# Quantized Visual Geometry Grounded Transformer

Paper Code Model

------
Weilun Feng1,2∗, Haotong Qin3∗, Mingqiang Wu1,2∗, Chuanguang Yang1†, Yuqi Li1, Xiangqi Li1,2, Zhulin An1†, Libo Huang1, Yulun Zhang4, Michele Magno3, Yongjun Xu1
*Equal Contribution Corresponding Author 1.Institute of Computing Technology, Chinese Academy of Sciences, 2.University of Chinese Academy of Sciences,3.ETH Z¨ urich, 4.Shanghai Jiao Tong University ## 📰 News - **[2026.01.26]** 😉 The paper has been accepted by ICLR 2026. - **[2025.10.10]** 🎉 Paper and code released! Check out our [paper]([Quantized Visual Geometry Grounded Transformer](https://arxiv.org/pdf/2509.21302)). ## 🚀 Updates - **[2026.02.09]** 😉The calibration dataset and quantized weights have been updated in the Hugging Face repository. Please [check](https://huggingface.co/wlfeng/QuantVGGT). - **[2026.02.08]** 🎉Code for calibration training, evaluation on the 7-Scene and NRGBD datasets, and calibration set selection is now available. - **[2025.10.10]** 🎉Evaluation code for reproducing our camera pose estimation results on Co3D is now available. ![teaser](imgs/teaser.png) ![overview](imgs/overview.png) ------ ## 🌟Results ![result](imgs/result.png) ## 🛠️ Installation First, clone this repository to your local machine, and install the dependencies (torch, torchvision, numpy, Pillow, and huggingface_hub). ``` git clone git@github.com:wlfeng0509/QuantVGGT.git cd QuantVGGT pip install -r requirements.txt pip install -r requirements_demo.txt ``` Then download the pre trained weights provided by [VGGT](https://github.com/facebookresearch/vggt) and prepare Co3D dataset following [this](https://github.com/facebookresearch/vggt/tree/evaluation/evaluation). Then download the pre trained W4A4 quantization parameters from [huggingface](https://huggingface.co/wlfeng/QuantVGGT/tree/main) and place the downloaded folder under ***evaluation\outputs\w4a4*** branch. Then download the calibration set from [huggingface](https://huggingface.co/wlfeng/QuantVGGT/tree/main) and place the downloaded folder under ***evaluation\outputs*** branch. ## 📊 Quick start We can now use the provided script for inference **(remember to change the data path within the script)**. ``` cd evaluation bash make_calibation.sh # Filter and Save Calibration Set bash run_co3d.sh # Calibration Training and Evaluation on Co3D ``` **Generate filtered Co3d calibration data** ``` python Quant_VGGT/vggt/evaluation/make_calibation.py \ --model_path VGGT-1B/model_tracker_fixed_e20.pt \ --co3d_dir co3d_datasets/ \ --co3d_anno_dir co3d_v2_annotations/ \ --seed 0 \ --cache_path all_calib_data.pt \ # Data to be filtered for calibration set --save_path calib_data.pt \ # Save path for calibration set --class_mode all \ # Category selection mode for calibration data --kmeans_n 6 \ # Number of cluster centers --kmeans_m 7 \ # Number of samples per category ``` **Quantize calibrate and evaluate on Co3d.** ``` python Quant_VGGT/vggt/evaluation/run_co3d.py \ --model_path Quant_VGGT/VGGT-1B/model_tracker_fixed_e20.pt \ --co3d_dir co3d_datasets/ \ --co3d_anno_dir co3d_v2_annotations/ \ --dtype quarot_w4a4\ # Quantization Bit Width --seed 0 \ --lac \ --lwc \ --cache_path calib_data.pt \ # calibration data path --class_mode all \ # Category selection mode for calibration data --exp_name a44_uqant \ --resume_qs \ # Load quantized model from exp_name ``` **Quantize calibrate on Co3d, evaluate on 7 scenes or NRGBD dataset.** ``` python Quant_VGGT/vggt/evaluation/run_7andN.py\ --model_path Quant_VGGT/VGGT-1B/model_tracker_fixed_e20.pt \ --co3d_dir co3d_datasets/ \ --co3d_anno_dir co3d_v2_annotations/ \ --dtype quarot_w4a4\ --lwc \ --lac \ --exp_name quant_w4a4\ --cache_path calib_data.pt \ --class_mode all \ --output_dir "Quant_VGGT/vggt/eval_results" \ --kf 100 \ # Sample every keyframe. --dataset nr \ # evaluation 7s or nr dataset ``` Also, you can use the quantized model for predicting other 3D attributes following the guidance [here](https://github.com/facebookresearch/vggt/tree/evaluation#detailed-usage). ## Comments * Our codebase is heavily builds on [VGGT](https://github.com/facebookresearch/vggt) and [QuaRot](https://github.com/spcl/QuaRot). Thanks for open-sourcing! ## BibTeX If you find *QuantVGGT* is useful and helpful to your work, please kindly cite this paper: ``` @article{feng2025quantized, title={Quantized Visual Geometry Grounded Transformer}, author={Feng, Weilun and Qin, Haotong and Wu, Mingqiang and Yang, Chuanguang and Li, Yuqi and Li, Xiangqi and An, Zhulin and Huang, Libo and Zhang, Yulun and Magno, Michele and others}, journal={arXiv preprint arXiv:2509.21302}, year={2025} } ```