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Video Analysis

Why should we analyze Videos?



Depth .

= Image from http://theia-sfm.org/
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Optical Flow » Images from https://de.wikipedia.org/wiki/Optischer_Fluss and
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html



https://de.wikipedia.org/wiki/Optischer_Fluss
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html

State estimation = Image from Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset,
Carreira & Zissermann, NeurlPS 2014




Semantic understanding of the world = Google image search for 'weird chairs’,
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Tasks

» Action classification, Action detection

» Video captioning

» Object localization (position + orientation + dynamics)
» Forecasting



Datasets: UCF101 » UCF101: A Dataset of 101 Human Action Classes From Videos in The Wild, Soomro et
al., CRCV 2012

» 13320 videos (YouTube)
> 101 action categories



Datasets: YouTube Sports 1M » Large-scale Video Classification with Convolutional Neural Networks, Karpathy et al.,
CVPR 2014

> 1,133,157 videos
» 487 sports classes



Datasets: Atomic Visual Actions (AVA) v2 = Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding, Gunnar
et al., ECCV 2016

= AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions, Gu et al.,
CVPR 2018

» 80 atomic visual actions
» 430 15-minute movie clips
» 1.62M action labels (bounding boxes in space and time)



Datasets: Kinetics 400/600/700 = A Short Note on the Kinetics-700-2020 Human Action Dataset, Smaira et al., 2020

» 650000 video clips
» 400/600/700 action classes



Video Analysis

What are the challenges?



Video Analysis

What are the challenges?
» More data, higher redundancy
» Lower quality (resolution, motion)

» Higher variance



Video Analysis

How could we analyze Videos?



Fusion

= [nformation along the time domain can be integrated on different levels of abstraction.

= Image from Large-scale Video Classification with Convolutional Neural Networks,
Karpathy et al, CVPR 2014
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Two-stream architectures

Spatial stream ConvNet
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. Temporal stream ConvNet
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optical flow

= Inspired by the two-stream hypothesis (dorsal stream: where, ventral stream what)
https://en.wikipedia.org/wiki/Two-streams_hypothesis

= Image from Two-Stream Convolutional Networks for Action Recognition in Videos,
Simonyan & Zissermann, NeurlPS 2014


https://en.wikipedia.org/wiki/Two-streams_hypothesis

Inflated 3D CNNs (I3D) = Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, Carreira &
Zissermann, CVPR 2017

» Build 3D Convolutional Neural Networks based on well known architectures
> Initialize weights with networks pre-trained on ImageNet

» Replicate weights as if network is applied to boring video
(sequence of duplicates of single frame)

» Striding and pooling have to be adjusted for time domain



Two-stream Inflated 3D CNNs (I13D)
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Even with 3d convolutional networks a second steam based on optical flow improves the
results.

Image from Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset,
Carreira & Zissermann, CVPR 2017



SlowFast = |nspired by the retinal ganglion cells.

» 80% of computation for low frame rate but high spatial resolution

= 20% of computation for high temporal resolution but less spatial detail and lower

dimensionality (channels)
Q ﬁ ﬁ ﬁ - = SlowFast Networks for Video Recognition, Feichtenhofer et al., ICCV 2019
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Tube-CNN = Extending Faster R-CNN to the time domain for action localization.

Tnput video = Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos, Hou et al.,
| f ICCV 2017




Tube-CNN = Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos, Hou et al.,
ICCV 2017

Running

Diving
RunSide

5
]
=
<
£
E]
=
@

2
x
=3

2
%
=
Q
=
2
a
=
=
oy

UCF-101
Riding

TennisSwing  SkateBoarding

THUMOS’14
GolfSwing



Recurrent Neural Networks

» So far we modeled time/sequences with feed forward networks

> What if we want to have long input sequences?

> What if the interpretation of the next input is dependent on the previous input?



Recurrent Neural Networks = A recurrent neural network is a network with a loop.

= Image from Understanding LSTM Networks, Chris Olah
https://colah.github.io/posts/20156-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks -

= Image from Understanding LSTM Networks, Chris Olah
https://colah.github.io/posts/20156-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks = Image from The Unreasonable Effectiveness of Recurrent Neural Networks, Andrej
Karpathy
https://karpathy.github.i0/2015/05/21/rnn-effectiveness/
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https://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN: Backprop through time

= Image from Stanford CS231n Lecture 10, Fei-Fei Li
http://cs231n.stanford.edu/slides/2021/1lecture_10.pdf
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http://cs231n.stanford.edu/slides/2021/lecture_10.pdf

RNN: Backprop through time

RNNs are cool because,
» they can process any length input,
> for processing input at t they can use information from t — k,
> model size does not increase with sequence length,
but
» What information should be saved in the state? For how long?

» Recursive term in gradient: vanishing/exploding gradients



Long Short Term Memory Networks = Long Short-Term Memory, Hochreiter & Schmidhuber, 1997

= Image from Understanding LSTM Networks, Chris Olah
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory Networks = LSTMs have a cell state, that allows to store information.

= Image from Understanding LSTM Networks, Chris Olah
https://colah.github.io/posts/2015-08-Understanding-LSTMs/



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory Networks = The forget gate allows to delete content from the cell state.

= Image from Understanding LSTM Networks, Chris Olah
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory Networks = The input gate decides which parts of a new candidate state are written to the cell state.

= Image from Understanding LSTM Networks, Chris Olah
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

iy =0 (Wi [hi—1, 2] + b;)
ét ztanh(WC-[ht_l,xt] + bc)



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory Networks = These parts of the candidate state are than added to the cell state.

= Image from Understanding LSTM Networks, Chris Olah
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory Networks = The output gate decides which parts of the cell state are going to be the output state.

= Image from Understanding LSTM Networks, Chris Olah
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

he &
@;D op =0 (W [he—1, 4] + bo)
- o . hy = o * tanh (Cy)



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units = Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine
Translation, Cho et al., 2014

= GRUs combine the cell state and output and merge input and forget gate.

= Image from Understanding LSTM Networks, Chris Olah
htT https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM + Spatial encoder = Image from Long-term Recurrent Convolutional Networks forVisual Recognition and
Description, Donahue et al., CVPR 2015
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Stacked LSTM -+ Spatial encoder

CVPR 2015

= Beyond Short Snippets: Deep Networks for Video Classification, Joe Yue-Hei Ng et al.,
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Convolutional LSTM N

= Image from Convolutional LSTM Network: A Machine LearningApproach for Precipitation
Nowcasting, Shi et al., 2015
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Convolutional LSTM + 3d convolutions
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= Video Representation Learning by Dense Predictive Coding, Han et al., ICCV 2019



Sequence to Sequence = Similar as in static images can be used for representation learning, video synthesis, style
transfer, ...

= Image from Unsupervised Learning of Video Representations using LSTMs, Srivastava et
al., 2015
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Mean Squared Future? = Image from
https://commons.wikimedia.org/wiki/File:Coin_Toss_(3635981474) . jpg



https://commons.wikimedia.org/wiki/File:Coin_Toss_(3635981474).jpg

Mean Squared Future? = Image from
https://commons.wikimedia.org/wiki/File:Coin_Toss_(3635981474) . jpg

» Probabilistic modeling

» Adversarial training



https://commons.wikimedia.org/wiki/File:Coin_Toss_(3635981474).jpg

