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Gradient Descent

p(c|x) = y(x) = σ(Wx), σi (x) = exi∑
∀j exj

∇E (θ) =
∑

i
(yi − ti )xi

• The introduced formulation for Logistic Regression has no analytical solution.
• We can search for minima by walking on the error surface in the direction of steepest

decent.



Gradient Descent

∇E (θ) =
∑

i
(yi − ti )xi

• We start at a random point and search for a minimum by walking on the error surface in
the direction of steepest decent.



Gradient Descent • For the error E (Θ) blue, the gradient points into the direction of steepest ascent.



Gradient Descent • And end up at a local minimum.



Gradient Descent

θi+1 = θi − η∇E (θ)

• We can write the update step formally including the learning rate (step size) η.
• Whereas ∇ is the gradient operator.



Gradient Descent with Momentum

θi+1 = θi − η∇E (θ) zi+1 = βzi +∇E (θ)
θi+1 = θi − ηzi+1

• Momentum is the heavy backpack for our mountain hiker.
• It helps to overcome small riddles, valleys and local minima.
• Quadratic speedup compared to plain gradient descent on some error functions.
• It is a own field of research, a good starting point for the interested is maybe this article

on distill:
https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/


Stochastic Gradient Descent

E (θ) =
∑

i
Ei (θ)

θi+1 = θi − η∇
∑

j
Ej(θ)

• The error function includes a sum over all data points.
• If we use all data points for the computation of the gradient (batch methods) there would

be better ways of doing that than gradient descent.
• Furthermore, the size of the data set often would make it very expensive to use all data

points.
• However what we usually do when training neural networks is online learning.
• This means we use only one sample or a subset of samples j (mini-batch) at a time.



Gradient Descent for Logistic Regression • Progress of gradient decent optimization for linear regression.



Whats wrong? • Not all data distributions can be classified like this.



So far we solved this with feature engineering. • We mapped the images from the highly complex pixel space using e.g. SIFT or HOG into
a feature space.

• And afterwards hoped for a good classification result in feature space using e.g. SVM.



Can we learn these mappings?

y = σ(Wx)
→ y = σ(W 1φ(W 0x))

• Let’s add another mapping into our Logistic Regression!



Can we learn these mappings?

y = σ(W 1φ(W 0x))
h = φ(W 0x)

• The vector h is representation in learned feature space.
→ It can have any dimensionality.

• φ is called the activation function.
→ It needs to be non-linear. A purely linear mapping into a new feature space wouldn’t
help.



Can we learn these mappings?

y = σ(W 1φ(W 0x))
h = φ(W 0x)

• The vector h is representation in learned feature space.
→ It can have any dimensionality.

• φ is called the activation function.
→ It needs to be non-linear. A purely linear mapping into a new feature space wouldn’t
help.



Can we learn these mappings? → Artificial Neural Network • This is what is called an Artificial Neural Network with one hidden layer.
• It’s also sometimes called a Multilayer Perceptron (MLP).
• Universal Approximation Theorem:

A neural network with one hidden layer can learn to approximate any continuous function.
The quality of the approximation depends on the number of hidden neurons (size of the
hidden layer).
https://en.wikipedia.org/wiki/Universal_approximation_theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem


Can we learn these mappings? → Artificial Neural Network

CC Prof. Loc Vu-Quoc

•

https://en.wikipedia.org/wiki/Artificial_neuron#/media/File:Neuron3.svg


Can we learn these mappings? → Deep Neural Network

...... ...

...

...

...

...

Feature extraction Linear classifier

• Adding more hidden layers to this, following the same principle, leads us to what is called
deep learning.



But wait. What’s the derivative of this?

...... ...

...

...

...

...

Feature extraction Linear classifier

• Manually deriving the derivative? Puhh ...
• Symbolic derivation leads to expression swell.
• Both are restricted to model definitions with closed-form expressions.



But wait. What’s the derivative of this?

∂E (w)
∂wi

≈ E (w + hei )− E (w)
h

• ei is the unit vector in the ith direction and h is a small positive number.
• We could numerically evaluate the gradient for every weight.
→ Makes a full evaluation of the network for every weight necessary.



But wait. What’s the derivative of this? → Backpropagation

I Fortunately, somebody figured, we could do this using the chain rule!
I The approach was developed many times but

is widely used in Machine Learning mostly because of
Learning representations by back-propagating errors.
David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams; Nature; 1986

•
•



Backpropagation • Let’s look at the computational graph for the function e = (a + b)(b + 1)
• Example from https://colah.github.io/posts/2015-08-Backprop/

https://colah.github.io/posts/2015-08-Backprop/


Backpropagation • A forward pass through this graph for a = 2 and b = 3.



Backpropagation • We can assign the partial derivative to each edge of the graph.



Backpropagation • After a forward pass through the network, we can assign a value to all of the partial
derivatives by doing what is called a backward pass.



Backpropagation

∂e
∂a = 4 · 1 = ∂e(c(b))

∂c
∂c(b)
∂b

• If we multiply the values of the partial derivatives of the nodes from output to parameter,
we get the partial derivative of the full network with respect to this parameter.

• Which is nothing else than the application of the chain rule.



Backpropagation

∂e
∂b = 4 · 1 + 5 · 1

= ∂e(c(b))
∂c

∂c(b)
∂b + ∂e(d(b))

∂d
∂d(b)
∂b

• If there are multiple paths from output to parameter, we have to sum up all the
derivatives at every node before propagating the further.

• This also corresponds to the chain rule in the multi variate case.



Backpropagation • Every node needs to implement a function and the partial derivatives of that function
with respect to its inputs.
→ The values of the partial derivatives of the network with respect to all parameters for a
given input, can be computed with one forward and one backward pass.



Backpropagation • Activations (node output) of all layers have to be kept in memory for the backward path!
→ High memory consumption of the network during training.
→ (Yes, Backprop is dynamic programming.)

• Add-nodes distribute gradient equally.
• Multiply-nodes backpropagate their inputs as gradients.
• What does that mean e.g. for the Wx operation?
→ Big input, big gradient on the weights!
→ Preprocessing of input data matters for gradient flow!
→ To understand and monitor gradient flow is crucial for successful training of neural
networks.



What about φ?

y = σ(W 1φ(W 0x))
h = φ(W 0x)

• The vector h is representation in learned feature space.
→ It can have any dimensionality.

• φ is called the activation function.
→ It needs to be non-linear. A purely linear mapping into a new feature space wouldn’t
help.



Activation function • Let’s have a look at possible activation functions.



Overfitting

“With great power comes great overfitting“ (Joseph Redmon)

...... ...
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Feature extraction Linear classifier

• Deep neural networks have millions of parameters.
• They can learn to fit almost everything. But that’s often not what you want.



Bias and Variance in deep networks • When fitting a model with a gradient descent method, we should always look at the error
on training and validation sets over training iteration.

• High bias
→ Increase model complexity

• High variance
→ More data and/or regularization

• In deep learning it’s less of a trade-off between bias and variance.
→ We can increase model complexity accompanied with more data/regularization until
bias is close to zero, without increasing variance much.



Regularization

I Early stopping
I Weight regularization
I Dropout
I Data augmentation
I Batch normalization

• Regularization is very important. Most approaches use multiple of the regularization
methods listed here.

• We will discuss these methods in more detail in the exercises.



A small MLP for computer vision

128× 128× 3 = 49152
16× 16× 36 = 9216

→ 49152 · 9216 + 9216 · 10 = 453076992 ≈ 450 · 106

• A small MLP with feature vector comparable to HOG.
• Input: an rgb image relatively low resolution
→ 128× 128× 3 = 49152

• Hidden layer: comparable to HOG with 36 dim feature vector computed from 8× 8
patches
→ 16× 16× 36 = 9216

• Output neurons for e.g. 10 object classes
→ 49152 · 9216 + 9216 · 10 = 453076992 ≈ 450million parameters


	Introduction to Machine Learning

