPvss1xzzTWIhDVtakylZMdKMhVeamoq9957LzVr1uT555+n\nV69eficZ4zRbfI4CF+YMXWgAfzqSk5NZtmwZv//977nqqqvo27cv69evj3pHQS58T1xoADc6XGgA\ndzrCZQODiTlVqlTh5ptvZsOGDZx22mlccMEF3HTTTWzevNnvNGMqBJtKMjHvwIEDvPDCC7zwwgtc\nfPHFPPjgg5x55pl+ZxnjBJtKMpVSQkICf/nLX9iyZQvdu3fniiuuoF+/fsydO5ecnBy/84yJOTYw\nhMmFOUMXGsCNjtCGhIQE7r//frZs2cL111/Pn//8Z9q3b89zzz3Hnj17otbhFxcawI0OFxrAnY5w\n2cBgKpz4+HiGDRvGsmXLeOedd0hLSyMpKYmUlBQ++ugjTpw44XeiMU6zNQZTKezdu5f33nuP8ePH\ns3v3blJSUkhJSeGss86y90OYCs3ex2BMKaxZs4ZJkybx3nvvUaVKFa6++mquvPJKunfvTlycPYk2\nFYstPkeBC3OGLjSAGx1laejcuTNPPPEEmzdv5t1330VVGTp0KC1btuSOO+5g5syZYR96I1a/Fl5w\nocOFBnCnI1w2MJhKS0To0aMHTz75JOvWrWP+/PkkJSUxZswYmjZtykUXXcSoUaNYunSprUuYSsWm\nkowpRGZmJgsWLGDBggXMnz+f9PR0zjvvPM4//3zOO+88fvOb31C9enW/M40pka0xGOOR3bt3s2jR\nIhYvXsyiRYtYv349Xbt2pVevXvTq1Yvu3bvTrl07W6MwzrE1hihwYc7QhQZwoyNaDY0bN+bqq69m\nzJgxLF++nN27dzNq1CiaNWvGlClTOP/886lXrx59+vThnnvuYfz48Sxbtiyqpyh14fsBbnS40ADu\ndISrqt8BxsSiOnXq0KdPH/r06QMEfgB06dKFFStW8M0335Camso//vEPNmzYQLNmzejYsSMdO3ak\nQ4cOtG/fng4dOtCwYUN7qaxxkk0lGeOh48eP891337F27VrWrl3Lhg0b2LhxIxs2bEBVadeuXd6l\nbdu2tGnThjZt2tCqVStq1Kjhd76pAGyNwZgYoars2bOH7777js2bN7Nlyxa2bdvGtm3b2Lp1K+np\n6SQkJNCqVStatGhB8+bN8/5s2rQpTZo0oWnTptSvX9/WNUyxnBwYRKQ/MIbAesYbqvpUIfv8A7gU\nOAQMU9W0QvZxYmBITU0lOTm50je40uFCgxcdOTk5ZGRk8MMPP7Bjxw7S09PzLjt37sy7HDx4kFNP\nPZXGjRtTtWpVOnToQKNGjTj11FNp0KABDRs2pEGDBjRo0ID69etTv359z19N5cL3xIUGVzrKMjB4\nusYgInHAi8CFwI/AUhGZoarrQ/a5FGinqr8SkV7Aq8DZXnaVR1pamu/faBcaXOlwocGLjri4OJo0\naUKTJk3o2bNnkfsdO3aMjIwMdu/ezdixY+nduzc//fQTP/30E5s3b+bnn3/ml19+Yc+ePXmXKlWq\nkJiYSL169UhMTCQxMZFTTjkl78+EhAQSEhKoW7fuSZc6depQp04dateuTXx8fKFrJC58T1xocKkj\nXF4vPvcENqnq9wAiMgkYBISecmsQ8BaAqn4tIqeISGNV3e1xW5ns27fP7wQnGsCNDhcawL+O6tWr\n07JlS1q2bMns2bMZOnRosfurKocPH2bfvn3s3buXvXv3sn//fvbv38++ffvIzMzkwIED7NixgwMH\nDpCZmZl3OXjwIAcPHsz7WFXzBonatWtTq1YtatWqxa5du1iwYAE1a9Ys9FKjRo2TLtWrVy/2Eh8f\nn+9SpUqVYhfuK/u/i/LyemBoDmwP2d5BYLAobp/04HVODgzGxDIRyftB3rx583LdV1ZWFocOHeLQ\noUMcPnw47+PXXnuNa665hsOHD3PkyJF8l6NHj7J3716OHDnCsWPHOHbsWL6Pjx07xtGjR8nKysrb\nzsrKytvOysoiOzubnJwc4uPjqVatWt6foZe9e/cyY8aMvO2qVaue9GdhlypVqpT4Z1GXuLi4kz5e\nvXo1kyZNOun6uLi4Qi9FfU5ESrwud1tEaN68OdWqVSvz99Zerhqmbdu2+Z3gRAO40eFCA7jREe2G\n3N/e69Wrl+/6cePGMXDgQE8f+8SJE2RnZ5OdnZ03cORuZ2dn89BDDzFy5Mi87ePHj3P8+PF8H+du\nnzhxIt/HuduF/ZmVlZW3T+glJyen0I9XrFhB1apV812f+6eq5ruu4PWFbYfeRlWL3F64cCFJSUll\n/vp6uvgsImcDj6pq/+D2w4CGLkCLyKvAQlWdHNxeD/QpOJUkIv6vPBtjTAxyavEZWAqcJiKtgZ1A\nCnBdgX1mAncBk4MDyb7C1hfC/YsZY4wpG08HBlU9ISJ3Ax/zn5errhOR4YFP61hVnSMil4nIZgIv\nV73ZyyZjjDHFi5k3uBljjIkOe8tkKYnIGyKyW0RW+djQQkQWiMi3IrJaRP7oQ0N1EflaRFYGG0ZG\nuyGkJU5EVojITB8btonIN8GvxxIfO04RkSkisi7476NXlB+/ffBrsCL4536f/n3eKyJrRGSViLwr\nIvHRbgh2/E/w/0dU/58W9nNKROqJyMciskFEPhKRU0q6HxsYSm8CcInPDceB+1S1E3AOcJeInB7N\nAFU9BvxWVc8EugGXikjR78Dy1v8Aa3167Fw5QLKqnqmqfn0dAF4A5qjqr4EzgHXRfHBV3Rj8GpwF\n/IbAtPC0aDaISDPgD8BZqtqVwFR5SjQbgh2dgFuB7gT+j1wuImV/iVB4Cvs59TDwqap2ABYAj5R0\nJzYwlJKqLgb2+tywK/dwIap6kMB//vK9GL1sHbnHkq5O4D9f1OcjRaQFcBkwLtqPXTAFn/8fiUgC\ncL6qTgBQ1eOqesDHpIuA71R1e4l7Rl4VoLaIVAVqETjiQrT9GvhaVY+p6gngc+CqaDxwET+nBgFv\nBj9+E7iypPuxgSFGiUgbAr+NfO3DY8eJyEpgF/CJqi6NdgPwPPAnfBiUClDgExFZKiK/96mhLfCz\niEwITuWMFZGaPrUAXAu8F+0HVdUfgeeAHwi8UXafqn4a7Q5gDXB+cAqnFoFfYFr60JGrUe4rPVV1\nF9CopBvYwBCDRKQO8D7wP8FnDlGlqjnBqaQWQC8R6RjNxxeRAcDu4LMnCV780js4fXIZgam983xo\nqAqcBbwUbDlMYPog6kSkGjAQmOLDYycS+O24NdAMqCMi10e7I3gsuKeAT4A5wErApZOGl/jLlA0M\nMSb4FPl94G1VneFnS3C6YiHQP8oP3RsYKCJbCPxm+lsReSvKDQCo6s7gnz8RmFP3Y51hB7BdVZcF\nt98nMFD44VJgefDrEW0XAVtUdU9wCucD4FwfOlDVCaraXVWTgX3ARj86gnaLSGMAEWkCZJR0AxsY\nwuP3b6cA44G1qvqCHw8uIg1zX9UQnK64mPwHRfScqv4/VW2lqkkEFhcXqOpN0WwAEJFawWdviEht\noB+BaYSoCk4TbBeR9sGrLsS/Rfnr8GEaKegH4GwRqSGBI+xdSJQX4XOJyKnBP1sB/wX8K5oPT/6f\nUzOBYcGPhwIl/kJpx0oqJRH5F5AMNBCRH4CRuYt9UWzoDdwArA7O8Svw/1R1XhQzmgJvBg+pHgdM\nVtU5UXx8lzQGpgUP11IVeFdVP/ap5Y/Au8GpnC348EbR4Hz6RcDt0X5sAFVdIiLvE5i6yQ7+OdaP\nFmCqiNQPdtwZrRcDFPZzChgFTBGRW4Dvgd+VeD/2BjdjjDGhbCrJGGNMPjYwGGOMyccGBmOMMfnY\nwGCMMSYfGxiMMcbkYwODMcaYfGxgMMYYk48NDMZ5IpITesgLEakiIj+V9TwMIrI1+OYjX4hIZgTv\na6iIZIhIoW/kEpGnRWSniNwXqcc0FZ+989nEgkNAZxGpHjwfxMVAeQ7p7Pe7Osv8+CJSJXgcoFCT\nVLXQk8Go6oMiEvUDLZrYZs8YTKyYAwwIfpzveDwi0kNEvhSR5SKyWER+Fbw+TkSeCZ5FK01E7sq9\nCfDH4P7fhBxjiJD7HCoiU0VkbvDMV0+FfC4z5OPBIjIh+PEEEXlZRL4Skc0i0id4Rq21IjI+/93L\n6OCZxj4RkQbBK5OCj7dURD7L7Qre7ysi8n8EjtoZLr+P72VijA0MJhYoMAm4TkSqA13Jfx6KdcB5\nqvobAseGeTJ4/XACh2DuqqrdgHdDbpMR3P9VAud1KMwZwDXBx7tWRHJPilTwN/7Q7URVPQe4j8DB\ny55T1Y5AVxHpGtynNrBEVTsTOIlL7ulRxwJ3q2qPYNMrIffbXFXPVtUHimg1JmJsKsnEBFVdEzw5\n0XXAh+T/LTgReCv4TCH3gHYQOLrmKxo8IJiq7gu5Te5pJ5cTOPplYebnnu9CRNYSGGTSKf438FnB\nP1cDu1Q19yin3wJtgFUETgf67+D17xA44FptAoeInhI8MihAtZD7jfr5DUzlZQODiSUzgWcIHD2y\nYcj1fyNw6O2rRKQ1gXNElORY8M8TFP3/4FjIx6H7hT5DqFHEbXIK3D6nmMdRAs/e9wZPtFOYQ0Vc\nn09wyupMIF1VLy/NbYwpyKaSTCzI/Q16PPCYqn5b4POnEPhNHvIfbvoTYLiIVAEQkXoR6tklIh2C\nhx4v6tkGFP3MIg64OvjxDcBiVc0EtopI7vWETD2Vmqreoqpn2qBgysMGBhMLcqeC0lX1xUI+/zQw\nSkSWk//f9DgCr15aFTx/xXWh91eWhqBHCExnLSb/yeaLW3sI/fgg0FNEVhN49vN48PobgFuDC+Vr\nCJwis6y9xpSZnY/BmBgmIkOB7qr6h2L2GQlkquro6JWZWGbPGIyJbUeA/sW9wY3AM5FSrVEYA/aM\nwRhjTAH2jMEYY0w+NjAYY4zJxwYGY4wx+djAYIwxJh8bGIwxxuTz/wHeOWUm7G7kogAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8e15daca50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gamma_air = 1.4\n", "MW_air = 28.97\n", "M_air = [] \n", "D_air = []\n", "for M in np.arange(0.1, 10, 0.1):\n", " d = d_function(gamma_air, MW_air, M)\n", " D_air.append(d[0])\n", " M_air.append(M)\n", "plt.plot(M_air, D_air, 'k')\n", "plt.xlabel('Mach number [-]')\n", "plt.xticks(range(1, 11, 1))\n", "plt.ylabel('D(M) [-]')\n", "plt.grid()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Conservation of Momentum" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"files/cons_mom2.jpeg\">\n", "####Figure 1. Conservation of momentum where the control surface (c.s.) for the control volume is shown by the dashed line" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "\\dot{m}_1 u_1 + P_1 A_1 + \\sum F_x = \\dot{m}_2 u_2 + P_2 A_2\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $\\sum F_x$ is the total force on the control volume and comprised of pressure and viscous forces:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "\\sum F_x = \\int^2_1 P dA - \\int^2_1 \\pi d \\tau_w dx\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "G(M) =\\frac{1+\\gamma M^2}{\\left(1+\\frac{\\gamma-1}{2}M^2\\right)^{\\frac{\\gamma}{\\gamma-1}}}\n", "\\end{equation}$$" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def g_function(gamma, MW, M):\n", " '''\n", " Calculates G(M)\n", " where \n", " gamma is the ratio of specific heat\n", " MW is the molecular weight\n", " M is the Mach Number\n", " '''\n", " G = (1 + gamma * M **2) / (1 + (gamma - 1) / 2 * M **2) ** (gamma/(gamma-1))\n", " return G" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4lGW6+PHvnQSCIh2xUI9KsyAIKiqrNAWVFREWJCob\nBMFdwXZA4HeOK7g2LGtddRVEXBE4Cq4N7GRBVwGBSBGkSREQEalBWnL//phJTGLaJJl57yT357rm\nSmbyZt4vGc2TeZ6Z9xVVxTnnnMsUF3SAc845W3xgcM45l4MPDM4553LwgcE551wOPjA455zLwQcG\n55xzOUR1YBCRiSKyXUSWFrLduSJyRESuiWaPc865wkX7GcMkoFtBG4hIHPAQ8EGUW5xzzhVBVAcG\nVf0M2FXIZsOBN4Afo9ninHOuaAJdYxCRk4GrVfU5QIJscc45FxL04vMTwKhs131wcM65gCUEvP92\nwDQREaAucLmIHFHVt3NvKCJ+UCfnnCsGVY3oj+5YPGMQ8nkmoKqnhC//RWid4c95DQrZtg/8cs89\n93iDoQ4LDVY6LDRY6bDQYKWjOKL6jEFEXgM6AnVEZBNwD1AZUFV9IdfmZeIZwYYNG4JOMNEANjos\nNICNDgsNYKPDQgPY6YhUVAcGVU2KYNsbo9ninHOuaIJefC5zkpOTg04w0QA2Oiw0gI0OCw1go8NC\nA9jpiJQUdw4q1kREy0qrc85ZISKowcXnciUlJSXoBBMNYKPDQgPY6LDQADY6LDSAnY5I+cDgnHMu\nB59Kcs65csynkpxzzpWYDwwRsjBnaKEBbHRYaAAbHRYawEaHhQaw0xEpHxicc87l4GsMzjlXjvka\ng3POuRLzgSFCFuYMLTSAjQ4LDWCjw0ID2Oiw0AB2OiLlA4NzzrkcfI3BOefKMV9jcM45V2I+METI\nwpyhhQaw0WGhAWx0WGgAGx0WGsBOR6R8YHDOOZeDrzEUIj09nfnz5zNr1iw+/fRTmjdvzpVXXsml\nl15KjRo1Yt7jnHOR8DWGUvbmm29y0kkn8ac//Yn09HTuvfde2rZty8SJE2nQoAE333wzhw8fDjrT\nOedKlQ8MeVBVHn30UYYPH857773H119/zYMPPkjXrl0588wzmT17Nlu2bGHr1q1cfvnl7N69O6Z9\nVuYtLXRYaAAbHRYawEaHhQaw0xEpHxhyOXLkCDfffDOvvvoqX375Jeeee26e21WvXp0333yTs846\niwsvvJDvvvsuxqXOORcdvsaQjaoyYMAAdu7cyfTp06lWrVqRvu+ZZ55h/PjxLFq0iHr16kW10Tnn\nIlGcNYaEaMWURZMmTWLJkiUsWLCAY489tsjfN2zYMLZs2UJycjLvvvsucXH+RMw5V3b5b7CwFStW\nMGrUKP7v//6vwEEhvznDe++9l507d/LUU09FqbDwhliz0GGhAWx0WGgAGx0WGsBOR6SiOjCIyEQR\n2S4iS/P5epKIfB2+fCYiZ0WzJz8HDhygX79+jB8/ntNPP71Y91GpUiWmTp3KAw88wOLFi0u50Dnn\nYieqawwi0gHYD7yiqq3y+Hp7YKWq7hGR7sBYVW2fz31FbY1hyJAhHDhwgH/+85+IRDQV9xtTp05l\n7NixLF68mKpVq5ZSoXPOFU9x1hiivvgsIo2Bd/IaGHJtVxNYpqoN8/l6VAaGzz//nH79+rFy5coi\nLzYXpn///jRr1oxx48aVyv0551xxlfU3uA0GZsdyhxkZGdx2222MHz++yINCUeYMH3roIZ555hm2\nbdtWwsLiN8SChQ4LDWCjw0ID2Oiw0AB2OiJl4lVJItIJGAh0KGi75ORkmjRpAkDNmjVp3bo1HTt2\nBH59ACK5Pnv2bCpXrkxSUlKRvz9TQds3btyYrl27MmTIEN55551i91m/npqaGnhPpqB/HqmpqYHu\n38rjYeW6hccju1juPyUlhZdffhkg6/dlpAKfShKRVsAMoLuqrivgfkp1Kmnv3r20aNGCt956K983\nsZXErl27aNasGXPnzqVly5alfv/OOVcUVqeSJHz57RdEGhEaFG4oaFCIhvvvv59u3bpFZVAAqFWr\nFqNHj2bUqFFRuX/nnIuWaL9c9TXgP0AzEdkkIgNFZKiIDAlvcjdQG3hWRJaIyIJo9mRat24dEydO\n5IEHHoj4e3M/RSzIsGHDWLZsGf/+978j3k9pNUSThQ4LDWCjw0ID2Oiw0AB2OiIV1TUGVU0q5Os3\nATdFsyEv48aNY/jw4Zx00klR3U9iYiLjxo1j7NixzJkzJ6r7cs650lLhjpW0atUqfve737F27dqY\nnE/hyJEjnHrqqcycOZN27dpFfX/OOZed1TUGU8aNG8edd94Zs5PsVKpUidtvv51HH300JvtzzrmS\nqlADw/Lly/n0008ZPnx4se+jOHOGN910Ex9//HGpHZrbyrylhQ4LDWCjw0ID2Oiw0AB2OiJVoQaG\ne+65h5EjR3LcccfFdL/VqlVj8ODBPP744zHdr3POFUeFWWNYsmQJV155JWvXro3okNqlZevWrZx5\n5pmsXbuW2rVrx3z/zrmKydcYCnDPPfcwatSoQAYFgJNPPpmePXvy3HPPBbJ/55wrqgoxMCxatIhF\nixYxdOjQEt9XSeYMR4wYwTPPPMPhw4cDayhNFjosNICNDgsNYKPDQgPY6YhUhRgYxo4dy+jRo6lS\npUqgHWeccQYtWrTgX//6V6AdzjlXkHK/xvDVV19x9dVXs3bt2sAHBoBp06bx4osv8sknnwSd4pyr\nAEyej6G0FHdg6NGjB927d2fYsGFRqIrcoUOHaNSoEfPmzaNZs2ZB5zjnyjlffM5l4cKFpKamMnjw\n4FK7z5LOGSYmJpKcnMwLL7wQWENpsdBhoQFsdFhoABsdFhrATkekyvXAMHbsWMaMGWNiCim7m266\niVdeeYWDBw8GneKcc79RbqeS5s6dy4ABA/j2229JTEyMYlnxXHbZZSQnJ5OUVOBxBp1zrkR8KilM\nVRk5ciT333+/yUEBYOjQoTz//PNBZzjn3G+Uy4HhjTfe4MiRI/Tv37/U77u05gyvuuoq1qxZwzff\nfBNYQ0lZ6LDQADY6LDSAjQ4LDWCnI1LlbmA4fPgwY8aM4ZFHHiEuzu4/r1KlSvzxj3/MOjerc85Z\nUe7WGJ5++mlmzZrF7NmzY1BVMitXrqRLly5s2rSJhISonjPJOVdBVfg1hj179nDfffcxfvz4oFOK\npGXLljRq1IiPPvoo6BTnnMtSrgaGkSNHcvXVV9OqVauo7aO05wyLM51kZd7SQoeFBrDRYaEBbHRY\naAA7HZEqN/MXs2fP5sMPP2Tp0qVBp0Tk2muvZfTo0ezatYtatWoFneOcc+VjjeHnn3+mVatW/POf\n/6RTp04xLiu5fv360alTJ26++eagU5xz5UyFXWO49dZb6d27d5kcFKB400nOORctZX5geP3111mw\nYAEPPvhgTPYXjTnDyy67jI0bN7Jq1arAGorDQoeFBrDRYaEBbHRYaAA7HZGK6sAgIhNFZLuI5Dvx\nLyJPicgaEUkVkdaR3P9bb73FLbfcwmuvvRbYmdlKQ0JCAjfccIM/a3DOmRDVNQYR6QDsB15R1d+8\nVEhELgeGqeqVInI+8KSqts/nvnKsMUydOpU77riDd999l3bt2kXpXxA7y5Yt48orr2TDhg2m35jn\nnCtbzK0xqOpnwK4CNukJvBLedj5QQ0ROKOg+09PTef755xkxYgQff/xxuRgUAM466yxq1qzJvHnz\ngk5xzlVwQf9pWh/YnO36lvBtefrzn/9M/fr1mTBhAnPmzOHMM8+MemBu0ZwzvP7665kyZUqgDZGw\n0GGhAWx0WGgAGx0WGsBOR6TK1PsY5s+fT9++falduzazZs1i69atdOzYEfj1AYj29UzRuP8mTZow\nfvx4nn76ab744ouY/HtKcj01NTXwnkxB/zxSU1MD3b+Vx8PKdQuPR3ax3H9KSkrWemWTJk0ojqi/\nj0FEGgPv5LPG8DwwR1Wnh6+vAi5R1e15bFusU3uWNZ06deLWW2+lV69eQac458oBc2sMYRK+5OVt\nYACAiLQHduc1KFQk1113Ha+++mrQGc65CizaL1d9DfgP0ExENonIQBEZKiJDAFR1FvCdiKwF/gH8\nOZo9pSH3U8TS1qdPHz7++GN2794dWENRWeiw0AA2Oiw0gI0OCw1gpyNSUV1jUNVCz1upqsOi2VDW\n1KxZk65duzJjxgwGDRoUdI5zrgIqF8dKKm/efPNNnnrqKebMmRN0inOujCvOGoMPDAYdOnSIk08+\nma+//poGDRoEneOcK8OsLj6XK7GYM0xMTKRXr15Mnz49sIaisNBhoQFsdFhoABsdFhrATkekfGAw\nqn///kydOjXoDOdcBeRTSUalp6fTsGFD5syZQ/PmzYPOcc6VUT6VVI7Ex8fTt29ff9bgnIs5Hxgi\nFMs5w6SkJF577TVyP1OyMm9pocNCA9josNAANjosNICdjkj5wGDYueeeS0ZGBosXLw46xTlXgfga\ng3F33303Bw4c4LHHHgs6xTlXBvn7GMqhlStX0rVrVzZt2kR8fHzQOc65MsYXn2Mg1nOGLVu25Pjj\nj2fu3LmBNeTHQoeFBrDRYaEBbHRYaAA7HZHygaEMSEpK8lcnOedixqeSyoBNmzbRpk0btm7dSmJi\nYtA5zrkyxKeSyqlGjRpx+umn88EHHwSd4pyrAHxgiFBQc4bZp5OszFta6LDQADY6LDSAjQ4LDWCn\nI1I+MJQRffr0YdasWezfvz/oFOdcOedrDGXIFVdcwfXXX09SUqHnP3LOOcDXGMq9zENkOOdcNPnA\nEKEg5wx79uzJvHnzeOuttwJryM7C/KmFBrDRYaEBbHRYaAA7HZHygaEMqVatGt27d+ff//530CnO\nuXLM1xjKmLfeeovHHnssxzuhnXMuP36spAog83zQixcvpnHjxkHnOOeM88XnGAh6zjAxMZELL7zQ\nxCEygv5ZWGkAGx0WGsBGh4UGsNMRqagPDCLSXURWichqERmVx9eri8jbIpIqIstEJDnaTWVd165d\nmTJlStAZzrlyKqpTSSISB6wGugBbgYXAtaq6Kts2Y4DqqjpGROoC3wInqOrRXPflU0lhGRkZNGnS\nhHfffZdWrVoFneOcM8ziVNJ5wBpV3aiqR4BpQM9c2yhQLfx5NWBn7kHB5RQXF0dSUpI/a3DORUWB\nA4OI7C3ksk9EVhdwF/WBzdmufx++LbtngNNFZCvwNXBbcf4hsWJhzjAlJYXrrruOqVOnkpGREWhH\n0Cw0gI0OCw1go8NCA9jpiFRCIV9fp6ptCtpARJaUsKEbsERVO4vIqcBHItJKVX9zUKDk5GSaNGkC\nQM2aNWndujUdO3YEfn0Aon09U6z2l9/1nTt3kpCQwLx587jkkksC6UlNTQ3s32/t8UhNTQ10/1Ye\nDyvXLTwe2cVy/ykpKbz88ssAWb8vI1XgGoOInKKq6wu8gwK2EZH2wFhV7R6+PhpQVR2fbZt3gQdV\n9fPw9U+AUar6Va778jWGXB5++GHWrl3LCy+8EHSKc86oUl9jyOsXvoj0KGybbBYCp4lIYxGpDFwL\nvJ1rm41A1/B9nwA0AwocjFxI//79mTFjBocOHQo6xTlXjhRn8fneom6oqunAMOBDYAUwTVVXishQ\nERkS3uw+4EIRWQp8BNylqj8Xoysmcj9FDLKhYcOGnH322bz33nuBdgTJQgPY6LDQADY6LDSAnY5I\nFbbGkJeInpKo6vtA81y3/SPb59sIrTO4YhgwYACvvPIK11xzTdApzrlyIuL3MYjIeaq6IEo9Be3X\n1xjysG/fPho2bMjatWupW7du0DnOOWNKfY1BRM7JfVvuQSGvbVzsVKtWjSuvvJJp06YFneKcKycK\nW2OYJCK1RKR2fhdgYixCrbAwZ5i7IXM6KeiOIFhoABsdFhrARoeFBrDTEanC1hhqAIsoeF1hR+nl\nuOLo0qULAwcOZNWqVbRo0SLoHOdcGeeH3S4nRo4cSeXKlbn//vuDTnHOGeLnY6jAli5dSo8ePdiw\nYQNxcX40dedciMWD6JU7FuYM82po1aoVtWvXjmmf1Z9FECx0WGgAGx0WGsBOR6R8YChHkpOTs46R\n4pxzxVWkqaTweRXOBk4GfgGWq+qPUW7L3eBTSYXYsWMHTZs2ZePGjdSoUSPoHOecAdF4H8OpIvIC\nsBZ4COgP/Bn4WES+FJGB4UHDGXD88cfTtWtXpk+fHnSKc64MK+yX+n3Aq8CpqtpNVa9X1T6q2gq4\nitDLWW+IdqQlFuYMC2oYOHAgL730UuAdsWKhAWx0WGgAGx0WGsBOR6QKO7pqf1Wdm9ccjqr+qKpP\nqOrk6OW5SHXr1o1NmzbxzTffBJ3inCujCjsfQ4FHZlPVmaVelH+LrzEU0ZgxYzh69CiPPPJI0CnO\nuYCV+vsYRCQDSA1fIOc7oFVVb4y4sph8YCi61atXc/HFF7N582YqVaoUdI5zLkDReB/DNcBqoBXw\nHXC/qg4MX2I2KFhiYc6wsIZmzZrRtGlTZs2aFWhHLFhoABsdFhrARoeFBrDTEanC1hj+parXApcA\n64DHROQzEbkkJnWu2G688UYmTqxQxzd0zpWSor6PIR7oTujUnGcROifzB1Fuy93gU0kRSEtLo2HD\nhixdupQGDRoEneOcC0g03sfQOfw+hkVAJ+BJVW0d60HBRa5q1apce+21/qzBORexwtYYPgbOAz4D\nEoEBIvJU5iXqdQZZmDMsasPQoUOZMGECR48eDbQjmiw0gI0OCw1go8NCA9jpiFRh52O4EfD5mzLq\n7LPPpn79+syePZvf//73Qec458oIP+x2OTdp0iRmzJjBu+++G3SKcy4A0Xgfw4uE1hWW5/G1qkA/\n4JCqTok0NlI+MBTPgQMHaNiwIUuWLKFRo0ZB5zjnYiwa72P4O/AXEVkpIq+LyLMi8pKIzAP+A1QD\n3ihmb5lkYc4wkoZjjz2WpKSkqCxCl7WfRTRZ6LDQADY6LDSAnY5IFfY+hlRV7QucS2iQmAe8DQxW\n1bNV9UlVPVTQfYhIdxFZJSKrRWRUPtt0FJElIrJcROYU89/i8jFkyBAmTpwYtUVo51z5EtU1hvAh\nuVcDXYCtwELgWlVdlW2bGoSefVymqltEpK6q/pTHfflUUgl06NCB22+/nT59+gSd4pyLoWi8j6Gn\niNyS7fp8EVkfvvyhCPd/HrBGVTeq6hFgGtAz1zZJwAxV3QKQ16DgSm748OE8/fTTQWc458qAwtYY\n7iI0dZQpkdC0Ukfg5iLcf31gc7br34dvy64ZUFtE5ojIQhExfX4HC3OGxWm45pprWLt2LUuXLg20\no7RZaAAbHRYawEaHhQaw0xGpwt7HUFlVs/9i/0xVdwI7w69KKq2Gc4DOQFXgCxH5QlXX5t4wOTmZ\nJk2aAFCzZk1at25Nx44dgV8fgGhfzxSr/ZXW9c8//5xu3brx9NNP8+KLL5bK/aempgb+78sU9M83\nNTU10P1beTysXLfweGQXy/2npKRknfs98/dlpAp7uepaVT0tn6+tU9VTC7xzkfbAWFXtHr4+mtDh\nusdn22YUUEVVx4WvTwBmq+qMXPflawwltH37dlq0aMG6deuoXbt20DnOuRiIxstV54vITXnsaCiw\noAj3vxA4TUQai0hlQgfhezvXNm8BHUQkXkSOBc4HVhbhvl2ETjjhBHr06OHHT3LOFaiwgeEOYGB4\n/v+x8CUFSAZuL+zOVTUdGAZ8CKwApqnqShEZKiJDwtusAj4AlgJfAi+oqtnzUuZ+iljWGoYPH86z\nzz5Lenp6oB2lxUID2Oiw0AA2Oiw0gJ2OSBW4xqCqPwIXikhn4Izwze+p6qdF3YGqvg80z3XbP3Jd\nfxR4tKj36YrvvPPOo169erzzzjtcffXVQec45wzyYyVVQNOmTePZZ59l7ty5Qac456IsGmsMrhzq\n06cPGzduZP78+UGnOOcM8oEhQhbmDEvakJCQwB133MFjjz0WaEdpsNAANjosNICNDgsNYKcjUj4w\nVFCDBg3i008/Zf369UGnOOeM8TWGCmzMmDGkpaXx1FMV8mR8zlUIpX4+Bkt8YCh927Zt44wzzmDN\nmjXUqVMn6BznXBT44nMMWJgzLK2Gk046iauvvprnnnsu0I6SsNAANjosNICNDgsNYKcjUj4wVHAj\nRozgmWeeIS0tLegU55wRPpXk6N27Nx06dOCOO+4IOsU5V8p8jcEVy5IlS+jRowfr1q2jSpUqQec4\n50qRrzHEgIU5w9JuaNOmDeeccw4vvfRSoB3FYaEBbHRYaAAbHRYawE5HpHxgcAD87//+L+PHj+fw\n4cNBpzjnAuZTSS7LZZddRt++fRk8eHDQKc65UuJrDK5E5s6dy8CBA/n2229JSCjs5H7OubLA1xhi\nwMKcYbQaLr74Yho3bszkyZMD7YiEhQaw0WGhAWx0WGgAOx2R8oHB5XD//fczbtw4Dh48GHSKcy4g\nPpXkfuOqq66ic+fO3H57oSfpc84Z52sMrlQsXbqUyy67jDVr1lCtWrWgc5xzJeBrDDFgYc4w2g2t\nWrWiS5cuPPnkk4F2FIWFBrDRYaEBbHRYaAA7HZHygcHlady4cTzxxBPs3Lkz6BTnXIz5VJLL1803\n30zVqlVLfKY351xwfI3Blart27dzxhln8MUXX9C0adOgc5xzxeBrDDFgYc4wVg0nnHACI0eO5K67\n7gq0oyAWGsBGh4UGsNFhoQHsdEQq6gODiHQXkVUislpERhWw3bkickRErol2kyu62267ja+//po5\nc+YEneKci5GoTiWJSBywGugCbAUWAteq6qo8tvsI+AV4SVVn5nFfPpUUkDfeeIP77ruPRYsWER8f\nH3SOcy4CFqeSzgPWqOpGVT0CTAN65rHdcOAN4Mco97hi6N27N9WrV2fSpElBpzjnYiDaA0N9YHO2\n69+Hb8siIicDV6vqc0BEo1oQLMwZxrpBRHj88ce5++672bVrV2AdebHQADY6LDSAjQ4LDWCnI1IW\nDqH5BJB97SHfwSE5OZkmTZoAULNmTVq3bk3Hjh2BXx+AaF/PFKv9Wbm+b98+zj//fMaMGcPzzz9P\nSkoKqampgfdlCvrnk5qaGuj+rTweVq5beDyyi+X+U1JSePnllwGyfl9GKtprDO2BsaraPXx9NKCq\nOj7bNuszPwXqAmnAEFV9O9d9+RpDwHbv3s3pp5/OzJkzad++fdA5zrkiMPc+BhGJB74ltPi8DVgA\n9FfVlflsPwl4xxef7Xrttdd4+OGH+eqrr/ycDc6VAeYWn1U1HRgGfAisAKap6koRGSoiQ/L6lmj2\nlIbcTxErWkP//v2pW7cuTz/9dIX/WWRnocNCA9josNAAdjoiFfU/+VT1faB5rtv+kc+2N0a7x5WM\niPDss89y4YUX8ve//z3oHOdcFPghMVyxPPDAA6SkpPDBBx8gYv7FZM5VWOamklz5ddddd7Fr1y5e\nfPHFoFOcc6XMB4YIWZgztNCQkJDALbfcwv/8z/+wYcOGwDos/CzARoeFBrDRYaEB7HREygcGV2xN\nmjRhxIgRDBo0iIyMjKBznHOlxNcYXIkcPXqUDh06cP311zNs2LCgc5xzuZh7H0Np8oHBrjVr1nDh\nhRfyySef0KpVq6BznHPZ+OJzDFiYM7TQAL92NG3alMcee4x+/fqRlpYWSEPQLHRYaAAbHRYawE5H\npHxgcKViwIABtGvXjttuuy3oFOdcCflUkis1+/bt45xzzuG+++6jX79+Qec45/A1BmfAokWL6N69\nO3PnzqVly5ZB5zhX4fkaQwxYmDO00AB5d7Rt25aHHnqIXr16sWfPnkAagmChw0ID2Oiw0AB2OiLl\nA4MrdYMGDaJz584MGDDA39/gXBnkU0kuKg4fPkznzp259NJLueeee4LOca7CKs5Ukh9Q30VF5cqV\neeONNzj33HM588wz6d27d9BJzrki8qmkCFmYM7TQAIV3nHjiibz99tv86U9/4j//+U8gDbFiocNC\nA9josNAAdjoi5QODi6o2bdrwyiuvcM0117BmzZqgc5xzReBrDC4mXnzxRcaPH88XX3zB8ccfH3SO\ncxWGv1zVmXXTTTfRv39/Lr/88pi8jNU5V3w+METIwpyhhQaIvOPee+/lggsu4IorrmD//v2BNESL\nhQ4LDWCjw0ID2OmIlA8MLmZEhCeffJIWLVrQs2dPfvnll6CTnHN58DUGF3Pp6enccMMN7N69m5kz\nZ1KlSpWgk5wrt3yNwZUJ8fHxTJ48merVq9OjR4+YH6rbOVcwHxgiZGHO0EIDlKyjUqVKTJkyhUaN\nGtGtW7diL0iXh59FeWoAGx0WGsBOR6SiPjCISHcRWSUiq0VkVB5fTxKRr8OXz0TkrGg3ORvi4+OZ\nMGECbdq0oXPnzuzYsSPoJOccUV5jEJE4YDXQBdgKLASuVdVV2bZpD6xU1T0i0h0Yq6rt87gvX2Mo\np1SVv/zlL0ydOpVZs2bRrFmzoJOcKzcsHivpPGCNqm4EEJFpQE8ga2BQ1S+zbf8lUD/KTc4YEeGv\nf/0rjRs35uKLL2bGjBlcdNFFQWc5V2FFeyqpPrA52/XvKfgX/2BgdlSLSsjCnKGFBij9jsGDBzN5\n8mR69erF1KlTA2koLgsdFhrARoeFBrDTESkzR1cVkU7AQKBDftskJyfTpEkTAGrWrEnr1q3p2LEj\n8OsDEO3rmWK1P8vXU1NTS/3+u3Xrxscff0y3bt3417/+xZQpU0hISDD/eKSmpga6/2g9HmX1uoXH\nI7tY7j8lJYWXX34ZIOv3ZaSivcbQntCaQffw9dGAqur4XNu1AmYA3VV1XT735WsMFcjPP/9MUlIS\nhw8fZvr06X58JeeKyeL7GBYCp4lIYxGpDFwLvJ19AxFpRGhQuCG/QcFVPLVr1+a9997jggsuoG3b\ntsydOzfoJOcqjKgODKqaDgwDPgRWANNUdaWIDBWRIeHN7gZqA8+KyBIRWRDNppLK/RSxojZA9Dvi\n4+O5//77ef755+nXrx9/+ctfOHr0aEwbispCh4UGsNFhoQHsdEQq6u9jUNX3VbW5qjZV1YfCt/1D\nVV8If35CAEoLAAAPY0lEQVSTqtZR1XNUtY2qnhftJle2XHHFFSxevJgvv/ySiy++mHXr/Imlc9Hk\nx0pyZUZGRgZPPPEEDzzwAHfffTfDhg0jPj4+6CznTCvOGoMPDK7MWbNmDYMGDSI9PZ0JEybQsmXL\noJOcM8vi4nO5Y2HO0EIDBNfRtGlTUlJSSEpKon379owePbrUzu9QXBYeEwsNYKPDQgPY6YiUDwyu\nTIqLi+OWW27hpZdeYsuWLZx++um8/vrr+LNK50rOp5JcuTB37lxuvfVWqlatysMPP+yH1HAuzKeS\nXIV18cUXs2jRIoYOHUpSUhK9evVixYoVQWc5Vyb5wBAhC3OGFhrARkf2hvj4eAYMGMC3337LRRdd\nROfOnenXrx/Lly+PaUdQLDSAjQ4LDWCnI1I+MLhyp0qVKowYMYJ169bRrl07unTpQp8+fZg/f37Q\nac6VCb7G4Mq9tLQ0Jk6cyOOPP06DBg347//+b37/+9/7eyBcheDvY3CuAEePHmXmzJn87W9/44cf\nfmDo0KEMGjSIevXqBZ3mXNT44nMMWJgztNAANjoiaUhISKBv3758+eWXzJgxg3Xr1tG8eXP69u3L\n7NmzSU9Pj0lHtFhoABsdFhrATkekfGBwFVLbtm2ZMGEC69evp1OnTowdO5ZGjRpx1113sWTJEn8/\nhKvQfCrJubAVK1bw6quvMm3aNBITE+nXrx+9e/fmrLPOQiSiZ+LOmeFrDM6VAlVlwYIFTJs2jTff\nfJP4+Hh69erFVVddxQUXXEClSpWCTnSuyHyNIQYszBlaaAAbHdFoEBHOP/98Hn/8cb777jtmzJhB\n1apVufPOO6lXrx5/+MMfmDhxIhs3boxqR6QsNICNDgsNYKcjUmbO+eycRSJC69atad26NePGjeOH\nH37ggw8+4P3332fMmDHUqFGDLl26cPzxx9O0aVPq168fdLJzJeZTSc4VU0ZGBsuXL+eTTz5h7ty5\nzJs3jxo1anDRRRdxwQUX0L59e8466ywSEvzvLxccX2NwLkAZGRmsXLmSL774IuuyadMmzj77bNq1\na0e7du1o06YNzZs393UKFzO+xhADFuYMLTSAjQ4LDRDqiIuL44wzzmDw4MFMnDiRb775hi1btnDf\nfffRsGFD3nvvPfr06UONGjVo27YtAwcO5NFHH+X9999n8+bNJX6JrKWfRdAsNICdjkj5c1znoqhG\njRp06tSJTp06Zd2WlpbGsmXLWLZsGStWrOD9999nxYoV7N+/n+bNm9OiRQuaNm2adTnttNOoVatW\ngP8KV9H4VJJzRuzevZtvv/2WlStXsmbNmqzLunXriI+P55RTTuGUU06hcePGWZdGjRrRsGFDateu\n7e+1cHnyNQbnyiFVZefOnaxfv57169ezceNGNm7cyIYNG9i8eTPff/89hw4dokGDBtSvX5+TTz6Z\n+vXrc+KJJ3LSSSdx4okncuKJJ1KvXj0fQCogkwODiHQHniC0njFRVcfnsc1TwOVAGpCsqql5bGNi\nYEhJSaFjx44VvsFKh4UGCx379+9n5syZNGjQgC1btrBlyxZ++OEHtm3bxrZt2/jxxx/Zvn07aWlp\n1K1bl+OPPz7rUqdOHerWrUudOnWoU6cOtWvXpnbt2tSqVYtatWpRs2bNiF5ZFfTPwkqDlY7iDAxR\nXWMQkTjgGaALsBVYKCJvqeqqbNtcDpyqqk1F5HzgeaB9NLtKIjU1NfAH2kKDlQ4LDRY6jjvuOH7+\n+WcGDBhQ4HaHDh1ix44d7Nixg59++okdO3awc+dOfvrpJ1atWsWuXbv4+eefsy67du1iz549HHPM\nMdSsWZMaNWpkXapXr571sVq1alkf586dy4EDBzjuuOOyLlWrVs26xOIVWUE/HtY6IhXtxefzgDWq\nuhFARKYBPYFV2bbpCbwCoKrzRaSGiJygqtuj3FYsu3fvDjrBRAPY6LDQADY6itKQmJhIgwYNaNCg\nQZHvV1XZt28fu3fvZs+ePezevZu9e/eyZ88e9u7dy969e9m3bx8bNmxg7969fPXVV+zYsYN9+/ax\nf/9+0tLSsj6mpaURFxdH1apVOfbYY7MuxxxzDMccc0zW51WqVMm6rUqVKjkuiYmJWR8zL1WqVKFy\n5cpZ11evXs3q1atJTEykcuXKVK5cmUqVKmV9jNW5OCz8d1Ec0R4Y6gObs13/ntBgUdA2W8K3mRwY\nnKtoRITq1atTvXr1Im0/duxYxo4dm+fXVJUjR46QlpbGgQMHOHDgAGlpafzyyy/88ssvHDhwgF9+\n+YWDBw9m3Xbw4EEOHjzI3r172bFjB4cOHeLgwYMcOnQo63Lw4EEOHz7MoUOHOHz4MJs3b+ajjz7K\nuu3IkSMcPnyYw4cPc+TIEUSESpUqFXhJSEj4zcfCLvHx8Tk+X7BgAQcOHCA+Pr7QS1xcXIGfx8XF\n5bhkvy3319u3b8+xxx5b7MfcX64aoQ0bNgSdYKIBbHRYaAAbHRYaoOAOEcn6Cz6aL8FNTk7m5Zdf\nzvfr6enpWYNEfpejR49y9OjRrOvp6ek5Ps+8np6enrXt0aNHc1z//PPPqVu3btbtmd9z8ODBrOvp\n6elkZGTk+Xnm9czbVDXrdlXNsW3m9YyMDCZPnlyigSGqi88i0h4Yq6rdw9dHA5p9AVpEngfmqOr0\n8PVVwCW5p5JEJPiVZ+ecK4NMLT4DC4HTRKQxsA24Fuifa5u3gVuA6eGBZHde6wuR/sOcc84VT1QH\nBlVNF5FhwIf8+nLVlSIyNPRlfUFVZ4nIFSKyltDLVQdGs8k551zByswb3JxzzsWGH0SviERkoohs\nF5GlATY0EJFPRWSFiCwTkVsDaEgUkfkisiTccE+sG7K1xInIYhF5O8CGDSLydfjnsSDAjhoi8rqI\nrAz/93F+jPffLPwzWBz+uCeg/z7vEJHlIrJURKaISOVYN4Q7bgv//xHT/0/z+j0lIrVE5EMR+VZE\nPhCRGoXdjw8MRTcJ6BZww1HgTlU9A7gAuEVEWsQyQFUPAZ1UtQ3QGrhcRHK/BDlWbgO+CWjfmTKA\njqraRlWD+jkAPAnMUtWWwNnAyljuXFVXh38G5wBtCU0LvxnLBhE5GRgOnKOqrQhNlV8by4ZwxxnA\nIKAdof9HeojIKTHafV6/p0YDH6tqc+BTYExhd+IDQxGp6mfAroAbfsg8XIiq7if0P3/MTxmmqgfC\nnyYS+p8v5vORItIAuAKYEOt9504h4P+PRKQ68DtVnQSgqkdVdW+ASV2Bdaq6udAtS188UFVEEoBj\nCR1xIdZaAvNV9ZCqpgNzgWtiseN8fk/1BCaHP58MXF3Y/fjAUEaJSBNCf43MD2DfcSKyBPgB+EhV\nF8a6AXgcGEkAg1IuCnwkIgtF5KaAGv4L+ElEJoWncl4QkWMCagHoB0yN9U5VdSvwGLCJ0Btld6vq\nx7HuAJYDvwtP4RxL6A+YhgF0ZKqX+UpPVf0BqFfYN/jAUAaJyHHAG8Bt4WcOMaWqGeGppAbA+SJy\neiz3LyJXAtvDz54kfAnKReHpkysITe11CKAhATgH+Hu45QCh6YOYE5FKwFXA6wHsuyahv44bAycD\nx4lIUqw7wseCGw98BMwClgDpse4oQKF/TPnAUMaEnyK/AfxTVd8KsiU8XTEH6B7jXV8EXCUi6wn9\nZdpJRF6JcQMAqrot/HEHoTn1INYZvgc2q+pX4etvEBoognA5sCj884i1rsB6Vf05PIUzE7gwgA5U\ndZKqtlPVjsBuYHUQHWHbReQEABE5EfixsG/wgSEyQf91CvAS8I2qPhnEzkWkbuarGsLTFZeS86CI\nUaeq/09VG6nqKYQWFz9V1YIPKxoFInJs+NkbIlIVuIzQNEJMhacJNotIs/BNXQhuUb4/AUwjhW0C\n2otIFQmddKILMV6EzyQix4c/NgJ6Aa/Fcvfk/D31NpAc/vyPQKF/UPqxkopIRF4DOgJ1RGQTcE/m\nYl8MGy4CrgOWhef4Ffh/qvp+DDNOAiaHD6keB0xX1Vkx3L8lJwBvhg/XkgBMUdUPA2q5FZgSnspZ\nTwBvFA3Pp3cFhsR63wCqukBE3iA0dXMk/PGFIFqAGSJSO9zx51i9GCCv31PAQ8DrInIjsBHoW+j9\n+BvcnHPOZedTSc4553LwgcE551wOPjA455zLwQcG55xzOfjA4JxzLgcfGJxzzuXgA4NzzrkcfGBw\n5olIRvZDXohIvIjsKO55GETku/CbjwIhIvtK8b7+KCI/ikieb+QSkYdFZJuI3Fla+3Tln7/z2ZUF\nacCZIpIYPh/EpUBJDukc9Ls6i71/EYkPHwcou2mqmufJYFT1LhGJ+YEWXdnmzxhcWTELuDL8eY7j\n8YjIuSLyHxFZJCKfiUjT8O1xIvJI+CxaqSJyS+a3ALeGt/862zGGyHaffxSRGSIyO3zmq/HZvrYv\n2+e9RWRS+PNJIvKsiHwhImtF5JLwGbW+EZGXct69/C18prGPRKRO+MZTwvtbKCL/zuwK3+9zIvIl\noaN2Riro43u5MsYHBlcWKDAN6C8iiUArcp6HYiXQQVXbEjo2zIPh24cSOgRzK1VtDUzJ9j0/hrd/\nntB5HfJyNvCH8P76iUjmSZFy/8Wf/XpNVb0AuJPQwcseU9XTgVYi0iq8TVVggaqeSegkLpmnR30B\nGKaq54abnst2v/VVtb2qjsin1blS41NJrkxQ1eXhkxP1B94j51/BNYFXws8UMg9oB6Gjaz6n4QOC\nqerubN+TedrJRYSOfpmXTzLPdyEi3xAaZLZQ8F/g74Q/LgN+UNXMo5yuAJoASwmdDvT/wre/SuiA\na1UJHSL69fCRQQEqZbvfmJ/fwFVcPjC4suRt4BFCR4+sm+32vxI69PY1ItKY0DkiCnMo/DGd/P8/\nOJTt8+zbZX+GUCWf78nI9f0ZBexHCT173xU+0U5e0vK5PYfwlFUbYIuq9ijK9ziXm08lubIg8y/o\nl4Bxqroi19drEPpLHnIebvojYKiIxAOISK1S6vlBRJqHDz2e37MNyP+ZRRzQJ/z5dcBnqroP+E5E\nMm8n29RTkanqjaraxgcFVxI+MLiyIHMqaIuqPpPH1x8GHhKRReT8b3oCoVcvLQ2fv6J/9vsrTkPY\nGELTWZ+R82TzBa09ZP98P3CeiCwj9Ozn3vDt1wGDwgvlywmdIrO4vc4Vm5+PwbkyTET+CLRT1eEF\nbHMPsE9V/xa7MleW+TMG58q2X4DuBb3BjdAzkSKtUTgH/ozBOedcLv6MwTnnXA4+MDjnnMvBBwbn\nnHM5+MDgnHMuBx8YnHPO5fD/AVQdcpf1vpEsAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8e15cd5110>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "M_air = [] \n", "G_air = []\n", "for M in np.arange(0, 10, 0.1):\n", " g = g_function (gamma_air, MW_air, M)\n", " G_air.append(g)\n", " M_air.append(M)\n", " \n", "plt.plot(M_air, G_air, 'k')\n", "plt.xlabel('Mach number [-]')\n", "plt.xticks(range(1, 11, 1))\n", "plt.ylabel('G(M) [-]')\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Conservation of Energy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Rayleigh Flow" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Heat addition in constant area duct: $$ A_1 = A_2$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Continuity:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "\\frac{P_1^o D_1}{\\sqrt{T_1^o}} = \\frac{P_2^o D_2}{\\sqrt{T_2^o}}\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Momentum Equation:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "P_1^o G_1 = P_2^o G_2\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Divide continuity by momentum equation: " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "\\frac{N_1}{\\sqrt{T^o_1}}= \\frac{N_2}{\\sqrt{T^o_2}}\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where: $$N = D / G $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "N(M) = \\frac{M\\left(1+\\frac{\\gamma-1}{2}M^2\\right)^{1/2}}{1+\\gamma M^2}\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "\\frac{dN}{dM} = N\\left\\{\\frac{1}{M}+\\frac{\\gamma-1}{2}\\frac{M}{1+\\frac{\\gamma-1}{2}M^2}-\\frac{2\\gamma M}{1+\\gamma M^2}\\right\\}\n", "\\end{equation}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Use Newton's Method:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\begin{equation}\n", "M^{(k+1)}_{2} = M^{k}_2 + \\frac{N_1\\sqrt{\\frac{T^o_2}{T^o_1}}-N(M^{k}_2)}{\\frac{d}{dM}\\left\\{N\\left(M^k_2\\right)\\right\\}}\n", "\\end{equation}$$" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def n_function(gamma, MW, M):\n", " '''\n", " Calculates N(M)\n", " where \n", " gamma is the ratio of specific heat\n", " MW is the molecular weight\n", " M is the Mach Number\n", " '''\n", " N = M*(1+(gamma-1)/2*M**2)**0.5/(1+gamma*M**2)\n", " dN = N*(1/M+((gamma-1)/2)*M/(1+(gamma-1)/2*M**2)-2*gamma*M/(1+gamma*M**2))\n", " return N, dN" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VeW59/HvHRLmITIPESKCDAonMolF30atiscBK61K\ntTUtFKrS2mLfoj0qtqWIEy8eRVuq9i0tVetUcEYFjwc9AtoAMkTGgAQQIYEkyBCS+/yxV5JN3En2\nTvba60lyf65rXVnz+iWBfWc9zxpEVTHGGGNqkxR0AGOMMQ2DFQxjjDFRsYJhjDEmKlYwjDHGRMUK\nhjHGmKhYwTDGGBMV3wuGiIwVkRwR2SQi0yMs/6aIHBSRf3nDXdFua4wxJnHEz/swRCQJ2ARcBOwG\nVgHXq2pO2DrfBG5X1ati3dYYY0zi+H2GMQrYrKo7VLUEeBYYF2E9qce2xhhjEsDvgtEL+Dxsepc3\nr6pzRWS1iLwmIoNj3NYYY0wCJAcdAPgE6K2qX4nIZcA/gTMCzmSMMaYKvwtGHtA7bDrNm1dBVYvD\nxt8QkcdFpGM025YTEXsgljHGxEhVI3UHVMvvJqlVQD8R6SMizYHrgcXhK4hIt7DxUYQ64vOj2Tac\nqgY6zJgxI/AMruSwDG7lcCGDKzlcyOBKjrrw9QxDVUtFZCqwhFBxekpVN4rIlNBinQ98R0RuBkqA\nI8B1NW3rZ976yM3NDToC4EYOy1DJhRwuZAA3criQAdzJESvf+zBU9U1gQJV5fwwbnwfMi3ZbY4wx\nwbA7veMkKysr6AiAGzksQyUXcriQAdzI4UIGcCdHrHy9cS9RREQbw/dhjDGJIiKoY53eTcZ7770X\ndATAjRyWoZILOVzIAG7kcCEDuJMjVlYwjDHGRMWapIwxpgmyJiljjDG+sYIRJ660SbqQwzJUciGH\nCxnAjRwuZAB3csTKCoYxxpioWB+GMcY0QdaHYYwxxjdWMOLElTZJF3JYhkou5HAhA7iRw4UM4E6O\nWFnBMMYYExXrwzDGmCbI+jCMMcb4xgpGnLjSJulCDstQyYUcLmQAN3K4kAHcyRErKxjGGGOi4nsf\nhoiMBeZS+da8+6tZbyTwIXCdqr7kzcsFDgFlQImqjqpm28D6MFSVnJwcioqKGDp0KC1btgwkhzHG\nxKIufRi+vnFPRJKAx4CLgN3AKhFZpKo5EdabDbxVZRdlQKaqFviZsy7eeOMNnnvuOd555x2Sk5NJ\nTU1l06ZNDBo0iPPOO49f/OIXpKenBx3TGGPixu8mqVHAZlXdoaolwLPAuAjr/RR4AdhXZb7gYLPZ\nI488wk9+8hNGjRrFsmXL2L59O3PnzuXAgQPMmzePtm3bMnz4cG699VZ2796d0GwutI1ahkou5HAh\nA7iRw4UM4E6OWPn9YdwL+Dxsepc3r4KI9ASuVtUnCBWIcAq8LSKrROTHviaN0n333cejjz7K+++/\nzy233EL//v0RCcVu1aoVo0eP5ve//z05OTm0atWKIUOG8NBDD1FWVhZwcmOMqR9fm6SiNBeYHjYd\nXjTGqOoeEelCqHBsVNXlkXaSlZVV0QSUmppKRkYGmZmZQGU1r8+0qrJ06VJeeOEFZs+ezfbt2+nT\np89J65crn37ooYe49dZbufLKK3nmmWdYvHgxvXr1ikue6qYzMzN93X800+Xzgjp+db+PIPLY78Ot\naRd+H0H9+ywfz83Npa587fQWkdHAvao61pu+A9Dwjm8R2VY+CnQGDgOTVXVxlX3NAIpUdU6E4/je\n6f3qq68ybdo0li9fTteuXWPa9sSJE8yaNYt58+bx5JNPcuWVV/qU0hhjouPijXurgH4i0kdEmgPX\nAycVAlXt6w2nEerHuEVVF4tIaxFpCyAibYBLgHU+542orKyMu+++mwceeKDaYlH1r4ZwycnJ3HPP\nPbz88svcfPPN/P73v8evAldTjkSxDJVcyOFCBnAjhwsZwJ0csfK1YKhqKTAVWAKsB55V1Y0iMkVE\nJkfaJGy8G7BcRLKBj4BXVHWJn3mr89JLL9GsWTPGjYvUXx+9b3zjG6xcuZJFixbxve99jyNHjsQp\noTHG+M+eJVWL0tJShgwZwpw5cxg7dmxc9nnkyBEmTZrEpk2beOWVV+jevXtc9muMMdFysUmqwXvm\nmWfo2LEjl156adz22apVK/72t79x5ZVXcu6555KTk1P7RsYYEzArGDUoKSnh3nvvZebMmRWXzlYn\n1jZJEeGee+5hxowZZGZmsnx5xIu/YuZC26hlqORCDhcygBs5XMgA7uSIlRWMGvztb38jPT39pMsT\n4y0rK4sFCxZwzTXX8MILL/h2HGOMqS/rw6jBJZdcwpQpUxg/fnzc913V6tWrufzyy7nzzjuZOnWq\n78czxjRtdenDsIJRjUOHDpGWlsaePXto27ZtXPddne3btzN27FiuueYaZs2aVWszmDHG1JV1esfR\nm2++yfnnnx91sYhHm+Rpp53GBx98wLJly8jKyuL48eMx78OFtlHLUMmFHC5kADdyuJAB3MkRKysY\n1Vi0aFG977uoi86dO7N06VIKCgq44oorKCwsTHgGY4yJxJqkIigpKaFbt26sW7eOnj17xm2/sThx\n4gRTp05lxYoVvP766/To0SOQHMaYxsmapOLk/fffp1+/foEVCwg9TuSJJ57gO9/5Dueeey7r168P\nLIsxxoAVjIgWL17MVVddFdM2frRJigj/8R//wcyZM7ngggt49913A8kRK8tQyYUcLmQAN3K4kAHc\nyRErKxhVqGpg/RfVufHGG3n++ee54YYbePrpp4OOY4xpoqwPo4q1a9dy9dVXs3XrVucua/3ss8+4\n/PLLGT9+PLNmzaJZs2ZBRzLGNFDWhxEHixYt4qqrrnKuWAAMGDCAFStWsHLlSsaNG2dXUBljEsoK\nRhWvvvpqzP0XkLg2yU6dOrFkyRJ69+7N6NGj2bJlSyA5amIZKrmQw4UM4EYOFzKAOzliZQUjzNGj\nR/n0008599xzg45So5SUFB5//HGmTp3KmDFjeP3114OOZIxpAqwPI8yqVauYNGkSa9asiUOqxPjg\ngw+47rrrmDRpEvfccw9JSfY3gDGmdk72YYjIWBHJEZFNIjK9hvVGikiJiFwT67bx8vHHHzNixAi/\nDxNXY8aM4eOPP2bZsmVceeWVHDhwIOhIxphGyteCISJJwGPApcCZwAQRGVjNerOBt2LdNp4++eQT\nhg8fXqdtg2yT7N69O++88w5nnnkmgwYN4r//+78DywJutM+6kAHcyOFCBnAjhwsZwJ0csfL7DGMU\nsFlVd6hqCfAsEOkGh58CLwD76rBt3DTEM4xyKSkpPPDAA9x+++1ce+21/O53v6O0tDToWMaYRsTX\nPgwRGQ9cqqqTvekbgVGq+rOwdXoCC1X1AhH5M/CKqr4UzbZh+6h3H8aRI0fo1KkT+fn5tGzZsl77\nCtru3bu54YYbKC0tZcGCBaSnpwcdyRjjmLr0YST7FSYGc4F6909kZWVVfDCmpqaSkZFR8aa88tO/\nmqY3bNjAgAEDaNmyZVTruzy9adMm7rrrLrKzsxk5ciQTJ07k0ksv5YILLnAin03btE0nfrp8PDc3\nlzpTVd8GYDTwZtj0HcD0Kuts84btQBGwF7gqmm3Dlml9zZs3TydOnFjn7ZctW1bvDPFQNcfatWt1\n6NChOm7cOM3LywskQxBcyKDqRg4XMqi6kcOFDKpu5PA+N2P6TPe7D2MV0E9E+ohIc+B6YHGVgtXX\nG04j1I9xi6oujmbbeGrI/Rc1GTJkCCtXrmTo0KFkZGTw9NNPlxdZY4yJie/3YYjIWOARQh3sT6nq\nbBGZQqi6za+y7tPAq6r6UnXbVnMMre/3MXToUJ566ilGjhxZr/24bM2aNUycOJHU1FSeeOIJ+vfv\nH3QkY0xA7J3edfTVV1/RuXNnCgoKaNGiRRyTuefEiRM88sgj3Hfffdx8883ceeedtG7dOuhYxpgE\nc/LGvYZgzZo1DBw4sF7FIrxjKUi15UhOTub2229n9erVbNq0iTPPPJOXX345rs1ULvwsXMgAbuRw\nIQO4kcOFDOBOjlhZwSB0w15j7L+oSVpaGs899xx/+tOfuPvuu7nwwgvJzs4OOpYxxmHWJEXoktxv\nfOMbTJ48OY6pGo4TJ07w1FNPMWPGDMaOHctvfvMb+vTpE3QsY4yPrEmqjurzSJDGIDk5mSlTpvDZ\nZ5+RlpbGsGHDuO2229i3b1/tGxtjmowmXzAOHz7M1q1bOeuss+q1H1faJOuTo0OHDsycOZMNGzYA\nMGjQIKZPnx5z4XDhZ+FCBnAjhwsZwI0cLmQAd3LEqskXjPXr1zNgwIBGf3VULLp168YjjzxCdnY2\nxcXFDBw4kGnTprF79+6goxljAtTk+zAWLlzIK6+8wrPPPhvnVI1HXl4eDz74IAsWLODqq6/ml7/8\nJYMHDw46ljGmHqwPow42b95Mv379go7htF69ejF37lw2b95M3759ufDCC7n88st56623KCsrCzqe\nMSZBmnzB2LJlS1wKhittkn7m6NSpE3fddRe5ublcc801TJ8+nUGDBvHoo49y8ODBhGSIlgsZwI0c\nLmQAN3K4kAHcyRErKxhbttgjMmLUsmVLJk6cSHZ2Nk8++STLly8nPT2drKwsPvzwQ3tWlTGNVJPv\nw+jcuTPr16+nW7ducU7VtOzbt48FCxYwf/58mjVrxk033cSNN95IWlpa0NGMMRHYs6RiVFBQQO/e\nvSksLEQkpp+bqYaq8uGHH7JgwQKef/55hg8fzoQJE/j2t7/NKaecEnQ8Y4zHOr1jVN4cFY9i4Uqb\nZNA5RISSkhL++Mc/kpeXx+TJk3nttddIT09n3Lhx/PWvfz2pv8MvQf8cyrmQw4UM4EYOFzKAOzli\n1eQLhl0h5Z9WrVrx3e9+lxdffJGdO3cyfvx4XnjhBXr37s1ll13G/Pnz7d4OYxqQJt0k9dvf/paj\nR48ya9YsH1KZ6hQVFfH666+zePFi3njjDfr27csVV1zBZZddxogRI2jWrFnQEY1p9KwPI0Y/+MEP\nuOCCC/jhD3/oQyoTjZKSEj744ANeffVV3nzzTfbu3csll1zCxRdfzEUXXUTv3r2DjmhMo+RkH4aI\njBWRHBHZJCLTIyy/SkTWiEi2iKwUkTFhy3LDl8U7WzybpFxpk3QhRywZUlJSyMzM5KGHHmLdunVk\nZ2dz4YUX8tZbbzFixAj69+/PT37yE5555pmYmq9c+DmAGzlcyABu5HAhA7iTI1bJfu5cRJKAx4CL\ngN3AKhFZpKo5Yau9473DGxEZAvwDGOQtKwMyVbXAj3x2l7d7Tj31VCZNmsSkSZMoKyvj008/Zdmy\nZfzjH/9g6tSpdOrUiTFjxnDeeecxZswYBgwYYFe4GZMgvjZJichoYIaqXuZN30HoXd73V7P+ucCT\nqnqmN70dGKGqB2o5TsxNUgcPHiQtLY2ioiL7wGkgysrKWLduHR988EHFcOjQIc455xxGjx7NqFGj\nGDFiBF26dAk6qjHOq0uTlK9nGEAv4POw6V3AqKoricjVwH1AF+DysEUKvC0ipcB8Vf1TvIJt3bqV\nfv36WbFoQJKSkhg6dChDhw7l5ptvBmDv3r2sWLGCFStW8NBDD/HJJ5+QmprK8OHDGTZsGGeffTbD\nhg2je/fuAac3puHzu2BERVX/CfxTRM4DZgIXe4vGqOoeEelCqHBsVNXlkfaRlZVFeno6AKmpqWRk\nZJCZmQlUtheGTy9durTikSCRlsc6vXr1an7+85/HbX91nQ5vGw3i+ABz586t9ecfr+nu3bvToUMH\nLrnkEmbNmkVZWRkLFy5kyZIlHDx4kDlz5rBy5UqSk5MZMWIEQ4cOJSUlhfT0dL7//e/TunVr+30k\naLp8XlP//xHU50X5eG5uLnWViCape1V1rDddY5OUt85WYKSq5leZPwMoUtU5EbaJuUlq5syZHD58\nmPvuuy+m7arz3nvvVfyCguRCDtcyqCp5eXmsXbuWNWvWsHbtWtavX8/mzZvp1asXgwYNYvDgwQwa\nNIiBAwcyYMCAuN2V7trPoqnncCGDKzmcu6xWRJoBnxHq9N4DrAQmqOrGsHVOV9Wt3vgwYJGqnioi\nrYEkVS0WkTbAEuA3qrokwnFiLhhZWVmcf/75TJw4sa7fnmngSkpK2LJlCxs3bqwYcnJy2LRpEy1b\ntuSMM86gf//+9OvXj/79+3P66afTt29fe8SJaRSc68NQ1VIRmUrowz4JeEpVN4rIlNBinQ+MF5Ef\nAMeBI8C13ubdgJdFRL2cCyMVi7rasmULP/rRj+K1O9MApaSkMGjQIAYNGnTSfFVl7969fPbZZ2zZ\nsoXNmzfz3HPPsXXrVrZu3UpKSgp9+/bltNNOIz09ndNOO40+ffpUDO3atQvoOzLGX032xr1u3bqR\nnZ1Nz54945LBhVNMV3I05gyqypdffsn27dvZvn07ubm5bN++nR07dlQMLVq04NRTT6V3794kJSVx\nzjnnkJaWRq9evejVqxc9e/akffv2CbvgwoXfhys5XMjgSg7nzjBcVVhYSHFxMT169Ag6imlgRISu\nXbvStWtXzjnnnK8tV1Xy8/PZuXMnO3fuZOnSpRQXF/Puu++ya9cudu/eTV5eHqpKjx496NGjBz17\n9qRHjx50796d7t27061bt4qhS5cupKSkBPCdGvN1TfIMIzs7m6ysLNasWeNjKmOqV1hYyJ49e9iz\nZw+7d+9m7969Jw1ffPEF+/btY//+/bRv354uXbrQtWtXunTpUjF07ty5YujUqVPF0K5dO7tc3NTK\nzjCiZHd4m6C1b9+e9u3bM2DAgBrXKysrIz8/ny+//JJ9+/ZVFJEvv/ySLVu2sGLFCvbv38/+/fs5\ncOAA+fn5HDt2jI4dO1YMp5xySsQhNTX1a0Pbtm1JSmrSD7E2NWiSBcOPx5q70CbpSg7LEL8cSUlJ\nFWcRVTvnq3Ps2DHy8/MpKCggPz+f9957j7S0NAoKCigoKGDLli0cPHiQgoICDh48yKFDhyq+fvXV\nV7Rt25b27dvToUMHOnToUFHcyod27dpVDOXTbdu2rZjXtm1b2rZtS+vWrU8qPi78TlzI4FKOWDXJ\ngrFjxw4yMjKCjmGML1q0aFHRPwJw4sSJqD+cSktLKSoq4tChQxw6dIjCwsKK8aKiIgoLCyksLGTn\nzp0UFRVVDMXFxRXjhw8fpqioiCNHjtC6dWvatGlD27ZtUVW6d+9OmzZtThrK1ykfrzq0atXqa1/L\nh+bNm1vzWwI1yT6MK664gsmTJ3PVVVf5mMqYpq20tJSvvvqKw4cPU1xc/LWv5csOHz7MV199VTF9\n5MiRaqePHDly0lBaWkrLli0rCkjV8eqGFi1afG28RYsWNQ7Nmzc/6Wv4eHJycoMrXNaHEaVdu3aR\nlpYWdAxjGrVmzZpVNFP55cSJExw9epQjR45UfD1y5AjHjh07ad6xY8e+Nn706FGKi4s5cOAAR48e\n5dixY18byucfP378pPnHjx+vmHf8+HFOnDhB8+bNax1SUlKq/Vp1vKYhOTk54rzy+dV9Lb94oq6a\nZMHIy8ujV69ecd2nK22SLuSwDG7lcCGDXzmSk5Mr+kyCygChixOOHz9OSUnJScWkfDp8/Pjx43zy\nyScMHDiwYl5JScnXxsOHo0ePfm3eiRMnvjYe/jXSvIkTJzJt2rQ6f59NrmAcPXqUwsJCewS2MSZu\nkpKSKpq4otGsWTMninismlwfxrZt27jwwgvr9cRGY4xp6Jx8Ratr/GiOMsaYpqDJFQy/OrzDnzkf\nJBdyWIZKLuRwIQO4kcOFDOBOjlg1uYJhZxjGGFM3Ta4P4xe/+AVpaWncfvvtPqcyxhh3WR9GFOwe\nDGOMqZsaC4aILI5i+P+17GOsiOSIyCYRmR5h+VUiskZEskVkpYiMiXbbuvCrScqVNkkXcliGSi7k\ncCEDuJHDhQzgTo5Y1XYfxiBgUg3LBZhX7UKRJOAxQq9o3Q2sEpFFqpoTtto7qrrYW38I8A9gUJTb\nxsz6MIwxpm5q7MMQkWtV9R817qCGdURkNDBDVS/zpu8g9GrW+6tZ/1zgSVU9M5Zto+3DKCsro2XL\nlhQVFdGiRYta1zfGmMYq7n0YkQqBiHSvbZ0wvYDPw6Z3efOq7vNqEdkIvAL8KJZtY7Fv3z5SU1Ot\nWBhjTB3UpdP79XiHUNV/quog4GpgZrz3X27Xrl2+NUe50ibpQg7LUMmFHC5kADdyuJAB3MkRq7o8\nSyqWU5g8oHfYdJo3LyJVXS4ifUWkY6zbZmVlkZ6eDkBqaioZGRkVz2op/+UcOnSItLS0iumqy+sz\nvXr16rjuryFPr169OvA89vtw6/cRLuifhwvTQfz7LB+vz2ORYr4PQ0RuUdXHo1y3GfAZoY7rPcBK\nYIKqbgxb53RV3eqNDwMWqeqp0Wwbto+o+jAef/xx1q5dyx/+8Ido4htjTKOVkPdhRFssvHVLRWQq\nsIRQ89dTqrpRRKaEFut8YLyI/AA4DhwBrq1p21jzhvOzScoYYxq72u7D+FdtO6htHVV9U1UHqGp/\nVZ3tzfujVyxQ1QdU9SxVHaaqY1T1f2ratj7y8vJ8u2mv6ml3UFzIYRkquZDDhQzgRg4XMoA7OWJV\n630YIrK2huUCdIhjHl/ZPRjGGFN3td2H0SeKfZSq6q74RYpdtH0YAwcO5KWXXmLw4MEJSGWMMe6q\nSx9Gk3n4oKrSrl078vLy6NChwZwUGWOML+zhgzUoLCwEoH379r7s35U2SRdyWIZKLuRwIQO4kcOF\nDOBOjlg1mYJR3uEtElNBNcYY44mpSUpE2gBHVbXUv0ixi6ZJ6u2332b27Nm8++67CUpljDHuinuT\nlIgkicj3ROQ1EdkH5AB7RGSDiDwoIv3qEziR7B4MY4ypn9qapJYBpwN3At1V9VRV7QqcB3wE3C8i\nN/qcMS78vAcD3GmTdCGHZajkQg4XMoAbOVzIAO7kiFVt92F8S1VLqs5U1XzgReBFEUnxJVmc5eXl\ncdZZZwUdwxhjGqza7sPoWNPGXuEIXDR9GFdeeSUTJ07k6quvTlAqY4xxlx/PktpP6D0UJ8qPEbZM\ngb6xHCxIfjdJGWNMY1dbH8Z/AgXAm8BNQF9VPc0bGkyxANi9ezc9e/b0bf+utEm6kMMyVHIhhwsZ\nwI0cLmQAd3LEqrY37v0cyACeB74PZIvIAyJyWiLCxUtZWRkHDhygS5cuQUcxxpgGK+r7MEQkFbge\n+B3wa1X9k5/BYlFbH8b+/fs544wzyM93osvFGGMCF/c+DO9GvXHAdUAX4CVguKrurHPKAOzbt4+u\nXbsGHcMYYxq02vow9gG/Av4HeBjYBowQkWtE5Bq/w8VLIgqGK22SLuSwDJVcyOFCBnAjhwsZwJ0c\nsartKqnnCV0NNcAbwimhM44aichYYC6Vb827v8ry7wHTvcki4BZVXestywUOAWVAiaqOqu14kXz5\n5Zd2hmGMMfXk6+PNRSQJ2ETovdy7gVXA9aqaE7bOaGCjqh7yisu9qjraW7aNUBNYQS3HqbEPY968\neaxfv57HH4/67bLGGNOo+fEsqRu9D/3qlp8uIufVsItRwGZV3eHdMf4soT6RCqr6kaoe8iY/AsIf\n+CS1ZYyG9WEYY0z91fZh3InQpbRPi8itInKtiPxARH4rIv8FPAB8UcP2vYDPw6Z3cXJBqGoS8EbY\ntAJvi8gqEflxLVmrZX0YliEoLuRwIQO4kcOFDOBOjljV2Iehqo+IyGPAhcAYYChwBNgIfD+eV0uJ\nyAXADwk92LDcGFXdIyJdCBWOjaq6PNZ92xmGMcbUX22d3njvvnjbG2KVB/QOm07z5p1ERIYC84Gx\n4f0VqrrH+/qliLxMqIkrYsHIysoiPT0dgNTUVDIyMsjMzARg06ZN5OVVHra8upcvj9e03/uPZjoz\nMzPQ44f/DII6vv0+Tp4unxf078OFaRd+H0H9+ywfz83Npa5qe/jgPTVsq6r6uxp3LtIM+IxQp/ce\nYCUwQVU3hq3TG3iX0BnLR2HzWwNJqlrs3Q+yBPiNqi6JcJwaO70HDBjAokWLGDhwYE1xjTGmyfDj\nnd6HIwwAE6m8FLZa3tnJVEIf9uuBZ1V1o4hMEZHJ3mp3Ax2Bx0UkW0RWevO7ActFJJtQZ/grkYpF\nNKwPwzIExYUcLmQAN3K4kAHcyRGr2vowHi4fF5F2wG2E+hmeJXQjX61U9U2q3MOhqn8MG/8x8LUO\nbVXdTug5VvVy/PhxiouLSU1Nre+ujDGmSav1PgzvnRjTgBuAvwCP1HZfRKLV1CSVl5fHyJEj2b17\nd4JTGWOMu/x4ltSDwDWEOqSHqGpxPfIFwq6QMsaY+KitD+N2oCdwF7BbRAq9oUhECv2PV3+JKhiu\ntEm6kMMyVHIhhwsZwI0cLmQAd3LEqrY+jHrfZR00O8Mwxpj48PVZUolSUx/Gww8/TF5eHnPmzElw\nKmOMcZcfl9U2eHaGYYwx8WEFI05caZN0IYdlqORCDhcygBs5XMgA7uSIlRUMY4wxUWn0fRgjR45k\n3rx5jBpVp3cvGWNMo2R9GBHYGYYxxsRHoy4Yqsq+ffvo0qWL78dypU3ShRyWoZILOVzIAG7kcCED\nuJMjVo26YBQXF9OsWTPatGkTdBRjjGnwGnUfxtatW7n44ovZtm1bAKmMMcZd1odRhfVfGGNM/FjB\niBNX2iRdyGEZKrmQw4UM4EYOFzKAOzliZQXDGGNMVHzvwxCRscBcQsXpKVW9v8ry71H59r4i4BZV\nXRvNtmH7iNiHMWvWLIqLi5k1a1a8vh1jjGkUnOvDEJEk4DHgUuBMYIKIVH2x9jbg/6jqvwEzCb17\nI9pta2RnGMYYEz9+N0mNAjar6g5VLSH0atdx4Suo6keqesib/AjoFe22tbE+DMsQNBdyuJAB3Mjh\nQgZwJ0es/C4YvYDPw6Z3UVkQIpkEvFHHbb/GzjCMMSZ+anyBUiKJyAXAD4Hz6rJ9VlYW6enpAKSm\nppKRkVFxl3d5Nc/MzATwbbpcoo4XaTozMzPQ44f/DII6vv0+Tp4unxf078OFaRd+H0H9+ywfz83N\npa587fRjgtjyAAAQBklEQVQWkdHAvao61pu+A9AIHd9DgReBsaq6NZZtvWURO727d+9OdnY2PXr0\niPN3ZowxDZtznd7AKqCfiPQRkebA9cDi8BVEpDehYvH98mIR7bY1KSsr48CBA3Tu3Lne30Q0qv7V\nEBQXcliGSi7kcCEDuJHDhQzgTo5Y+dokpaqlIjIVWELlpbEbRWRKaLHOB+4GOgKPi4gAJao6qrpt\noz12fn4+7du3JyUlJe7flzHGNEWN9llSGzZsYPz48WzcGHWNMcaYJsPFJqnAJOqx5sYY01Q02oJx\n4MABOnXqlLDjudIm6UIOy1DJhRwuZAA3criQAdzJESsrGMYYY6LSaPswZs+eTUFBAfffH/HxU8YY\n06RZH0YYO8Mwxpj4soIRJ660SbqQwzJUciGHCxnAjRwuZAB3csTKCoYxxpioNNo+jPPOO4/77ruP\n888/P6BUxhjjLuvDCHPgwAE6duwYdAxjjGk0GnXBsD4MyxA0F3K4kAHcyOFCBnAnR6waZcFQVQoK\nCuwMwxhj4qhR9mEcPHiQ3r17U1hYGGAqY4xxl/VheOwKKWOMiT8rGHHiSpukCzksQyUXcriQAdzI\n4UIGcCdHrBplwcjPz7czDGOMibNG2YexcOFCXnvtNf7+978HmMoYY9zlZB+GiIwVkRwR2SQi0yMs\nHyAiH4rIURGZVmVZroisEZFsEVkZ7TGtD8MYY+LP14IhIknAY8ClwJnABBEZWGW1A8BPgQcj7KIM\nyFTVs1V1VLTHDeKmPVfaJF3IYRkquZDDhQzgRg4XMoA7OWLl9xnGKGCzqu5Q1RLgWWBc+Aqqul9V\nPwFORNhe6pLRzjCMMSb+fO3DEJHxwKWqOtmbvhEYpao/i7DuDKBIVeeEzdsGHARKgfmq+qdqjnNS\nH8aECRO44ooruOGGG+L6/RhjTGNRlz6MZL/CxMkYVd0jIl2At0Vko6ouj7RiVlYW6enpAPzrX//i\n7LPPrlhWfvqXmZlp0zZt0zbdJKfLx3Nzc6kzVfVtAEYDb4ZN3wFMr2bdGcC0GvZV7fLQt1Fp2LBh\nunLlSk2kZcuWJfR41XEhh2Wo5EIOFzKoupHDhQyqbuTwPjdj+kz3uw9jFdBPRPqISHPgemBxDetX\nnB6JSGsRaeuNtwEuAdZFc1DrwzDGmPjz/T4MERkLPEKo8/opVZ0tIlMIVbf5ItIN+BhoR+iqqGJg\nMNAFeBlQQk1nC1V1djXH0PDvo127duzatYsOHTr4+J0ZY0zDVZc+jEZ3497x48dp06YNx48fRySm\nn4UxxjQZTt64l2j5+fl07Ngx4cUivGMpSC7ksAyVXMjhQgZwI4cLGcCdHLFqdAXD3rRnjDH+aHRN\nUu+//z6//vWvWb484tW3xhhjsCYpwK6QMsYYv1jBiBNX2iRdyGEZKrmQw4UM4EYOFzKAOzliZQXD\nGGNMVBpdH8avfvUrOnbsyB133BFwKmOMcZf1YWBnGMYY4xcrGHHiSpukCzksQyUXcriQAdzI4UIG\ncCdHrKxgGGOMiUqj68MYPHgwzz33HEOGDAk4lTHGuMv6MAg9GsTOMIwxJv4aVcFQ1cAKhittki7k\nsAyVXMjhQgZwI4cLGcCdHLFqVAWjqKiI5s2b06JFi6CjGGNMo9Oo+jC2b99OZmYmO3bsCDqSMcY4\nrcn3YdgVUsYY4x/fC4aIjBWRHBHZJCLTIywfICIfishREZkWy7ZVBVkwXGmTdCGHZajkQg4XMoAb\nOVzIAO7kiJWvBUNEkoDHgEuBM4EJIjKwymoHgJ8CD9Zh25N3ZGcYxhjjG1/7MERkNDBDVS/zpu8g\n9C7v+yOsOwMoUtU5ddhWVZVHH32UnJwc5s2b59v3ZIwxjYGLfRi9gM/Dpnd583zZ1t62Z4wx/kkO\nOkC8ZGVlsWHDBjp27MjcuXPJyMggMzMTqGwv9HN69erV/PznP0/Y8aqbDm8bDeL4QCA//6rT9vtw\n6/cR/jNo6r+PoP59lo/n5uZSZ6rq2wCMBt4Mm74DmF7NujOAaXXcVlVV9+/frwUFBRqEZcuWBXLc\nqlzIYRkquZDDhQyqbuRwIYOqGzm8z82YPtP97sNoBnwGXATsAVYCE1R1Y4R1ZwDFqvpwHbZVP78P\nY4xpbOrSh+Frk5SqlorIVGAJof6Sp1R1o4hMCS3W+SLSDfgYaAeUichtwGBVLY60rZ95jTHGVM/3\n+zBU9U1VHaCq/VV1tjfvj6o63xv/QlVPVdVUVe2oqr1Vtbi6bV0V3k4YJBdyWIZKLuRwIQO4kcOF\nDOBOjlg1qju9jTHG+KdRPUvKGGNMdFy8D8MYY0wjYQUjTlxpk3Qhh2Wo5EIOFzKAGzlcyADu5IiV\nFQxjjDFRsT4MY4xpgqwPwxhjjG+sYMSJK22SLuSwDJVcyOFCBnAjhwsZwJ0csbKCYYwxJirWh2GM\nMU2Q9WEYY4zxjRWMOHGlTdKFHJahkgs5XMgAbuRwIQO4kyNWVjCMMcZExfowjDGmCbI+DGOMMb7x\nvWCIyFgRyRGRTSIyvZp1/lNENovIahE5O2x+roisEZFsEVnpd9b6cKVN0oUclqGSCzlcyABu5HAh\nA7iTI1a+FgwRSQIeAy4FzgQmiMjAKutcBpyuqv2BKcATYYvLgExVPVtVR/mZtb5Wr14ddATAjRyW\noZILOVzIAG7kcCEDuJMjVn6fYYwCNqvqDlUtAZ4FxlVZZxywAEBVVwAdvNe2AkgCMsbFwYMHg44A\nuJHDMlRyIYcLGcCNHC5kAHdyxMrvD+NewOdh07u8eTWtkxe2jgJvi8gqEfmxbymNMcbUKjnoALUY\no6p7RKQLocKxUVWXBx0qktzc3KAjAG7ksAyVXMjhQgZwI4cLGcCdHLHy9bJaERkN3KuqY73pOwBV\n1fvD1vkDsExVn/Omc4BvquoXVfY1AyhS1TkRjmPX1BpjTIxivazW7zOMVUA/EekD7AGuByZUWWcx\ncCvwnFdgDqrqFyLSGkhS1WIRaQNcAvwm0kFi/aaNMcbEzteCoaqlIjIVWEKov+QpVd0oIlNCi3W+\nqr4uIv8uIluAw8APvc27AS97Zw/JwEJVXeJnXmOMMdVrFHd6G2OM8V+DuGTVZSLylIh8ISJrA8yQ\nJiJLRWS9iHwqIj8LKEcLEVnh3Wj5qdfvFAgRSRKRf4nI4gAzBH7jqYh0EJHnRWSj9+/jnAAynOH9\nDP7lfT0UxL9REfmFiKwTkbUislBEmgeQ4Tbv/0ZC/59G+pwSkVNEZImIfCYib4lIh9r2YwWj/v5M\n6MbEIJ0ApqnqmcC5wK1Vb5BMBFU9BlygqmcDGcBlIhLUDZe3ARsCOnY5F248fQR4XVUHAf8GbEx0\nAFXd5P0MhgHDCTU9v5zIDCLSE/gpMExVhxJq5r4+wRnOBCYCIwj9/7hCRPom6PCRPqfuAN5R1QHA\nUuDO2nZiBaOevMt8CwLOsFdVV3vjxYQ+FKre75KoLF95oy0I/adMeJuniKQB/w48mehjV41CgP/H\nRKQ9cL6q/hlAVU+oamFQeTzfAraq6ue1rhl/zYA2IpIMtAZ2J/j4g4AVqnpMVUuB94FrEnHgaj6n\nxgF/8cb/Alxd236sYDQyIpJO6K+XFQEdP0lEsoG9wNuquiqAGP8P+L8EUKyqCPrG09OA/SLyZ685\naL6ItAogR7jrgGcSfVBV3Q08DOwkdHPwQVV9J8Ex1gHne01BrQn9UXNqgjOE61p++4Kq7gW61raB\nFYxGRETaAi8At3lnGgmnqmVek1QacI6IDE7k8UXkcuAL74xLvCEoY7xmmH8n1Ex4XoKPnwwMA+Z5\nOb4i1AwRCBFJAa4Cng/g2KmE/qLuA/QE2orI9xKZQVVzgPuBt4HXgWygNJEZalHrH1hWMBoJ7zT7\nBeCvqroo6Dxe08cyYGyCDz0GuEpEthH6S/YCEVmQ4AwAqOoe7+uXhNrsE92PsQv4XFU/9qZfIFRA\ngnIZ8In380i0bwHbVDXfaw56CfhGokOo6p9VdYSqZgIHgU2JzhDmi/Ln9olId2BfbRtYwYiPoP+S\nBXga2KCqjwQVQEQ6l19p4TV9XAzkJDKDqv5aVXural9CnZpLVfUHicwAICKtvTM+wm48XZfIDF5z\nw+cicoY36yKCvRBgAgE0R3l2AqNFpKWICKGfRcIvAPAec4SI9Aa+Dfw9kYfn5M+pxUCWN34TUOsf\nmq4/S8p5IvJ3IBPoJCI7gRnlnYwJzDAGuAH41Os/UODXqvpmInMAPYC/eI+1TwKeU9XXE5zBFa7c\nePozYKHXHLSNyhtjE8prs/8WMDmI46vqShF5gVAzUIn3dX4AUV4UkY5ehlsSdRFCpM8pYDbwvIj8\nCNgBXFvrfuzGPWOMMdGwJiljjDFRsYJhjDEmKlYwjDHGRMUKhjHGmKhYwTDGGBMVKxjGGGOiYgXD\nGGNMVKxgmAZLRMrCH/shIs1E5Mu6vgNDRLZ7N1UFQkSK4rivm0Rkn4hEvDlNRB4QkT0iMi1exzSN\nn93pbRqyw8BZItLCexfHxUB9Hpsd9F2sdT6+iDTznpEU7llVjfiSHlX9lYgE8oBK03DZGYZp6F4H\nLvfGT3pWkYiMFJEPReQTEVkuIv29+Uki8qD31rPVInJr+SbAz7z114Q9g4mwfd4kIi+KyBvem8ru\nD1tWFDY+XkT+7I3/WUQeF5H/EZEtIvJN7w1oG0Tk6ZN3L3O8t8K9LSKdvJl9veOtEpH/Ks/l7fcJ\nEfmI0FNQYxX0889MA2MFwzRkCjwLTBCRFsBQTn4PyEbgPFUdTujZOfd586cQesz1UFXNABaGbbPP\nW/8PhN6pEcm/Ad/1jnediJS/rKrqGUL4dKqqngtMI/TQt4dVdTAwVESGeuu0AVaq6lmEXq5T/orb\n+cBUVR3pZXoibL+9VHW0qv6ymqzGxI01SZkGTVXXeS+NmgC8xsl/NacCC7wzi/KHAELoSaVPqPcg\nNVU9GLZN+atDPyH0NNFI3i1/34iIbCBUfPKo+S/2V7yvnwJ7VbX8qbHrgXRgLaFXuv7Dm/83Qg+q\na0PoMdzPe09ZBUgJ22/C3y1hmi4rGKYxWAw8SOhpnJ3D5v+O0OPNrxGRPoTez1GbY97XUqr//3Es\nbDx8vfAzipbVbFNWZfuyGo6jhFoBCrwXIEVyuJr5J/Gavs4G8lT1imi2MaYqa5IyDVn5X9xPA79R\n1fVVlncg9Jc/nPxY77eBKSLSDEBETolTnr0iMsB7vHt1ZydQ/ZlIEvAdb/wGYLmqFgHbRaR8PmFN\nWFFT1R+p6tlWLEx9WMEwDVl5k1Keqj4WYfkDwGwR+YST/60/SehqqrXe+0MmhO+vLhk8dxJqFlsO\n7K5mnarT4ePFwCgR+ZTQ2dJvvfk3ABO9Dvp1hF5zWte8xtSZvQ/DmEZIRG4CRqjqT2tYZwZQpKpz\nEpfMNGR2hmFM43QEGFvTjXuEzlyi6gMxBuwMwxhjTJTsDMMYY0xUrGAYY4yJihUMY4wxUbGCYYwx\nJipWMIwxxkTlfwHS1gbZh8pDsAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8e15ba38d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "M_air = [] \n", "N_air = []\n", "for M in np.arange(0.1, 10, 0.1):\n", " n, dn = n_function (gamma_air, MW_air, M)\n", " N_air.append(n)\n", " M_air.append(M)\n", " \n", "plt.plot(M_air, N_air, 'k')\n", "plt.xlabel('Mach number [-]')\n", "plt.xticks(range(1, 11, 1))\n", "plt.ylabel('N(M) [-]')\n", "plt.grid()" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "M2 = 0.283231351005\n", "N1 / T1o**0.5= 0.00569378963698\n", "N2 / T2o**0.5= 0.00569378765277\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEACAYAAABLfPrqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVMW5x/Hvi2TgCjpiUFAQFEajckUYFkclMqDBwai4\nEsAdoxgk11yNCy4IGnNFEuOKuIvXBYm4EAUFlcEdUTZFkMEFAZXEKMlVoyK89486aqcdpntmeub0\n8vs8Tz/pc6bq9NvnafNSVaeqzN0RERGpjSZxByAiIrlHyUNERGpNyUNERGpNyUNERGpNyUNERGpN\nyUNERGotreRhZhVmttzMVpjZ+Zspc52ZVZnZIjPrlqqumV1mZovNbKGZPWFmbaPzHc3sCzNbEL0m\n1vdLiohIZlmqeR5m1gRYARwIfADMB4a4+/KEMgOBUe7+czPbB7jW3ctqqmtmLd39s6j+r4E93f1X\nZtYR+Iu7d834txURkYxIp+XRG6hy91XuvgGYAgxKKjMIuBvA3ecBxWbWpqa63yaOSAtgU8Kx1eXL\niIhI40gnebQDViccr4nOpVOmxrpm9jszex8YBoxJKLdz1GU1x8z6pBGjiIg0ooYaME+r5eDuF7t7\nB+Be4NfR6Q+BDu5eCpwD3GdmLRsmTBERqYumaZRZC3RIOG4fnUsus1M1ZYrSqAtwHzADGOvuXwNf\nA7j7AjN7G9gNWJBYwcy0KJeISB24e72HBtJpecwHSqKnoIqAIcD0pDLTgRMBzKwMWO/u62qqa2Yl\nCfWPAJZF51tHA+2YWSegBHinusDcXa8MvS699NLYY8inl+6n7mW2vjIlZcvD3Tea2ShgFiHZ3O7u\ny8xsRPiz3+LuM8zsEDNbCXwOnFJT3ejSV5rZboSB8lXAGdH5A4DLzOzr6G8j3H19xr6xiIjUWzrd\nVrj7E8BPks7dnHQ8Kt260fljNlP+IeChdOISEZF4aIa5AFBeXh53CHlF9zNzdC+zU8pJgtnKzDxX\nYxcRiYuZ4Y00YJ6TnnwSvvgi7ihERPJTXiYPd3jgAejTB1atijsaEZH8k5fJwwxuvx2OPx7KymDu\n3LgjEhHJL3k/5jF7dkgiY8bAyJEhsYiIFKpMjXnkffIAePttGDQotEJuvBGaNWvg4EREspQGzGuh\nc2d46SX45BPo1w8+/DDuiEREcltBJA+ArbaCBx+Eigro3RteeSXuiEREcldBdFsle+QROO00+MMf\n4KSTMhyYiEgW05hHPScJLl0KRxwBhx4KEyZA07QWahERyW1KHhmYYf7JJzB0KGzcGOaF/PjHGQpO\nRCRLacA8A7bdFh5/HLp3h1694PXX445IRCQ3FHTygNBdNWECXH459O8P06bFHZGISPYr6G6rZK+9\nBkceGQbRx42DJgWfWkUk32jMo4FW1V23Do45Blq1gnvuga23zvhHiIjERmMeDaRNG3j6aWjXDvbZ\nB1asiDsiEZHso+RRjaIiuOkm+M1vwsq8M2bEHZGISHZRt1UKL7wAgweHRRUvvFALK4pIbtOYRyPu\nJLh2LRx9dOjKuuuusNSJiEgu0phHI2rXLuwJ0qpVWJm3qiruiERE4qXkkaZmzeDWW2HUKNh/f5g5\nM+6IRETio26rOnj++TAOMmoUjB6tcRARyR2N2m1lZhVmttzMVpjZ+Zspc52ZVZnZIjPrlqqumV1m\nZovNbKGZPWFmbRP+Njq61jIzG1CfL9gQ+vQJS7o/+igceyx89lncEYmINK6UycPMmgA3AAcDXYCh\nZrZ7UpmBQGd33xUYAUxKo+5V7r63u3cHHgcujersCQwG9gAGAhPNsu/f9u3bh3GQ4uIwDrJyZdwR\niYg0nnRaHr2BKndf5e4bgCnAoKQyg4C7Adx9HlBsZm1qquvuif9ebwFsit4fDkxx92/c/T2gKrpO\n1mneHG67LTzGu99+8MQTcUckItI40kke7YDVCcdronPplKmxrpn9zszeB4YBYzZzrbXVfF7WMAvJ\nY9o0GD4crrwScnQYSUQkbQ21BVJa3UzufjFwcTQW8mtgbG0+ZOzY74uXl5dTXl5em+oZ9dOfhnGQ\no46CBQvgjjugZcvYwhERAaCyspLKysqMXzfl01ZmVgaMdfeK6PgCwN19fEKZScAcd38gOl4O9AV2\nSVU3Or8T8Li7d00uY2ZPAJdG3WGJdWJ72qomX34ZWiLz54ftbjt3jjsiEZHvNebTVvOBEjPraGZF\nwBBgelKZ6cCJUWBlwHp3X1dTXTMrSah/BLA84VpDzKzIzHYBSoBX6vTtYtC8Odx+O5xxRhgHefLJ\nuCMSEcm8lN1W7r7RzEYBswjJ5nZ3X2ZmI8Kf/RZ3n2Fmh5jZSuBz4JSa6kaXvtLMdiMMlK8Czojq\nvGlmU4E3gQ3AyKxsYtTADM48E/baC4YMgbPOgvPO03wQEckfmiTYwFavDuMgnTqFcZAWLeKOSEQK\nmda2yhE77QTPPQdbbgn77gtvvx13RCIi9afk0QiaNw+tjhEjwjiI1sUSkVynbqtG9u3+IGecARdd\npH3SRaRxaT+PHE0eAB98ENbEat0a7r47LHEiItIYNOaRw3bcEebMCetj9e4Nb74Zd0QiIrWj5BGT\noiK48cawpHvfvvDgg3FHJCKSPnVbZYHXXgvb3P7iF3DFFdC0oRaNEZGCpzGPPEoeAB9/HCYUmsH9\n94fxEBGRTNOYR55p3Tos6V5aCr16hcUVRUSylZJHFmnaFMaPh6uugoMPhsmT445IRKR66rbKUkuX\nwpFHwoABcPXVYYBdRKS+1G2V57p0Ccu6r14N/fvDhx/GHZGIyPeUPLJYcTE8/DBUVIRxkBdeiDsi\nEZFA3VY5YsYMOOUUGDMmbDal5d1FpC70qG6BJQ+AlSvD8u6lpXDTTfAf/xF3RCKSazTmUYBKSuCl\nl+Crr6BPH1i1Ku6IRKRQKXnkmBYt4L774PjjYZ994Kmn4o5IRAqRuq1yWGUlDB0Kv/mNtrkVkfRo\nzEPJA4A1a+CYY2CHHeCuu7S8u4jUTGMeAoRl3efODcu89+oFr78ed0QiUgiUPPJAs2ZhefcxY8KE\nwnvvjTsiEcl36rbKM0uWhOXdKyrgj3/UsiYi8u/UbSXV6to1LGvy/vtQXh7GREREMi2t5GFmFWa2\n3MxWmNn5mylznZlVmdkiM+uWqq6ZXWVmy6Ly08xs6+h8RzP7wswWRK+J9f2ShWabbcKyJocdFsZB\n5syJOyIRyTcpu63MrAmwAjgQ+ACYDwxx9+UJZQYCo9z952a2D3Ctu5fVVNfMDgKecfdNZnYl4O4+\n2sw6An9x964p4lK3VRqeeirMCTn7bDj3XD3OK1LoGrPbqjdQ5e6r3H0DMAUYlFRmEHA3gLvPA4rN\nrE1Ndd39KXffFNV/GWifcD39X1yGHHRQ6MaaNi2Mhfzzn3FHJCL5IJ3k0Q5YnXC8JjqXTpl06gIM\nB2YmHO8cdVnNMbM+acQoNdhpJ3j2WWjbNnRjLV0ad0QikuuaNtB10245mNlFwAZ3vy869QHQwd0/\nNbNS4BEz29PdP0uuO3bs2O/el5eXU15eXq+g81mzZjBxIvzv/4aB9OuuC7PTRSS/VVZWUllZmfHr\npjPmUQaMdfeK6PgCwvjE+IQyk4A57v5AdLwc6AvsUlNdMzsZOA3o7+5fbebz5wDnuPuCpPMa86ij\nxYtDF9Yhh8Af/qDHeUUKSWOOecwHSqKnoIqAIcD0pDLTgROjwMqA9e6+rqa6ZlYBnAscnpg4zKx1\nNNCOmXUCSoB36vEdJcnee4dxkHffhX79YO3auCMSkVyTMnm4+0ZgFDALWApMcfdlZjbCzE6PyswA\n3jWzlcDNwMia6kaXvh5oCcxOeiT3AGCJmS0ApgIj3H19Zr6ufKtVK3j00dD66NUrLLIoIpIuzTAX\nZs+GE06Ac86B3/5Wj/OK5DOtqqvkkVHvvx9W591pJ7jzTth667gjEpGGoOVJJKM6dIDnnoPtttPj\nvCKSmpKHfKdZM5g0CS68MDzO+8ADcUckItlK3VZSrUWLwuO8hx4KEybocV6RfKFuK2lQ3brBq6+G\nx3n79oXVq1PXEZHCoeQhm9WqFTzyCBx5ZBgHefLJuCMSkWyhbitJy7PPwrBhcOqpYcfCLbaIOyIR\nqQs9qqvk0eg++igkkC22CFvdbr993BGJSG1pzEMaXdu2MGsW9O4NPXrA88/HHZGIxEUtD6mTxx+H\n4cPhvPPCRlOalS6SG9RtpeQRu1Wr4NhjoV27MCt9m23ijkhEUlG3lcSuY8cwK719e+jZExYujDsi\nEWksSh5SL82awfXXwxVXwIABcOutoAahSP5Tt5VkzPLlYXHFHj3CroUtWsQdkYgkU7eVZJ3dd4d5\n80LLY5994K234o5IRBqKkodkVIsWMHkynHUW9OmjxRVF8pW6raTBLFwYurG+3Su9WbO4IxIRdVtJ\n1uveHV57DdasgQMOCI/2ikh+UPKQBrXNNvDQQzB4cBgHmTkz7ohEJBPUbSWN5vnnYehQOOkkGDdO\niyuKxEEzzJU8ctJf/xoWV3SH++6DNm3ijkiksGjMQ3LS9tuHfUH23z/MB3n22bgjEpG6UMtDYvPE\nE3DyyWFhxXPP1eKKIo2hUVseZlZhZsvNbIWZnb+ZMteZWZWZLTKzbqnqmtlVZrYsKj/NzLZO+Nvo\n6FrLzGxAfb6gZK+KCpg/Hx5+GAYNgk8+iTsiEUlXyuRhZk2AG4CDgS7AUDPbPanMQKCzu+8KjAAm\npVF3FtDF3bsBVcDoqM6ewGBgD2AgMNFM/ybNVzvtBHPnwm67hUd7X3wx7ohEJB3ptDx6A1Xuvsrd\nNwBTgEFJZQYBdwO4+zyg2Mza1FTX3Z9y901R/ZeB9tH7w4Ep7v6Nu79HSCy96/oFJfsVFYVJhDfc\nEPZLnzABNm1KXU9E4pNO8mgHrE44XhOdS6dMOnUBhgMzNnOttZupI3nmsMO+78Y67DD4+OO4IxKR\nzWnaQNdNu5vJzC4CNrj7/bX9kLFjx373vry8nPLy8tpeQrJMhw6hG+vii6G0NDzO26dP3FGJ5K7K\nykoqKyszft10ksdaoEPCcfvoXHKZnaopU1RTXTM7GTgE6J/GtX4gMXlI/vjRj2D8eOjbN6yNddZZ\ncP750EQPlovUWvI/rMeNG5eR66bzn+N8oMTMOppZETAEmJ5UZjpwIoCZlQHr3X1dTXXNrAI4Fzjc\n3b9KutYQMysys12AEuCVOn9DyVmHHAKvvhr2Sz/kkDDBUESyQ8rk4e4bgVGEp6OWEgazl5nZCDM7\nPSozA3jXzFYCNwMja6obXfp6oCUw28wWmNnEqM6bwFTgTcI4yEhN6Chc7dtDZWXowiotDV1aIhI/\nTRKUnPHkk2FS4ZlnwujRWhtLpC60tpWSR0FauzasjVVUBPfco7WxRGpLa1tJQWrXDp5+GsrKQjfW\nM8/EHZFIYVLLQ3LW7NlheffTT4dLLlE3lkg61G2l5CHAhx/CcceF9/feCzvsEG88ItlO3VYihGQx\ne3bY5rZHD3jqqbgjEikManlI3njmGTjhBBg+HC69FJo21PoJIjlM3VZKHlKNdevg+OPh66/h/vth\nxx3jjkgku6jbSqQabdqETaYOOih0Yz35ZNwRieQntTwkb82dGwbTTzgBLr9c3VgioG4rJQ9Jy1//\nGpLHF1+Ebqz27VPXEcln6rYSScP228PMmWFhxZ49YcaM1HVEJDW1PKRgPPdcWNpk6FC44oqw9LtI\noVHLQ6SWfvpTWLgQ3ngj7BXy3ntxRySSu5Q8pKC0bg2PPQZHHQW9e8PUqXFHJJKb1G0lBevVV0MX\nVnk5XHMNtGgRd0QiDU/dViL11LMnLFgQJhT27AmLF8cdkUjuUPKQgrbVVjB5Mlx0UZhYeN11oAat\nSGrqthKJrFwZnsZq0wbuvDOMj4jkG3VbiWRYSQk8/zzsuSd066aNpkRqopaHSDVmzQr7pZ98Mowb\npzkhkj/U8hBpQAMGwKJFYV7IAQfAu+/GHZFIdlHyENmM7beHxx+HwYNhn31gypS4IxLJHuq2EknD\nggUwZAj06QPXX685IZK7GrXbyswqzGy5ma0ws/M3U+Y6M6sys0Vm1i1VXTM7xszeMLONZlaacL6j\nmX1hZgui18T6fEGRTCgtDQnEPewTsnBh3BGJxCtl8jCzJsANwMFAF2Come2eVGYg0NnddwVGAJPS\nqPs6cCQwt5qPXenupdFrZJ2+mUiGtWwZHuEdMyaMiVxzjeaESOFKp+XRG6hy91XuvgGYAgxKKjMI\nuBvA3ecBxWbWpqa67v6Wu1cB1TWf6t2kEmkow4bBvHlhf5BDD4W//S3uiEQaXzrJox2wOuF4TXQu\nnTLp1K3OzlGX1Rwz65NGeZFG1alTmBPStWuYE/L003FHJNK4Gmpjzvq0HD4AOrj7p9FYyCNmtqe7\nf5ZccOzYsd+9Ly8vp7y8vB4fK1I7P/oR/M//wIEHwoknhtdll2lOiGSXyspKKisrM37dlE9bmVkZ\nMNbdK6LjCwB39/EJZSYBc9z9geh4OdAX2CWNunOAc9x9wWY+v9q/62krySZ/+1uYUPjxx6E7q1On\nuCMSqV5jPm01HyiJnoIqAoYA05PKTAdOjAIrA9a7+7o060JCS8XMWkcD7ZhZJ6AEeKd2X0ukcW23\nXdgnZNiwMCfk/vvjjkikYaU1z8PMKoBrCcnmdne/0sxGEFoRt0RlbgAqgM+BU75tKVRXNzp/BHA9\n0BpYDyxy94FmdhRwGfA1sAkY4+4/2HlaLQ/JVgsXhjkh++0X5oS0bBl3RCLfy1TLQ5MERRrAZ5/B\nWWeFfdOnTAnzRESygda2EsliLVvC7beHAfSKCvjTn2DTprijEskctTxEGti774axkFat4K67wppZ\nInFRy0MkR+yyCzz7LHTvHl6zZ8cdkUj9qeUh0oieeSbMBxk8GH7/e2jePO6IpNCo5SGSg/r3h8WL\n4f33oVcvWLIk7ohE6kbJQ6SR/fjH8Oc/w29/G2anX321BtMl96jbSiRG77wTurGaNYPJk6F9+7gj\nknynbiuRPNCpE1RWhu6s0lKYOjXuiETSo5aHSJaYPx+OPz4sb3L99VBcHHdEko/U8hDJM716hd0K\nW7QIy7w/91zcEYlsnloeIlnoscfgtNPCSr3jxkFRUdwRSb5Qy0Mkjx16KCxaBG+8AWVlsGxZ3BGJ\n/DslD5Es1aYNTJ8OI0bAAQfAjTdqz3TJHuq2EskBK1aEwfTWreGOO6Bt27gjklylbiuRArLbbvDC\nC9CzZxhMf/TRuCOSQqeWh0iOefHF0Ao58MCw1Ls2m5LaUMtDpEDtt18YTN+4MbRCXn457oikEKnl\nIZLDHnwQzjwTRo6Eiy6Cpk3jjkiynbahVfIQAeCDD8J8kH/+E+65B0pK4o5Ispm6rUQEgB13hCee\nCLsV7rsv3HabHumVhqeWh0geWboUjjsOdt4Zbr0Vttsu7ogk26jlISI/0KULzJsXHu3de2+YOTPu\niCRfqeUhkqfmzIGTToLDD4erroItt4w7IskGjdryMLMKM1tuZivM7PzNlLnOzKrMbJGZdUtV18yO\nMbM3zGyjmZUmXWt0dK1lZjagrl9OpJD16xe2vP3kE+jRI6zYK5IpKZOHmTUBbgAOBroAQ81s96Qy\nA4HO7r4rMAKYlEbd14EjgblJ19oDGAzsAQwEJppZvbOkSCFq1Qruuw8uuQQOPhiuvDLMDxGpr3Ra\nHr2BKndf5e4bgCnAoKQyg4C7Adx9HlBsZm1qquvub7l7FZCcGAYBU9z9G3d/D6iKriMidTRsGLz6\nangqq18/eO+9uCOSXJdO8mgHrE44XhOdS6dMOnVTfd7aNOqISAodO8LTT4fl3nv1CnNCNGwoddVQ\n81EbpZtp7Nix370vLy+nvLy8MT5WJGdtsQWcdx787GdhfaxHHoGbbtIjvfmssrKSysrKjF83neSx\nFuiQcNw+OpdcZqdqyhSlUbe6z6vuWj+QmDxEJH3du8Nrr8GYMdC1a9gr5Kij4o5KGkLyP6zHjRuX\nkeum0201Hygxs45mVgQMAaYnlZkOnAhgZmXAendfl2Zd+PeWynRgiJkVmdkuQAnwSm2+lIik1rx5\neIR32jS44IIwufCTT+KOSnJFyuTh7huBUcAsYClhMHuZmY0ws9OjMjOAd81sJXAzMLKmugBmdoSZ\nrQbKgMfMbGZU501gKvAmMAMYqQkdIg3n21V6W7eGvfYK+6eLpKJJgiLyncpKOOUUKC+Ha66B4uK4\nI5JM0/IkIpJx5eWwZAk0axZaIbNmxR2RZCu1PESkWrNmwS9/CYccAhMmwFZbxR2RZIJaHiLSoAYM\nCK2Qr74Kiyw2wNOeksPU8hCRlB57DEaMgKOPDkucaJHF3KWWh4g0mkMPhddfh7//PbRCXnwx7ogk\nbmp5iEitPPRQ2Df9+OPh8svDfBHJHWp5iEgsjjoqjIW8+y6UlsL8+XFHJHFQ8hCRWttuO/jzn8Py\nJoceChdfDF9/HXdU0piUPESkTsxgyJAwO33JkrBS76JFcUcljUXJQ0TqZYcd4NFH4eyzw+O9l18O\nGzbEHZU0NA2Yi0jGrFkDp54ansqaPBm6dIk7IkmmAXMRyTrt24fdCk8/PSx1ctVV2vY2X6nlISIN\n4r33wiKLX34ZWiG77RZ3RAJqeYhIltt557Dt7bBhYdn3a66BTZvijkoyRS0PEWlwVVVw8snQtCnc\neSd06hR3RIVLLQ8RyRm77grPPguHHw69e4d90/Vvv9ymloeINKply+Ckk8JGU7ffDh06xB1RYVHL\nQ0Ry0h57hIUV+/WDHj3gjjvUCslFanmISGyWLAmtkB13hFtvDf8rDUstDxHJeV27wrx50LMndOsG\n996rVkiuUMtDRLLCa6+FVsiuu8LEiWHZE8k8tTxEJK/06BESSJcuYcOp225TKySbqeUhIlln8WL4\n5S9hq63gllugpCTuiPJHo7Y8zKzCzJab2QozO38zZa4zsyozW2Rm3VLVNbNWZjbLzN4ysyfNrDg6\n39HMvjCzBdFrYn2/pIjklr33hpdeCnuFlJXBhAnwzTdxRyWJUrY8zKwJsAI4EPgAmA8McfflCWUG\nAqPc/edmtg9wrbuX1VTXzMYDf3f3q6Kk0srdLzCzjsBf3L1rirjU8hApAO+8ExZa/PTTMC+kW7fU\ndWTzGrPl0RuocvdV7r4BmAIMSiozCLgbwN3nAcVm1iZF3UHA5Oj9ZOCIhOvV+4uJSH7o1Almz4ZR\no8J+IaNHw7/+FXdUkk7yaAesTjheE51Lp0xNddu4+zoAd/8I2D6h3M5Rl9UcM+uTRowiksfMwgq9\nS5bA22+Hbq25c+OOqrA1baDr1qXl8G0f1IdAB3f/1MxKgUfMbE93/yy5wtixY797X15eTnl5eR0+\nVkRyRdu2MHVq2LnwuOPg5z8Pe4YUF8cdWfaqrKyksrIy49dNZ8yjDBjr7hXR8QWAu/v4hDKTgDnu\n/kB0vBzoC+yyubpmtgwod/d1ZtY2qr9HNZ8/BzjH3RckndeYh0gB+8c/4Lzz4PHH4cYbYVByZ7pU\nqzHHPOYDJdFTUEXAEGB6UpnpwIlRYGXA+qhLqqa604GTo/cnAY9G9VtHA+2YWSegBHinbl9PRPJV\ncTHcfHOYlX7uuXDssfDRR3FHVThSJg933wiMAmYBS4Ep7r7MzEaY2elRmRnAu2a2ErgZGFlT3ejS\n44GfmdlbhKexrozOHwAsMbMFwFRghLuvz8i3FZG807dvmBdSUhKWO7nzTk0ubAyaJCgieWPhwjC5\ncNttQ6tEm079kJYnERFJ0r17WGhxwICw6dQf/6jJhQ1FLQ8RyUsrV4bJhf/3f2FyYdcapx0XDrU8\nRERqUFICTz8NI0bAQQfBxRfDl1/GHVX+UPIQkbxlFsZAFi8O29926wbPPRd3VPlB3VYiUjAeegh+\n/eswJ+TKK2HrreOOqPGp20pEpJaOOgreeAM2bID//E947LG4I8pdanmISEF65pkwoN6rF1x7LWy/\nfeo6+UAtDxGReujfPyy02KED7LUX3H23JhfWhloeIlLwFiyAU08NrY+bb4add447ooajloeISIaU\nlsIrr0C/ftCzZ+jG2rgx7qiym1oeIiIJVqyA006Dr76C224LA+v5RC0PEZEGsNtuMGcODB8eWiKX\nXhoSifw7JQ8RkSRNmoQnsRYtChMMu3eHF1+MO6rsom4rEZEauMO0afBf/wVHHw2//z1stVXcUdWd\nuq1ERBqBGRxzTJhc+PnnYQxkxoy4o4qfWh4iIrXw1FNhscXeveHqq2GHHeKOqHbU8hARicFBB8Hr\nr8Muu4Rl3idOLMzHetXyEBGpo6VL4Ywz4OuvYdKkMLCe7dTyEBGJWZcuMHdu6MaqqID//u+w+VQh\nUPIQEamHJk3CnJClS2H9ethzz7D0e753jKjbSkQkg+bOhV/9Cjp3huuvz751stRtJSKShfr2DZML\n9903rJM1fnzYPyTfpJU8zKzCzJab2QozO38zZa4zsyozW2Rm3VLVNbNWZjbLzN4ysyfNrDjhb6Oj\nay0zswH1+YIiIo2tqAguvBDmzQtLnZSWwgsvxB1VZqVMHmbWBLgBOBjoAgw1s92TygwEOrv7rsAI\nYFIadS8AnnL3nwDPAKOjOnsCg4E9gIHARDOrdxNLalZZWRl3CHlF9zNzcvledu4MM2fCJZfA4MFh\nwcW//z3uqDIjnZZHb6DK3Ve5+wZgCjAoqcwg4G4Ad58HFJtZmxR1BwGTo/eTgSOi94cDU9z9G3d/\nD6iKriMNKJf/A81Gup+Zk+v30iwkjjffhObNwxNa+bDxVDrJox2wOuF4TXQunTI11W3j7usA3P0j\n4NtNIJPrrK3m80REckpxcRhAf+yxsF9I//6wfHncUdVdQw2Y16WbKcfzsIhIaj17ho2njjwS+vQJ\nOxfmJHev8QWUAU8kHF8AnJ9UZhLwi4Tj5UCbmuoCywitD4C2wLLqrg88AexTTVyul1566aVX7V+p\n/n8/nVdTUpsPlJhZR+BDYAgwNKnMdOBM4AEzKwPWu/s6M/u4hrrTgZOB8cBJwKMJ5+81sz8RuqtK\ngFeSg8pxibJpAAAC00lEQVTEc8oiIlI3KZOHu280s1HALEI31+3uvszMRoQ/+y3uPsPMDjGzlcDn\nwCk11Y0uPR6YambDgVWEJ6xw9zfNbCrwJrABGKnZgCIi2SVnZ5iLiEh8snKGeapJiWb2EzN70cy+\nNLOza1O30NTzXr5nZovNbKGZ/aDrsBClcT+HRfdssZk9b2Zd061biOp5P/X7TJLG/Tw88Z6Z2f7p\n1v2BTAycZPJFSGgrgY7Aj4BFwO5JZVoDPYDLgbNrU7eQXvW5l9Hf3gFaxf09suWV5v0sA4qj9xXA\ny+nWLbRXfe5ndKzfZ+3v55YJ7/fi+weVav37zMaWR8pJie7+sbu/BnxT27oFpj73EsIj19n4G4lL\nOvfzZXf/R3T4Mt/PUdJv84fqcz9Bv89k6dzPLxIOWwKb0q2bLBtvfDqTEhuibj6q7/1wYLaZzTez\n0zIaWW6q7f38JTCzjnULQX3uJ+j3mSyt+2lmR5jZMuAvwPDa1E2UzqO6Urj2d/cPzWw7wn+ky9z9\n+biDygVm1o/w1GGfuGPJB5u5n/p91oG7PwI8YmZ9gN8BP6vLdbKx5bEW6JBw3D4619B181G97oe7\nfxj979+Ah9EaY2ndz2hQ9xbgcHf/tDZ1C0x97qd+nz9Uq99YlGg7mdm2ta0L2Zk8vpuUaGZFhImF\n02sonzhZsLZ1812d76WZbWlmLaP3LYABwBsNGWwOSHk/zawDMA04wd3frk3dAlTn+6nfZ7XSuZ+d\nE96XAkXu/kk6dZNlXbeVpzEpMVqx91VgK2CTmZ0F7Onun9UwKbHg1OdeAtsBD5uZE34n97r7rHi+\nSXZI534ClwDb8v1WAhvcvffm6sb0VbJCfe4nYfkj/T4TpHk/jzazE4GvgX/x/eTsWv8+NUlQRERq\nLRu7rUREJMspeYiISK0peYiISK0peYiISK0peYiISK0peYiISK0peYiISK0peYiISK39Pxa3cdNe\nhVBKAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8e1837d5d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "T1 = 300 #inlet temperature\n", "T2 = 2000 #outlet temperature\n", "gamma = 1.4;\n", "M1 = 0.1\n", "\n", "T1o = T1*(1+(gamma-1)/2*M1**2)\n", "N1, dN1 = n_function (gamma_air, MW_air, M1)\n", "\n", "if M1 > 1:\n", " scale = 0.9\n", "else:\n", " scale = 1.05\n", "\n", "M2 = M1 * scale # guess M2\n", "T2o = T2*(1+(gamma-1)/2*M2**2)\n", "N2, dN2 = n_function (gamma_air, MW_air, M2)\n", "ERROR = []\n", "M = []\n", "M.append(M2)\n", "ERROR.append(np.abs(N1/T1o**0.5 - N2/T2o**0.5))\n", "while ERROR[-1] > 1e-8:\n", " M2new = M2 + (N1*((T2o)/T1o)**0.5-N2)/dN2\n", " if M2new > 1.1*M2:\n", " M2new = 1.1*M2\n", " elif M2new < 0.9 * M2:\n", " M2new = 0.9 * M2\n", " M2 = M2new\n", " M.append(M2)\n", " T2o = T2*(1+(gamma-1)/2*M2**2)\n", " N2, dN2 = n_function (gamma_air, MW_air, M2)\n", " ERROR.append(np.abs(N1/T1o**0.5 - N2/T2o**0.5))\n", "\n", "plt.plot(M, ERROR)\n", "print 'M2 = ', M2\n", "print 'N1 / T1o**0.5=', N1 / T1o**0.5\n", "print 'N2 / T2o**0.5=', N2 / T2o**0.5\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<style>\n", " @font-face {\n", " font-family: \"Computer Modern\";\n", " src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunss.otf');\n", " }\n", " @font-face {\n", " font-family: \"Computer Modern\";\n", " font-weight: bold;\n", " src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunsx.otf');\n", " }\n", " @font-face {\n", " font-family: \"Computer Modern\";\n", " font-style: oblique;\n", " src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunsi.otf');\n", " }\n", " @font-face {\n", " font-family: \"Computer Modern\";\n", " font-weight: bold;\n", " font-style: oblique;\n", " src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunso.otf');\n", " }\n", " div.cell{\n", " width:800px;\n", " margin-left:16% !important;\n", " margin-right:auto;\n", " }\n", " h1 {\n", " font-family: Helvetica, serif;\n", " }\n", " h4{\n", " margin-top:12px;\n", " margin-bottom: 3px;\n", " }\n", " div.text_cell_render{\n", " font-family: Computer Modern, \"Helvetica Neue\", Arial, Helvetica, Geneva, sans-serif;\n", " line-height: 145%;\n", " font-size: 130%;\n", " width:800px;\n", " margin-left:auto;\n", " margin-right:auto;\n", " }\n", " .CodeMirror{\n", " font-family: \"Source Code Pro\", source-code-pro,Consolas, monospace;\n", " }\n", " .prompt{\n", " display: None;\n", " }\n", " .text_cell_render h5 {\n", " font-weight: 300;\n", " font-size: 22pt;\n", " color: #4057A1;\n", " font-style: italic;\n", " margin-bottom: .5em;\n", " margin-top: 0.5em;\n", " display: block;\n", " }\n", " .text_cell_render h6 { /*use this for copyright note*/\n", "\t\tfont-family: 'PT Mono', sans-serif;\n", "\t\tfont-weight: 300;\n", "\t\tfont-size: 9pt;\n", "\t\tline-height: 100%;\n", "\t\tcolor: grey;\n", "\t\tmargin-bottom: 1px;\n", "\t\tmargin-top: 1px;\n", "\t}\n", " \n", " .warning{\n", " color: rgb( 240, 20, 20 )\n", " } \n", "</style>\n", "<script>\n", " MathJax.Hub.Config({\n", " TeX: {\n", " extensions: [\"AMSmath.js\"]\n", " },\n", " tex2jax: {\n", " inlineMath: [ ['$','$'], [\"\\\\(\",\"\\\\)\"] ],\n", " displayMath: [ ['$$','$$'], [\"\\\\[\",\"\\\\]\"] ]\n", " },\n", " displayAlign: 'center', // Change this to 'center' to center equations.\n", " \"HTML-CSS\": {\n", " styles: {'.MathJax_Display': {\"margin\": 4}}\n", " }\n", " });\n", "</script>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.core.display import HTML\n", "\n", "\n", "def css_styling():\n", " styles = open(\"/home/wlamont/Documents/Textbooks/aerospace_prop_python/styles/custom.css\", \"r\").read()\n", " return HTML(styles)\n", "css_styling()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }