
Convolutional Neural Networks I
Lecture 10

Automatic Image Analysis

June 14, 2021



Last lecture: a small MLP for computer vision

128× 128× 3 = 49152
16× 16× 36 = 9216

→ 49152 · 9216 + 9216 · 10 = 453076992 ≈ 450 · 106

• A small MLP with feature vector comparable to HOG.
• Input: an rgb image relatively low resolution
→ 128× 128× 3 = 49152

• Hidden layer: comparable to HOG with 36 dim feature vector computed from 8× 8
patches
→ 16× 16× 36 = 9216

• Output neurons for e.g. 10 object classes
→ 49152 · 9216 + 9216 · 10 = 453076992 ≈ 450million parameters



Do we need to connect all the pixels?

• Can we use knowledge about image statistics to reduce the number of connections?



Convolutional Layers: locality • Assumption: local regions to be processed together, regions far apart not related



Convolutional Layers: weight sharing • Assumption: image processing should not vary with image region.



Convolutional Layers: feature maps • Instead we can connect multiple neurons to every dimension of the input.



Convolutional Layers: kernel in 2d • A convolutional layer corresponds to a convolution with a filter kernel plus non linearity.



Convolutional Layers: padding • We loose 1
2 kernel size pixels at the image boarder.



Convolutional Layers: padding • Usually we pad image boarder to keep image size.



Convolutional Layers: strides • The number of pixels in between neurons is called stride.



Convolutional Layers: strides • With strides > 1 we can downsample the image to lower resolution.



Im2Col • To formulate the convolutions as matrix operations, the image pixels are duplicated and
rearranged.



Im2Col

weights kernel 0

weights kernel n

channel 0 channel 1

channel 0

channel 1

im2col

• Afterwards we multiply with a matrix that consists of the kernel values.
→ The computation of a forward/backward pass of convolutional layer becomes one big
matrix operation.



Convolutional Layers

height

width

channels
feature maps

height/stride

width/stride

• The input to a convolutional layer is a tensor with width × height × channels

• The kernel is a four dimensional tensor with nk × ks × ks × c,
with number of kernels nk, the kernel size ks, and the number of channels c.

• The output is again a tensor width‘× height‘× nk, where the new width and height
depend on padding and strides.

• The output channels are often referred to as feature maps.



Convolutional Layers

height

width

feature maps

height

width

feature maps

• Kernels with kernel size 1 can make sense, e.g. to reduce the number of feature maps.
• fmaps ′ × 1× 1× fmaps are called 1× 1 convolutions.
• Network In Network, Lin et al, CVPR 2013



Pooling Layers

5 3 8 9 3

1 3 2 4 0

5 0 7 5 6

4 6 12

1 8 5

8 9

12

• Down-sampling with Max-Pooling with kernel size 3 and stride 2.
• Pooling is also done with the average instead of the max operation.



Summary

Convolution

Convolution

Convolution

Pooling

Pooling
Pooling Fully

connected

• Illustrated is the default architecture for image classification.
• Alternating convolution and pooling layers lead to constant memory footprint of

activations and translation invariance.
• A fully connected final layer removes any spatial information.



Architectures: LeNet 1998 • Gradient-based learning applied to document recognition, LeCun et al, 1998
• Classifies handwritten digits of the MNSIT dataset.



The big dataset: ImageNet 2009 • ImageNet is an image database organized according to the WordNet hierarchy (15 mio
images).

• https://www.image-net.org/
• Widely used subset for ImageNet Large Scale Visual Recognition Challenge (ILSVRC):

1000 object classes, 1,281,167 training images, 50,000 validation images and 100,000 test
images



Architectures: AlexNet 2012 • ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al,
NeurIPS 2012

• Implements LeNet-like architecture on GPU (deeper and wider).
• ReLU activations, dropout regularization, max pooling.



Architectures: VGG 2014 • Very Deep Convolutional Networks for Large-Scale Image Recognition, Simonyan &
Zisserman, ICLR 2015

• Visual Geometry Group → VGG
• Depth matters, small kernels with size 3 (less parameters, more non-linearities, same

receptive field
• Still often used but really shouldn’t.



Deep networks are hard to train

I With deep networks and bounded activation functions gradients get very small.
I With unbounded activation functions gradients can explode.

•
•



Batch normalization 2015 • Distribution of layer activations changes after every weight update!
(Ioffe & Szegedy call this the internal covariate shift.)

• Lets normalize input to every layer!
• Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate

Shift, Ioffe & Szegedy, PLMR 2015
• Image from Group Normalization, Wu & He, Group normalization, 2018



Batch normalization

x ‘i = xi − E [xi ]√
Var [xi ]

• It’s as simple as the normalization of the input data. Almost ...
• What if mean and variance of activations matter?



Batch normalization

x ‘i = xi − E [xi ]√
Var [xi ]

x“ = γx ‘ + β

• It’s as simple as the normalization of the input data. Almost ...
• What if mean and variance of activations matter?
→ Add learnable parameters to modulate mean and variance!



Batch normalization

conv

batch
norm

activation

• Usually inserted before the non-linearity



Batch normalization

I Internal covariate shift is reduced
→ Training is more stable, higher learning rates possible
→ Contribution of samples in mini-batch to gradient harmonized
→ Input to non-linearity centered around zero

I Contribution to gradient of a sample depends on other samples in mini-batch
→ Regularization
→ In some cases detrimental

•
•



Batch normalization

I Different behavior in training and test time
→ Often leads to bugs

I Adds a lot of complexity in recurrent networks
→ Every pass through a layer needs a dedicated batch-norm layer

I Depends on batch size (zero variance for single sample)

•
•



Alternative forms of normalization • Layer Normalization, Ba et al, 2016
• Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization

and Texture Synthesi, Ulyanov et al, 2017
• Group Normalization, Wu & He, Group normalization, 2018
• Many more including combinations of these and weight normalization
• Image from Group Normalization, Wu & He, Group normalization, 2018



Codename Inception 2015 • Motivated by spatial sparsity.
• Reducing number of total weights per layer by combining filters with different sizes.
• Going Deeper with Convolutions, Szegedy et al, 2015



Codename Inception • Higher filter sizes and pooling layers still need a lot of resources.
• Use 1x1 convolutions to reduce the number of filter maps.
• 1x1 layers also have non-linearities leading to dual purpose layers.
• Going Deeper with Convolutions, Szegedy et al, 2015



Residual Connections 2016 • VGG and others showed that accuracy increases with depth.
• Vanishing/exploding gradients are alleviated by normalization.
• But even with normalization, we can observe that training and test error start to increase

again at a certain number of layers/depth.
• Deep Residual Learning for Image Recognition, He et al, CVPR 2016



Residual Connections

conv

conv

conv

conv

conv

conv

dense

dense

dense

identity

identity

identity

conv

conv

conv

dense

dense

dense

conv

conv

conv

dense

dense

dense

• But even with normalization, we can observe that training and test error start to increase
again at a certain number of layers/depth.

• That’s weird, because there is an obvious solution that is at least as good as the shallower
network.

• However it seems, that finding this solution in deeper networks is more difficult.



Residual Connections • Idea: Shortcut layers, so learning the identity is setting weights to zero, which should be
easier as actually learning the identity.



Residual Connections • Yay! Works even better!
• There is no limit to depth any more!
• Super human performance on ImageNet with a network with 152 layers.



Visualization: Filters • Filters of the first convolutional layer in AlexNet.
• ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al,

NeurIPS 2012



Visualization: Early • Going deeper with convolutions, Szegedy et al, CVPR 2015
• Feature Visualization, Olah et al, https://distill.pub/2017/feature-visualization/



Visualization: Middle •
•



Visualization: Middle •
•



Visualization: Middle •
•



Visualization: Late •
•



Transfer Learning

conv

conv

conv

conv

conv

conv

conv

dense

dense

dense

more
task

specific

more
general

more
abstract

less
abstract

• Deep learning needs big data!
• But what if we use the more general abilities a network learned for another task?
• Images from Feature Visualization, Olah et al,

https://distill.pub/2017/feature-visualization/



Transfer Learning

conv

conv

conv

conv

conv

conv

conv

dense

dense

dense

replace

keep

• We can transfer knowledge by replacing the specialized layers with randomly initialized
layers and only train those!



Transfer Learning: fine tuning

conv

conv

conv

conv

conv

conv

conv

dense

dense

dense

train

fine
tune

I 1. Train the randomly initialized layers to convergence.
I 2. Unfreeze the some of the upper layers and continue training.

• Randomly initialized layers generate high gradients, which would destroy what was learned
in the layers below.

• Fine tune with very small learning rate (≈ .1× original lr)



Transfer Learning

conv

conv

conv

conv

conv

conv

conv

dense

dense

dense

replace

keep

I The more data we have for the target domain
→ the more layers we can replace.
→ the more layers we can fine tune.

I The higher the distance between original and target task
→ the more layers we may want to replace.
→ the more layers we need to fine tune.

• Give it a try, it works surprisingly well.
• Transfer learning has become the default initialization.

(In many frameworks, it’s just an argument in a function call to initialize with weights
trained on ImageNet.)

• Recent results show, that it is not always necessary.
(Rethinking ImageNet Pre-training, He et al, ICCV 2019)



Winners ImageNet Large Scale Visual Recognition Challenge • Image from Stanford CS231n Lecture 9, Fei-Fei Li
http://cs231n.stanford.edu/slides/2021/lecture_9.pdf

http://cs231n.stanford.edu/slides/2021/lecture_9.pdf


Accuracy ImageNet Ops/Params • Image from An Analysis of Deep Neural Network Models for Practical Applications,
Canziani et al, 2017



Efficiency • Total amount of compute in teraflops/s-days used to train to AlexNet level performance.
Lowest compute points at any given time shown in blue, all points measured shown in
gray.

• Image from https://openai.com/blog/ai-and-efficiency/

https://openai.com/blog/ai-and-efficiency/

