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Last lecture: a small MLP for computer vision

128× 128× 3 = 49152
16× 16× 36 = 9216

→ 49152 · 9216 + 9216 · 10 = 453076992 ≈ 450 · 106

• A small MLP with feature vector comparable to HOG.
• Input: an rgb image relatively low resolution
→ 128× 128× 3 = 49152

• Hidden layer: comparable to HOG with 36 dim feature vector computed from 8× 8
patches
→ 16× 16× 36 = 9216

• Output neurons for e.g. 10 object classes
→ 49152 · 9216 + 9216 · 10 = 453076992 ≈ 450million parameters



Do we need to connect all the pixels?

• Can we use knowledge about image statistics to reduce the number of connections?



Convolutional Layers: locality • Assumption: local regions to be processed together, regions far apart not related



Convolutional Layers: weight sharing • Assumption: image processing should not vary with image region.



Convolutional Layers: feature maps • Instead we can connect multiple neurons to every dimension of the input.



Convolutional Layers: kernel in 2d • A convolutional layer corresponds to a convolution with a filter kernel plus non linearity.



Convolutional Layers: padding • We loose 1
2 kernel size pixels at the image boarder.



Convolutional Layers: padding • Usually we pad image boarder to keep image size.



Convolutional Layers: strides • The number of pixels in between neurons is called stride.



Convolutional Layers: strides • With strides > 1 we can downsample the image to lower resolution.



Im2Col • To formulate the convolutions as matrix operations, the image pixels are duplicated and
rearranged.



Im2Col
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• Afterwards we multiply with a matrix that consists of the kernel values.
→ The computation of a forward/backward pass of convolutional layer becomes one big
matrix operation.



Convolutional Layers
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• The input to a convolutional layer is a tensor with width × height × channels

• The kernel is a four dimensional tensor with nk × ks × ks × c,
with number of kernels nk, the kernel size ks, and the number of channels c.

• The output is again a tensor width‘× height‘× nk, where the new width and height
depend on padding and strides.

• The output channels are often referred to as feature maps.



Convolutional Layers
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• Kernels with kernel size 1 can make sense, e.g. to reduce the number of feature maps.
• fmaps ′ × 1× 1× fmaps are called 1× 1 convolutions.
• Network In Network, Lin et al, CVPR 2013



Pooling Layers
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• Down-sampling with Max-Pooling with kernel size 3 and stride 2.
• Pooling is also done with the average instead of the max operation.



Summary
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• Illustrated is the default architecture for image classification.
• Alternating convolution and pooling layers lead to constant memory footprint of

activations and translation invariance.
• A fully connected final layer removes any spatial information.



Architectures: LeNet 1998 • Gradient-based learning applied to document recognition, LeCun et al, 1998
• Classifies handwritten digits of the MNSIT dataset.



The big dataset: ImageNet 2009 • ImageNet is an image database organized according to the WordNet hierarchy (15 mio
images).

• https://www.image-net.org/
• Widely used subset for ImageNet Large Scale Visual Recognition Challenge (ILSVRC):

1000 object classes, 1,281,167 training images, 50,000 validation images and 100,000 test
images



Architectures: AlexNet 2012 • ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al,
NeurIPS 2012

• Implements LeNet-like architecture on GPU (deeper and wider).
• ReLU activations, dropout regularization, max pooling.



Architectures: VGG 2014 • Very Deep Convolutional Networks for Large-Scale Image Recognition, Simonyan &
Zisserman, ICLR 2015

• Visual Geometry Group → VGG
• Depth matters, small kernels with size 3 (less parameters, more non-linearities, same

receptive field
• Still often used but really shouldn’t.



Deep networks are hard to train

I With deep networks and bounded activation functions gradients get very small.
I With unbounded activation functions gradients can explode.

•
•



Batch normalization 2015 • Distribution of layer activations changes after every weight update!
(Ioffe & Szegedy call this the internal covariate shift.)

• Lets normalize input to every layer!
• Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate

Shift, Ioffe & Szegedy, PLMR 2015
• Image from Group Normalization, Wu & He, Group normalization, 2018



Batch normalization

x ‘i = xi − E [xi ]√
Var [xi ]

• It’s as simple as the normalization of the input data. Almost ...
• What if mean and variance of activations matter?



Batch normalization

x ‘i = xi − E [xi ]√
Var [xi ]

x“ = γx ‘ + β

• It’s as simple as the normalization of the input data. Almost ...
• What if mean and variance of activations matter?
→ Add learnable parameters to modulate mean and variance!



Batch normalization
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• Usually inserted before the non-linearity



Batch normalization

I Internal covariate shift is reduced
→ Training is more stable, higher learning rates possible
→ Contribution of samples in mini-batch to gradient harmonized
→ Input to non-linearity centered around zero

I Contribution to gradient of a sample depends on other samples in mini-batch
→ Regularization
→ In some cases detrimental

•
•



Batch normalization

I Different behavior in training and test time
→ Often leads to bugs

I Adds a lot of complexity in recurrent networks
→ Every pass through a layer needs a dedicated batch-norm layer

I Depends on batch size (zero variance for single sample)

•
•



Alternative forms of normalization • Layer Normalization, Ba et al, 2016
• Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization

and Texture Synthesi, Ulyanov et al, 2017
• Group Normalization, Wu & He, Group normalization, 2018
• Many more including combinations of these and weight normalization
• Image from Group Normalization, Wu & He, Group normalization, 2018



Codename Inception 2015 • Motivated by spatial sparsity.
• Reducing number of total weights per layer by combining filters with different sizes.
• Going Deeper with Convolutions, Szegedy et al, 2015



Codename Inception • Higher filter sizes and pooling layers still need a lot of resources.
• Use 1x1 convolutions to reduce the number of filter maps.
• 1x1 layers also have non-linearities leading to dual purpose layers.
• Going Deeper with Convolutions, Szegedy et al, 2015



Residual Connections 2016 • VGG and others showed that accuracy increases with depth.
• Vanishing/exploding gradients are alleviated by normalization.
• But even with normalization, we can observe that training and test error start to increase

again at a certain number of layers/depth.
• Deep Residual Learning for Image Recognition, He et al, CVPR 2016



Residual Connections
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• But even with normalization, we can observe that training and test error start to increase
again at a certain number of layers/depth.

• That’s weird, because there is an obvious solution that is at least as good as the shallower
network.

• However it seems, that finding this solution in deeper networks is more difficult.



Residual Connections • Idea: Shortcut layers, so learning the identity is setting weights to zero, which should be
easier as actually learning the identity.



Residual Connections • Yay! Works even better!
• There is no limit to depth any more!
• Super human performance on ImageNet with a network with 152 layers.



Visualization: Filters • Filters of the first convolutional layer in AlexNet.
• ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al,

NeurIPS 2012



Visualization: Early • Going deeper with convolutions, Szegedy et al, CVPR 2015
• Feature Visualization, Olah et al, https://distill.pub/2017/feature-visualization/



Visualization: Middle •
•



Visualization: Middle •
•



Visualization: Middle •
•



Visualization: Late •
•



Transfer Learning
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• Deep learning needs big data!
• But what if we use the more general abilities a network learned for another task?
• Images from Feature Visualization, Olah et al,

https://distill.pub/2017/feature-visualization/



Transfer Learning

conv

conv

conv

conv

conv

conv

conv

dense

dense

dense

replace

keep

• We can transfer knowledge by replacing the specialized layers with randomly initialized
layers and only train those!



Transfer Learning: fine tuning
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I 1. Train the randomly initialized layers to convergence.
I 2. Unfreeze the some of the upper layers and continue training.

• Randomly initialized layers generate high gradients, which would destroy what was learned
in the layers below.

• Fine tune with very small learning rate (≈ .1× original lr)



Transfer Learning
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I The more data we have for the target domain
→ the more layers we can replace.
→ the more layers we can fine tune.

I The higher the distance between original and target task
→ the more layers we may want to replace.
→ the more layers we need to fine tune.

• Give it a try, it works surprisingly well.
• Transfer learning has become the default initialization.

(In many frameworks, it’s just an argument in a function call to initialize with weights
trained on ImageNet.)

• Recent results show, that it is not always necessary.
(Rethinking ImageNet Pre-training, He et al, ICCV 2019)



Winners ImageNet Large Scale Visual Recognition Challenge • Image from Stanford CS231n Lecture 9, Fei-Fei Li
http://cs231n.stanford.edu/slides/2021/lecture_9.pdf

http://cs231n.stanford.edu/slides/2021/lecture_9.pdf


Accuracy ImageNet Ops/Params • Image from An Analysis of Deep Neural Network Models for Practical Applications,
Canziani et al, 2017



Efficiency • Total amount of compute in teraflops/s-days used to train to AlexNet level performance.
Lowest compute points at any given time shown in blue, all points measured shown in
gray.

• Image from https://openai.com/blog/ai-and-efficiency/

https://openai.com/blog/ai-and-efficiency/

