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Learning without supervision?

◮ 1,281,167 training images

◮ 1000 object classes

• How much are 1000 concepts compared to all the concepts humans use?

• Imagine we would need to label 1000 images per concept.

• New concepts are created and change all the time.



Learning without supervision?

◮ Can we learn without a supervision signal in form of labels?

◮ In an un- or rather self-supervised manner?

• Similar to a human child in the first few month after birth.

• Purely by observing the world.

• It’s hard to define what truly unsupervised learning could be. Therefore the term
self-supervised learning is a better fit.



Learning without supervision?

◮ Pretext tasks

◮ Energy based methods

◮ Generative learning

• We will look at three big topics today.

• At least the second and third topic could not only fill a lecture but a full course on their
own.

• E.g. CS 236: Deep Generative Models (Stanford) or CS 294-158 Deep Unsupervised
Learning (Berkeley)



Learning with self-supervision

Idea:

◮ Train a neural network with an objective that doesn’t need labels.

◮ Evaluate representation on a downstream task. E.g. performance on ImageNet
with or without finetuning.

• In generative learning often, people often just want to generate visual content though.



Learning with self-supervision: pretext tasks

What objective could that be?



Pretext tasks: Compression
• Train an autoencoding network reconstruct an image after coarse feature layer.

• Use encoding network for downstream task.



Pretext tasks: Compression + Reconstruction
• Same as before but apply distortion function d(I) before feeding the image into the

network.

• Use encoding network for downstream task.



Pretext tasks: Inpainting
• Predict one part of the data from another.

• Can also be a random part of the image or e.g. the bottom half or frames of a video
sequence.

• Context Encoders: Feature Learning by Inpainting, Pathak et al., CVPR 2016



Pretext tasks: Colorization
• Similar to inpainting we predict a left-out property the data.

• Colorful Image Colorization, Zhang et al., ECCV 2016

• Tracking Emerges by Colorizing Videos, Vondrick et al., ECCV 2018



Pretext tasks: Frame permutation

4, 2, 1, 3

• We can also formulate the pretext task as classification problem. Here one of n! possible
permutations.

• Can also be done with video frames.

• Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, Noroozi &
Favaro, ECCV 2016



Pretext tasks: Frame relation

top − right

• Or as a discrete spatial relation

• Unsupervised Visual Representation Learning by Context Prediction, Doersch et al., ICCV
2015



Pretext tasks: Transfer knowledge
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• Same as for transfer learning with supervised pretraining.

• Replace some layers, fine tune some layers.



Pretext tasks: Transfer knowledge
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• Problem: learned representations are very task specific



Energy-based self-supervised representation learning

similarity(xi , xj) > similarity(xi , xk) ⇒ energy(ei , ej) < energy(ei , ek)

• For energy-based learning we often use what is called Siamese networks.

• Two (almost) identical networks, that share weights.

• We could summarize the methods in this chapter also as Siamese Representation Learning.

• If the inputs to the two networks are compatible in some way, the energy should be low,
otherwise high.

• Similarity does not mean similar appearance in pixel space.



Contrastive Learning
• Image from Self-Supervised Learning of Pretext-Invariant Representations, Misra &

Maaten, CVPR 2020



Contrastive Learning
• Image from Self-Supervised Learning of Pretext-Invariant Representations, Misra &

Maaten, CVPR 2020



Contrastive Learning
• Image from A Simple Framework for Contrastive Learning of Visual Representation, Chen

et al., ICML 2020



Contrastive Learning

Good negative samples are very important

◮ Have huge batch sizes

◮ Use memory banks (momentum of activations)

◮ Momentum on the weights of the siamese twin

• Huge batch sizes are easy to implement but have heavy compute demands
A Simple Framework for Contrastive Learning of Visual Representations, Chen et al.,
ICML 2020

• Compute efficient but memory bank needs a lot of RAM
Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination, Wu et
al., CVPR 2018

• Saves memory but needs extra forward pass
Momentum Contrast for Unsupervised Visual Representation Learning, He et al., CVPR
2020



Non-Contrastive Learning

There are other ways to approach this (clustering, distillation)

◮ DeepCluster, Sela, SwAV

◮ BYOL, SimSiam

• We are gonna skip those for today. Unfortunately we can’t talk about everything :(

• There is a very nice lecture by Ishan Misra though, if you want to learn more:
https://www.youtube.com/watch?v=8L10w1KoOU8

https://www.youtube.com/watch?v=8L10w1KoOU8


Redundancy Reduction Learning

fi(I) = fi(d(I))

fi(I) 6= fj(d(I))

• This equations are a dramatically oversimplified sketch of the idea.

• While neurons should respond the same to an image and its distorted version, they should
all respond differently.

• We don’t have spare neurons, so we don’t want redundancy in their activations.

• Possible principles underlying the transformation of sensory messages, Horace Barlow,
1961



Barlow Twins
• Our objective is to make the correlation matrix a diagonal matrix.

• To prevent constant but decorrelated output, Za and Zb are standardized before the
correlation matrix is computed.

• Image from Barlow Twins: Self-Supervised Learning via Redundancy Reduction, Zbontar
et al., ICML 2021



Barlow Twins
• Image from Barlow Twins: Self-Supervised Learning via Redundancy Reduction, Zbontar

et al., ICML 2021



Generative Learning

What’s generative learning?



Generative Learning

We want to model the data distribution p(x) directly.

• Where x is a sample image.

• How is this even possible? Let’s see ...



PixelRNN/PixelCNN

p(x) = p(x1, ..., xn) =
n2
∏

i

p(xi)p(xi |x1, ..., xi−1)

• Fully Visible Belief Network

• Product of distributions using chain rule (decompose likelihood of an image into pixel
probabilities).

• Train RNN to classify pixels (e.g. 1 out of 255).

• Also possible to formulate as CNN, but still one forward pass per pixel necessary at test
time.

• Image from Pixel Recurrent Neural Networks, van den Oord, ICML 2016



Modeling using a latent variable
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• Image from Auto-Encoding Variational Bayes, Kingma & Welling, ICLR 2014

•



Modeling using a latent variable

pθ(x) =

∫
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• pθ is the data likelihood we want to maximize.

• We can approximate p(z) e.g. as Gaussian.

• We can learn p(x |z) e.g. with a generator network.

• However, the integral over z is intractable.



ELBO (evidence lower bound)

Eq(z|x) log p(x |z) − KL(q(z |x)||p(z))

• Luckily it turns out that this term is a lower bound on our intractable data likelihood.

• KL is the Kullback-Leibler divergence, a similarity measurement for probability
distributions.

• q(z |x) is a tractable approximation of the intractable p(z |x).

• Yes, there is a lot of math we just skipped. You can find a full derivation here:
https://www.youtube.com/watch?v=uaaqyVS9-rM&t=1182s

https://www.youtube.com/watch?v=uaaqyVS9-rM&t=1182s


ELBO (evidence lower bound)

Eq(z|x) log p(x |z) − KL(q(z |x)||p(z))

Let’s maximize it!

• Luckily it turns out that this term is a lower bound on our intractable data likelihood.

• KL is the Kullback-Leibler divergence, a similarity measurement for probability
distributions.

• q(z |x) is a tractable approximation of the intractable p(z |x).



Variational Autoencoder (VAE)

q(z |x) = N (µz , σz)

• Let’s just assume the p(z) is gaussian distributed.

• And let’s additionally assume all elements of z are independent.

• To approximate q(z |x) we learn a mapping with a neural net.

• This is the encoder part of the variational autoencoder (sometimes called recognition
model).



Variational Autoencoder (VAE)

MSE (x , x̂)

• minimize MSE (x , x̂) to maximize Eq(z|x) log p(x |z)

• This is the decoder part of the variational autoencoder (sometimes called generator
model).



Variational Autoencoder (VAE)
• Full VAE architecture for training.



VAE: Reparameterization Trick

z = µz + ǫσz with ǫ N (0, 1)

• We cannot backpropagate through z ∼ N (µz , σz)

• Therefor we set to z = µz + ǫσz with ǫ N (0, 1)

• This is called the reparameterization trick.



Variational Autoencoder (VAE)
• At test time we draw z from p(z) = N (0, 1).

• Enforcing KL(q(z |x)||p(z)) leads to a smooth latent state.

• Image from https://towardsdatascience.com/

intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Variational Autoencoder (VAE)
• A VAE trained to generate MNIST digits.

• A grid in the latent space leads to consistent generations in pixelspace.

• Image from Auto-Encoding Variational Bayes, Kingma & Welling, ICLR 2014



Adversarial Learning
• If we have a generated image (e.g. from the VAE or from colorizing a grey scale image),

we do not actually care if the image is exactly the same as the input image.

• We just want it to be realistic. But the MSE forces the output to be the same as the
reference.



Adversarial Learning

Fake/Real

• Instead of formulating a good error measurement ourselves, we can train a classifier to
distinguish between a real image and a generated (fake) image.

• This way we do not measure if the image looks similar to the original but only if the
image looks realistic.



Adversarial Learning

Fake/Real

• After training the classifier (discriminator), we can backpropagate the negative gradient of
the discriminator into the generator network.

• This way we train the generator to become a better forger. We can train both networks
alternatingly, leading to ever better generator and discriminator.



Generative Adversarial Networks

Fake/Real

• Instead of generating an image from an input encoding, we can also just generate an
image from a random vector.

• This way the generator learns to map the input distribution p(z) to the data distribution
p(x).

• The discriminator learns to distinguish if an image x is within p(x) or out of distribution.



Generative Adversarial Networks

min
θg

max
θd

[Ex∼pdata
log Dθ(x) + Ez∼p(z) log(1 − Dθd

(Gθg
(z)))]

• Generative Adversarial Networks, Goodfellow et al., NeurIPS 2014

• Training of the pair of networks is a mini-max game.



Deep Convolutional GANs
• Unsupervised Representation Learning with Deep Convolutional Generative Adversarial

Networks, Radford et al., ICLR 2016

• Paper also uses discriminator features for image classification and lists design guidelines
for ConvNet architectures for GANS.



Many improvements ...

◮ Wasserstein GAN, Arjovsky et al., 2017

◮ Improved Training of Wasserstein GANs, Gulrajani et al., 2017

◮ Progressive Growing of GANs for Improved Quality, Stability, and Variation,
Karras et al., 2017

• GANs are hard to train and improvements to training stability were very important.



GAN Zoo
• https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo


BigGAN
• Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al., 2019

• Class conditional generation of images.



Taxonomy of generative methods
• Image from Tutorial: Generative Adversarial Networks, Godfellow, NeurIPS 2016


