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Why do machine learning?

How to connect our features to actual categories or measurements of image content in
human terms?

It would be hard to write heuristics to describe which HOG/SIFT feature corresponds to a
dog or cat.

There are two reason to make this connection. One is prediction of responses for unseen
data. The other to analyze the connection between x and y (in statistics called inference).

Image from Histograms of oriented gradients for human detection, Dalal & Triggs



What is machine learning?

We assume that there is a true mapping f that maps from the image or feature space
(predictor x) to e.g. an object category (response y).

f(x) = x is also often called feature, input variable, just variable or independent variable.
A . . .
=y is also often called ground truth, target, label, output variable or dependent variable
= In the following we will often consider x and y to be multidimensional but visualize them
mostly as scalars.
=
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What is machine learning? = We want to estimate this function based on data we collected.

= When data is collected, we make an error ¢.
= This error is almost always of probabilistic nature. Our data is noisy.

= The set of measurements is denoted by (Y, X) with all values collected for X and their
corresponding ys in Y.
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Non-parametric Methods = Modeling of a wide range of functional forms possible.

= Usually very high number of observations necessary.

™
=

= In this case simply ?(x) = Yargmin(|X—x|)




Parametric Methods = We make an assumption about the functional form of f.

= |n this case we might assume that the f that generated our data is linear.




How can we estimate our parameters? = We need a criterion that tells us how well the estimation fits our data.

= An often used metric is the mean square error.



Linear Regression = To minimize the error, the first derivatives have to be zero.
= Using a linear model and mean square error allows for an analytical solution.

= Procedure is known as linear regression, a very simple and very popular method.




= Black shows the data generating ground truth, blue the estimate based on the measured
data.
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Error surface = This slide shows the error surface of the linear model we just fitted to the data.
A f@ = On the left for the parameter alpha on the right for beta.

= We were lucky, not only has our problem a analytical solution it also has a convex error
surface.
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Error surface = Same function plotted in 2d.

= We were lucky, not only has our problem a analytical solution it also has a convex error
surface.




Error surface = Unfortunately, for more complex problems, this error surfaces are often non-convex.

= Especially when we can not find analytical solutions, local minima in such non-convex
E(’}f) objective function can be problematic.




What if linear is not good enough? = A common pattern in machine learning is to apply linear methods trained on non-linear
functions of the data.

~

f(.’L) _ )@23:2 + )613/,1 + BO? = We map in a non-linear way to a higher dimensional features space and do linear
regression.




What if linear is not good enough? = In our case we can map from our scalar feature space to x’ = (x, x?)

= We see that relation between x and y stays the same while the x? dimension shows
square root characteristics.

Y (2, 2?)




What if linear is not good enough? = On this slide the underlying f from which the data is generated is f(x) = x.

= We see that relation between x and y is polynomial, while the x? dimension now is linear.
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What if linear is not good enough? = This slide shows a 17th degree polynomial fitted to our data from before.

sy =f(x)+e=3x+10+N(0,4)
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Overfitting = Which of the two estimates of f is better?

. y:f(x)+e:%x+10+N(0,4)




Underfitting = Which of the two estimates of f is better?

» y=f(x)+e=4(x—10)> + N(0,4)




Bias-Variance Trade-Off: Bias
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= |f we restrict our model e.g. by limiting the complexity we call that bias.

= In this case the model is limited to learn linear mappings (high bias).



Bias-Variance Trade-Off: Variance

Three different datasets. Each generated with the linear f we used above.

A 17th degree polynomial is fitted to each of them.
= We observe a high variance in the resulting polynomials.

y = f(x) +e=3x+ 10+ N(0,4)
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Bias-Variance Trade-Off: Variance = Three different datasets. Each generated with the linear f we used above.

= Comparison on linear models versus polynomial models fitted to the same data.
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Bias-Variance Trade-Off = Higher model complexity leads to higher variance and lower bias.
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Model quality = How can we measure the quality of our model?

= Which of the two is the better fit?




Model quality = Which of the two has the smaller error (does minimize our objective)?
rightarrow Error becomes smaller with increasing model complexity.
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Model quality: test dataset = Which of the two has the smaller error (does minimize our objective)?

= Split data set before fitting the model and test on unseen data. — Error shows when
model overfits the training data.
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— training error

validation error
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degree of freedom
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= A number of models with increasing complexity was fitted to some training data.

= What do you think what form the data generating distribution has?



training error

validation error
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= A number of models with increasing complexity was fitted to some training data.

= What do you think what form the data generating distribution has?



Classification = So far we looked at data were the response variable y was quantitative.

— This class of problems is referred to as regression problems.

A = Now we want to look at problems were the response is qualitative or categorical.
® o
o ° = Examples: Categorization of facial expressions or objects in images.
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Classification = To do this our goal is it to identify a boundary in between a set of training points that

separates the two classes.

A = Whether we call a problem a classification or a regression problem depends only on the
® ® response variable.
® o0 0.. Py . = As for regression, we look only at quantitative predictor variables here.
) L . . : . . .
° L ] ® o = When the predictor variable is categorical as e.g. in natural language processing they are
® ® usually embedded in a quantitative space.
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Can we solve this with Linear Regression? = We could define the blue class label as 0 and the orange class label as 1 and then apply
linear regression.
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Can we solve this with Linear Regression? = However, this would not generalize to more than the binary case.

= For three classes we cannot define and order as e.g. orange > blue > green, which would
be implied if we would assign numbers to our classes as before.




Logistic Regression

= There is a number of algorithms to approach this problem: LDA, SVM, Trees, Forests,
K-nearest-neighbors, Boosting

P(class = blue|x) (3) » For this lecture however, we will first focus on Logistic Regression.
A = The core idea is to formulate the problem as the regression of a probability function.
= This probability connects the predictor variables with the categorical response variable.

= For easier illustration, we switch to a two class problem with 1-dimensional input.
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Logistic Regression = How to model the probability mass function? As a linear mapping as for the regression?

= p gets arbitrarily big, > 1 and <1
plz) =ax+ 0
10 1




Logistic Regression = How to model the probability mass function? The logistic function is one of many that
makes the result look more like a probability.




Logistic Regression

eox+B

1 4 eox+h
p(orange|x) = 1 — p(blue|x)

p(blue|x) =
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= How to model the probability mass function? The logistic function is one of many that
makes the result look more like a probability.



Logistic Regression: Maximum Likelihood

E(©) =

p(Y|X,0)
log p(Y|X,0) =

—log p(Y|X,0)

Hp yilxi)
Zlog p(yilx)
Z log p YI’XI)

If the samples in our data set are independent and identically distributed (iid assumption)
we can write the probability of our dataset beeing generated by our model as a product of
the probabilities of the samples.

In our case © = (a, ).

If we fix the data and vary the parameters ©, we call this the likelihood or log-likelihood
respectively.

We use the logarithm of the likelihood function for convenience.

We define the error function as the negative log-likelihood and as for the linear regression
we can use the derivatives of the error function to determine optimal estimates of a and
[ for the given dataset.



Logistic Regression: cross entropy = The resulting error function describes the cross entropy between the modeled probability

distribution and the distribution g which is 1 if the sample belongs to the respective class
and 0 otherwise.

= For further reading we refer to Bishop p43ff.

E(©) == q(x)log p(yilxi) = H(q,p)
Vi



Logistic Regression: softmax = Using the softmax function which is a generalization of the logistic function, we can apply
logistic regression to multi class problems.

ez,-(x)
ZVJ‘ ezi(x)

with

zi(x) = aix + B



Logistic Regression: softmax = Using the softmax function which is a generalization of the logistic function, we can apply
logistic regression to multi class problems.

*.2 ® = The matrix «y; is often called the weight matrix W.
.
° ..o o © = The vector j3; is often called the bias b.
- s » Such a classifier can be and often is written as y = o(Wx) w.l.o.g. using an additional
matrix column for the bias.
>
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Gradient Descent = The introduced formulation for Logistic Regression has no analytical solution.

= We can search for minima by walking on the error surface in the direction of steepest
decent.

Xi

p(clx) = y(x) = o(Wx), oi(x) = W

VE@®) = (vi— ti)xi



Gradient Descent = We start at a random point and search for a minimum by walking on the error surface in
the direction of steepest decent.

VE(0)
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Gradient Descent = For the error E(©) blue, the gradient points into the direction of steepest ascent.



Gradient Descent = Given a random initialization for # we can evaluate the derivative and move into opposite
direction.



Gradient Descent = We repeat the procedure at the new 6.



Gradient Descent = We repeat the procedure at the new 6.



Gradient Descent = We repeat the procedure at the new 6.



Gradient Descent = And end up at a local minimum.



Gradient Descent = We can write the update step formally including the learning rate (step size) 7.

= Whereas V is the gradient operator.

0,‘+1 = 9,’ - HVE(G)



Stochastic Gradient Descent

E(6) = Y E(6)

Oiv1 =0 =V Y Ei(6)
j

The error function includes a sum over all data points.

If we use all data points for the computation of the gradient (batch methods) there would
be better ways of doing that than gradient descent.

Furthermore, the size of the data set often would make it very expensive to use all data
points.

However what we usually do when training neural networks is online learning.

This means we use only one sample or a subset of samples j (mini-batch) at a time.



Stochastic Gradient Descent

» How to choose samples?
— Draw randomly without replacement.

» How many samples?
— In CV often as many as possible (VRAM limiting factor)
— Higher batch size — less gradient noise — higher learning rate 7

» However, gradient noise allows to escape local optima!
— Too big batch sizes possible.



Gradient Descent for Logistic Regression = Random initialization for classification problem with logistic regression and gradient

descent.
OA

= Green arrow is the normalized weight vector.

= Blue line indicates decision boundary including the bias.




Gradient Descent for Logisti
gistic Regression
CA
= The six graph
phs show step 0, 20, 60
, 20, 60, 80, 100, 180 of th i
, , e gradient descent




What's missing? Unsupervised learning. = How to find structure in data if we don’t have any labels?
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