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Why do machine learning? • How to connect our features to actual categories or measurements of image content in
human terms?

• It would be hard to write heuristics to describe which HOG/SIFT feature corresponds to a
dog or cat.

• There are two reason to make this connection. One is prediction of responses for unseen
data. The other to analyze the connection between x and y (in statistics called inference).

• Image from Histograms of oriented gradients for human detection, Dalal & Triggs



What is machine learning? • We assume that there is a true mapping f that maps from the image or feature space
(predictor x) to e.g. an object category (response y).

• x is also often called feature, input variable, just variable or independent variable.
• y is also often called ground truth, target, label, output variable or dependent variable
• In the following we will often consider x and y to be multidimensional but visualize them

mostly as scalars.



What is machine learning? • We want to estimate this function based on data we collected.
• When data is collected, we make an error ε.
• This error is almost always of probabilistic nature. Our data is noisy.
• The set of measurements is denoted by (Y ,X ) with all values collected for X and their

corresponding ys in Y .



Non-parametric Methods • Modeling of a wide range of functional forms possible.
• Usually very high number of observations necessary.
• In this case simply f̂ (x) = Yargmin(|X−x |)



Parametric Methods • We make an assumption about the functional form of f .
• In this case we might assume that the f that generated our data is linear.



How can we estimate our parameters?

E (α, β) = 1
n
∑

i
(yi − f̂ (xi ))2 = 1

n
∑

i
(yi − αxi + β)2

• We need a criterion that tells us how well the estimation fits our data.
• An often used metric is the mean square error.



Linear Regression

dE
dα

!= 0 and dE
dβ

!= 0

α̂ =
∑

i (xi − x̄)(yi − ȳ)∑
i (xi − x̄)2

β̂ = ȳ − α̂x̄

• To minimize the error, the first derivatives have to be zero.
• Using a linear model and mean square error allows for an analytical solution.
• Procedure is known as linear regression, a very simple and very popular method.



• Black shows the data generating ground truth, blue the estimate based on the measured
data.



Error surface • This slide shows the error surface of the linear model we just fitted to the data.
• On the left for the parameter alpha on the right for beta.
• We were lucky, not only has our problem a analytical solution it also has a convex error

surface.



Error surface • Same function plotted in 2d.
• We were lucky, not only has our problem a analytical solution it also has a convex error

surface.



Error surface • Unfortunately, for more complex problems, this error surfaces are often non-convex.
• Especially when we can not find analytical solutions, local minima in such non-convex

objective function can be problematic.



What if linear is not good enough? • A common pattern in machine learning is to apply linear methods trained on non-linear
functions of the data.

• We map in a non-linear way to a higher dimensional features space and do linear
regression.



What if linear is not good enough? • In our case we can map from our scalar feature space to x ′ = (x , x2)
• We see that relation between x and y stays the same while the x2 dimension shows

square root characteristics.



What if linear is not good enough? • On this slide the underlying f from which the data is generated is f (x) = x2.
• We see that relation between x and y is polynomial, while the x2 dimension now is linear.



What if linear is not good enough? • This slide shows a 17th degree polynomial fitted to our data from before.
• y = f (x) + ε = 3

2 x + 10 +N (0, 4)



Overfitting • Which of the two estimates of f is better?
• y = f (x) + ε = 3

2 x + 10 +N (0, 4)



Underfitting • Which of the two estimates of f is better?
• y = f (x) + ε = 4(x − 10)2 +N (0, 4)



Bias-Variance Trade-Off: Bias • If we restrict our model e.g. by limiting the complexity we call that bias.
• In this case the model is limited to learn linear mappings (high bias).



Bias-Variance Trade-Off: Variance

nnnn

• Three different datasets. Each generated with the linear f we used above.
• A 17th degree polynomial is fitted to each of them.
• We observe a high variance in the resulting polynomials.
• y = f (x) + ε = 3

2 x + 10 +N (0, 4)



Bias-Variance Trade-Off: Variance • Three different datasets. Each generated with the linear f we used above.
• Comparison on linear models versus polynomial models fitted to the same data.



Bias-Variance Trade-Off • Higher model complexity leads to higher variance and lower bias.



Model quality • How can we measure the quality of our model?
• Which of the two is the better fit?



Model quality

E = 1
n
∑

i
(yi − f̂ (xi ))2 (1)

• Which of the two has the smaller error (does minimize our objective)?
rightarrow Error becomes smaller with increasing model complexity.



Model quality: test dataset

E = 1
n
∑

i
(yi − f̂ (xi ))2 (2)

• Which of the two has the smaller error (does minimize our objective)?
• Split data set before fitting the model and test on unseen data. → Error shows when

model overfits the training data.



• A number of models with increasing complexity was fitted to some training data.
• What do you think what form the data generating distribution has?



• A number of models with increasing complexity was fitted to some training data.
• What do you think what form the data generating distribution has?



Classification • So far we looked at data were the response variable y was quantitative.
→ This class of problems is referred to as regression problems.

• Now we want to look at problems were the response is qualitative or categorical.
• Examples: Categorization of facial expressions or objects in images.



Classification • To do this our goal is it to identify a boundary in between a set of training points that
separates the two classes.

• Whether we call a problem a classification or a regression problem depends only on the
response variable.

• As for regression, we look only at quantitative predictor variables here.
• When the predictor variable is categorical as e.g. in natural language processing they are

usually embedded in a quantitative space.



Can we solve this with Linear Regression? • We could define the blue class label as 0 and the orange class label as 1 and then apply
linear regression.



Can we solve this with Linear Regression? • However, this would not generalize to more than the binary case.
• For three classes we cannot define and order as e.g. orange > blue > green, which would

be implied if we would assign numbers to our classes as before.



Logistic Regression

P(class = blue|x) (3)

• There is a number of algorithms to approach this problem: LDA, SVM, Trees, Forests,
K-nearest-neighbors, Boosting

• For this lecture however, we will first focus on Logistic Regression.
• The core idea is to formulate the problem as the regression of a probability function.
• This probability connects the predictor variables with the categorical response variable.
• For easier illustration, we switch to a two class problem with 1-dimensional input.



Logistic Regression • How to model the probability mass function? As a linear mapping as for the regression?
• p gets arbitrarily big, > 1 and < 1



Logistic Regression • How to model the probability mass function? The logistic function is one of many that
makes the result look more like a probability.



Logistic Regression

p(blue|x) = eαx+β

1 + eαx+β

p(orange|x) = 1− p(blue|x)

• How to model the probability mass function? The logistic function is one of many that
makes the result look more like a probability.



Logistic Regression: Maximum Likelihood

p(Y |X ,Θ) =
∏
∀i

p(yi |xi )

log p(Y |X ,Θ) =
∑
∀i

log p(yi |xi )

E (Θ) = − log p(Y |X ,Θ) = −
∑
∀i

log p(yi |xi )

• If the samples in our data set are independent and identically distributed (iid assumption)
we can write the probability of our dataset beeing generated by our model as a product of
the probabilities of the samples.

• In our case Θ = (α, β).
• If we fix the data and vary the parameters Θ, we call this the likelihood or log-likelihood

respectively.
• We use the logarithm of the likelihood function for convenience.
• We define the error function as the negative log-likelihood and as for the linear regression

we can use the derivatives of the error function to determine optimal estimates of α and
β for the given dataset.



Logistic Regression: cross entropy

E (Θ) = −
∑
∀i

q(x) log p(yi |xi ) = H(q, p)

• The resulting error function describes the cross entropy between the modeled probability
distribution and the distribution q which is 1 if the sample belongs to the respective class
and 0 otherwise.

• For further reading we refer to Bishop p48ff.



Logistic Regression: softmax

pi (x) = σi (x) = ezi (x)∑
∀j ezj (x)

with

zi (x) = αix + βi

• Using the softmax function which is a generalization of the logistic function, we can apply
logistic regression to multi class problems.



Logistic Regression: softmax

g

p(c|x ,Θ) =

 P(blue|x)
P(orange|x)
P(green|x)

 = σ


α00 α01
α10 α11
α20 α21

 · (x0
x1

)
+

β0
β1
β2




• Using the softmax function which is a generalization of the logistic function, we can apply
logistic regression to multi class problems.

• The matrix αij is often called the weight matrix W .
• The vector βi is often called the bias b.
• Such a classifier can be and often is written as y = σ(Wx) w.l.o.g. using an additional

matrix column for the bias.



Gradient Descent

p(c|x) = y(x) = σ(Wx), σi (x) = exi∑
∀j exj

∇E (θ) =
∑

i
(yi − ti )xi

• The introduced formulation for Logistic Regression has no analytical solution.
• We can search for minima by walking on the error surface in the direction of steepest

decent.



Gradient Descent

∇E (θ) =
∑

i
(yi − ti )xi

• We start at a random point and search for a minimum by walking on the error surface in
the direction of steepest decent.



Gradient Descent • For the error E (Θ) blue, the gradient points into the direction of steepest ascent.



Gradient Descent • Given a random initialization for θ we can evaluate the derivative and move into opposite
direction.



Gradient Descent • We repeat the procedure at the new θ.



Gradient Descent • We repeat the procedure at the new θ.



Gradient Descent • We repeat the procedure at the new θ.



Gradient Descent • And end up at a local minimum.



Gradient Descent

θi+1 = θi − η∇E (θ)

• We can write the update step formally including the learning rate (step size) η.
• Whereas ∇ is the gradient operator.



Stochastic Gradient Descent

E (θ) =
∑

i
Ei (θ)

θi+1 = θi − η∇
∑

j
Ej(θ)

• The error function includes a sum over all data points.
• If we use all data points for the computation of the gradient (batch methods) there would

be better ways of doing that than gradient descent.
• Furthermore, the size of the data set often would make it very expensive to use all data

points.
• However what we usually do when training neural networks is online learning.
• This means we use only one sample or a subset of samples j (mini-batch) at a time.



Stochastic Gradient Descent

I How to choose samples?
→ Draw randomly without replacement.

I How many samples?
→ In CV often as many as possible (VRAM limiting factor)
→ Higher batch size → less gradient noise → higher learning rate η

I However, gradient noise allows to escape local optima!
→ Too big batch sizes possible.

• ...



Gradient Descent for Logistic Regression • Random initialization for classification problem with logistic regression and gradient
descent.

• Green arrow is the normalized weight vector.
• Blue line indicates decision boundary including the bias.



Gradient Descent for Logistic Regression • The six graphs show step 0, 20, 60, 80, 100, 180 of the gradient descent.



What’s missing? Unsupervised learning. • How to find structure in data if we don’t have any labels?
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