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Chapter 0

Background & Review

Everythingmentioned in this chapter should already be familiar to you from other math classes. These
topics span three main areas: algebra/pre-calculus, single variable calculus, and matrices. These top-
ics will be used either implicitly or with only a passing reference.

If you are unfamiliar with anything mentioned, you can use many of the great online resources, like
Khan Academy, to familiarize yourself before moving forward.

0.1 Algebra and Pre-Calculus

0.1.1 Sets
Definition. A setA is a collection of distinct elements. Those elements can be anything, like numbers,
functions, and even other sets.

We can define a set by giving its elements, like A = {−2, 5, 3} or by describing its properties, like
A = {x | x > 0} where the vertical bar means “such that”. If an object x is a member of the set A,
we write x ∈ A.

A set A is called a subset of a set B if every element of A is also an element of B. We can write this
as A ⊆ B. For example, {7, 10, 16} ⊆ {5, 6, 7, 9, 10, 11, 16}. Note that this relation can be strict if
there exists at least one element in B that is not also an element of A. Some common sets and their
informal definitions are given below:

Set Name Symbol Informal Definition
Natural numbers N {1, 2, 3, . . . }

Integers Z {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Rational numbers Q {m

n
| m,n ∈ Z and n ̸= 0}

Real numbers R Any number on the number line1
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This means that N ⊂ Z ⊂ Q ⊂ R.

There are several common operations that can be performed on sets. The union A∪B of two sets A
and B is the set of all elements that are elements of A or of B. Similarly, the intersection A ∩ B of
two sets A and B is the set of all elements that are also elements of both A and B.

Example. If A = {
√
2, 2, 5, 8} and B = {−9, 8, 2.3}, what are A ∪ B and A ∩B?

To find the union, we combine the sets, making sure to include any repeated element only once:

A ∪B = {−9,
√
2, 2, 2.3, 5, 8}.

Then, since the only element both sets share is 8, we also have

A ∩ B = {8}.

0.1.2 Intervals
Definition. We call a subset I of R an interval if, for any a, b ∈ I and x ∈ R such that a ≤ x ≤ b,
then x ∈ I .

We can write an interval more simply using the notation [a, b], which is equivalent to {x ∈ R | a ≤
x ≤ b}. This is called a closed interval, and to make the inequalities strict, we can also define an open
interval by using parantheses instead of square brackets.

In addition, we can mix the two to create half-open intervals, where one inequality is strict and the
other isn’t. For instance, (2, 5] refers to the set {x ∈ R | x < 2 ≤ 5} Finally, if the interval is
unbounded in either direction, we use the notations−∞ and∞ to indicate that there is no minimum
or maximum, respectively.

Example. Is 8 ∈ (−∞, 4) ∪ [8, 100)?

Since 8 ≤ 8 < 100 is a true statement, 8 ∈ [8, 100). Since we are taking the union with an-
other set, all of the members of the right interval will also be members of the union of intervals.
Therefore, the statement is true.

0.1.3 Functions
Definition. A function f is a rule between a pair of sets, denoted f : D → C, that assigns values
from the first set, the domain D, to the second set, the codomain C.

We call the subset of the codomain C that constitutes all values f can actually attain the range R ⊆
C. Note that when we draw a graph of a function, all we are doing is drawing all ordered pairs
{(x, f(x)) | x ∈ D}.

2



Example. Find the domain of the following function:

f(x) =
1

(1− x)
√
5− x2

We know that n
0
is undefined for all n ∈ R and √x is only defined for x ≥ 0. The first condition

applies to the first term in the denominator and both conditions apply to the second, giving us
(1− x) ̸= 0 and 5− x2 > 0

The first condition implies x ̸= 1 while the second implies |x| <
√
5. Putting these together, we

find that the domain is
{x | x ̸= 1, |x| <

√
5} or (−

√
5, 1) ∪ (1,

√
5)

We can also compose two functions, such that the ouput of one function is the input of another:
(f ◦ g)(x) = f(g(x)).

Definition. A function g is called an inverse function of f if f(g(x)) = x for all x in the domain of
g and g(f(x)) for all x in the domain of f. We write this as g = f−1.
One common algorithm for finding an inverse function is to set y = f(x), substitute all x’s for y’s,
and then solve for y.
Example. Find the inverse function of

f(x) =
5x+ 2

4x− 3
.

We first make the substitutions to set up the algorithm:

y =
5x+ 2

4x− 3
becomes x =

5y + 2

4y − 3
.

After multiplying both sides by the denominator and simplifying, we have
4xy − 3x = 5y + 2

−3x− 2 = y(−4x+ 5)

y = f−1(x) =
3x+ 2

4x− 5
.

We say that a function f is even if it satisfies f(−x) = f(x) for all x ∈ D. Likewise, we say that a
function f is odd if it satisfies f(−x) = −f(x) for all x ∈ D. Geometrically, we can see that the
graph of an even function is symmetric with respect to the y-axis, while the graph of an odd function
is symmetric with respect to the origin.
Example. Is f(x) = 2x− x2 even, odd, or neither?

f(−x) = 2(−x)− (−x)2 = −2x− x2

Since f(−x) ̸= f(x) and f(−x) ̸= −f(x), the function is neither even nor odd.

3



0.1.4 Complex Numbers
Definition. i is called the imaginary unit. It’s defined by i2 = −1.

The set of complex numbers (C) is an extension of the real numbers. Complex numbers have the
form z = α+βi, whereα and β are real numbers. Theα part of z is called the real part, soℜ(z) = α.
The β part of z is called the imaginary part, so ℑ(z) = βi.

Often, complex numbers are visualized as points or vectors in a 2D plane, called the complex plane,
where α is the x-component, and β is the y-component. Thinking of complex numbers like points
helps us define the magnitude of complex numbers and compare them. Since a point (x, y) has a
distance

√
x2 + y2 from the origin, we can say the magnitude of z, |z| is

√
α2 + β2. Thinking of

complex numbers like vectors helps us understand adding two complex numbers, since you just add
the components like vectors.

A common operation on complex numbers is the complex conjugate. The complex conjugate of
z = α + βi is z = α− βi. z and z are called a conjugate pair.

Conjugate pairs have the following properties. Let z, w ∈ C.

z ± w = z ± w

zw = zw

z = z ⇔ z ∈ R
zz = |z|2 = |z|2

z = z

zn = zn

z−1 =
z

|z|2

0.1.5 Factoring Polynomials
We want to break up a polynomial like f(x) = a0 + a1x

1 + . . . anx
n into linear factors so that

f(x) = c(x − b1) · . . . · (x − bn). This form makes it simple to see that the roots of f , solutions to
f(x) = 0, are x = b1 . . . bn.

For quadratics, f(x) = ax2 + bx + c, there exists a simple formula that will give us both roots, the
quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

We can see that when b2− 4ac < 0, like for f(x) = x2+5x+10, we will get complex roots α±βi.
For any polynomial, these roots come in pairs, so if α + βi is a root, then so is α − βi. This means
that every conjugate pair α ± βi has a quadratic equation with those roots. Sometimes we will not

4



factor quadratics with complex roots into linear terms.

Although there do exist explicit formulas for finding roots for cubic (degree 3) and quartic (degree 4)
equations, they are too long and not useful enough to memorize. When working by hand, we instead
use other tricks to find roots.

There are a few useful tricks that can help. If the polynomial doesn’t have a constant term, then 0 is
a root. If all the coefficients sum to 0, then 1 is a root. For certain polynomials with an even number
of terms, like all cubics of the form ax3 + bx2 + cax+ cb we can factor out a term from the first two
and last two terms to get x2(ax + b) + c(ax + b) = (ax + b)(x2 + c). For other polynomials, we
might just try guessing and checking values. However, we need a more efficient way that works in
general.

Since we are looking to find linear factors f(x) = (x − b1) · . . . · (x − bn), we can see that the
constant term in the polynomial is the product of the roots b1 . . . bn. In fact, since the coefficients of
polynomials are completely determined by the roots and the leading coefficient, all the coefficients
are sums and products of roots. You might remember when factoring quadratics that the coefficient
of x term is the sum of the two roots. These rules are called Vieta’s formulas.

So, if we have the constant term, we can check all of its integer factors to see if any are roots. For
each root, we can divide, using a technique like synthetic division, to continue finding the rest of the
roots. This method is especially useful on tests because the roots tend to be integers.

Example. Factor the polynomial x5 + x4 − 2x3 + 4x2 − 24x.

We can immediately see that there is no constant term, so x = 0 is a root. Now we need to work on
factoring x4 + x3 − 2x2 + 4x− 24.
The factors of -24 are: -24, -12, -8, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 8, 12, and 24. Starting from roots
close to 0 and working outwards, we find that x = 2 is a root. So, we synthetic divide like so

x = 2 | 1 1 -2 4 -24
↓ 2 6 8 24
1 3 4 12 | 0

to see that now we need to work on factoring x3 + 3x2 + 4x + 12. x3 + 3x2 + 4x + 12 = x2(x +
3) + 4(x + 3) = (x + 3)(x2 + 4), so x = −3 is a root, and we need to work on factoring x2 + 4.
x2 + 4 has two complex roots ±2i, so we’ll leave it as a quadratic.

x5 + x4 − 2x3 + 4x2 − 24x = x(x− 2)(x− 3)(x2 + 4)

5



0.1.6 Trig Functions & The Unit Circle
Imagine a circle of radius 1 centered at the origin that we’ll call the unit circle. The x and y coordi-
nates of a point on the unit circle are completely determined by the angle θ in radians between the
x-axis and a line from the origin to the point.

The function cos θ tells us x-coordinate of the point, while sin θ tells us the y-coordinate of the point.
The function tan θ = sin θ

cos θ tells us the slope of the line from the origin to the point. Most of the trig
functions have geometric interpretations as shown below. The most used ones are sin, cos, tan = sin

cos ,
cot = cos

sin , csc = 1
sin , and sec = 1

cos .

Figure 1: Wikipedia - Unit circle

We can also think about the inverses of these trig functions. These are either notated with a -1
exponent on the function, or the prefix arc in front of the function name. Many of these functions are
only defined on a part of the domain [0, 2π]. Below is a table of the inverse trig functions and their
domains.

Function Domain
arcsin [−1, 1]
arccos [−1, 1]
arctan (−∞,∞)
arccot (−∞,∞)
arccsc (−∞,−1] ∪ [1,∞)
arcsec (−∞,−1] ∪ [1,∞)

6
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0.1.7 Trig Identities
As we could see in Figure 0.1.6, sin and cos form a right triangle with hypotenuse 1. So, using the
Pythagorean Theorem,

sin2 θ + cos2 θ = 1.

By dividing by sin2 or cos2, we can also get

1 + cot2 θ = csc2 θ and tan2 θ + 1 = sec2 θ.

Together, these 3 identities are called the Pythagorean Identities.

We can also relate functions and co-functions.

xxx(θ) = coxxx
(π
2
− θ
)
.

Some of the most useful and used identities are the sum and difference.

sin (α± β) = sinα cos β ± cosα sin β
cos (α± β) = cosα cos β ∓ sinα sin β

tan (α± β) =
tanα± tan β
1∓ tanα tan β

sinα± sin β = 2 sin
(
α± β

2

)
cos
(
α∓ β

2

)
cosα + cos β = 2 cos

(
α + β

2

)
cos
(
α− β

2

)
cosα− cos β = −2 sin

(
α + β

2

)
sin
(
α− β

2

)

0.1.8 Exponentials & Logarithms
Definition. e is the base of the natural logarithm. It’s defined by the limit

e = lim
n→∞

(
1 +

1

n

)n

.

expx = ex and lnx are inverse functions of each other such that

elnx = x and ln ex = x.

Just like other exponentials, the normal rules for adding, subtracting, andmultiplying exponents apply:

exey = ex+y, e
x

ey
= ex−y, and (ex)k = exk.
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Similar rules apply for logarithms:

lnx+ ln y = lnxy, ln x− ln y = ln
(
x

y

)
, and ln

(
ab
)
= b ln a.

We can also write a logarithm of any base using natural logarithms:

logb a =
ln a
ln b .

e is also unique in that it is the only real number a satisfying the equation
d
dxa

x = ax,

meaning ex is its own derivative.

0.1.9 Partial Fractions
If we have a function of two polynomials f(x) = P (x)

Q(x)
, it’s often easier to break this quotient into

a sum of parts where the denominator is a linear or quadratic factor and the numerator is always a
smaller degree than the denominator.

Example.
2x− 1

x3 − 6x2 + 11x− 6
=

1/2

x− 1
+

−3

x− 2
+

5/2

x− 3
.

One natural way to find these small denominators comes from the linear factors of the denominator
where we keep quadratics with complex roots. This way, when making a common denominator, we
get back the original big denominator. However, there are a few special cases we have to take care
of.

Linear Factors

This is the the most basic type where the degree of the numerator is less than the degree of the
denominator and the denominator factors into all linear factors with no repeated roots. In this case
we can write

P (x)

Q(x)
=

A1

(x− a1)
+ . . .+

An

(x− an)
.

Multiplying each side by Q(x),

P (x) = A1(x− a2) . . . (x− an) + . . .+ An(x− a1) . . . (x− an−1).

We can then find each Ai by evaluating both sides at x = ai, since every term except the ith has an
(x− ai) factor that will go to 0. So,

Ai =
P (ai)

(x− ai) . . . (x− ai−1)(x− ai+1) . . . (x− an)
.
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Example. Find the partial fraction decomposition of the following expression:
2x− 1

x3 − 6x2 + 11x− 6
.

Factoring,
x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3).

So,
2x− 1

x3 − 6x2 + 11x− 6
=

A1

x− 1
+

A2

x− 2
+

A3

x− 3
.

Multiplying each side by the denominator,

2x− 1 = A1(x− 2)(x− 3) + A2(x− 1)(x− 3) + A3(x− 1)(x− 2).

At x = 1,
1 = A1(1− 2)(1− 3) =⇒ A1 =

1

2
.

At x = 2,
3 = A2(2− 1)(2− 3) =⇒ A2 = −3.

At x = 3,
5 = A3(3− 1)(3− 2) =⇒ A3 =

5

2
.

So,
2x− 1

x3 − 6x2 + 11x− 6
=

1/2

x− 1
+

−3

x− 2
+

5/2

x− 3
,

just as was shown in the previous example.

Repeated Linear Factors

If Q(x) has repeated roots, it factors into

Q(x) = R(x)(x− a)k, k ≥ 2 and R(a) ̸= 0.

When making the common denominator for each repeated root of multiplicity k, we do

P (x)

R(x)(x− a)k
= (Decomposition of R(x)) +

A1

x− a
+ . . .+

Ak

(x− a)k
.

You would then multiply each side by the denominator like in the linear factors case and solve for
the coefficients. The only additional difficulty is that you might have to use previous results or solve a
system of linear equations to get some of the constants.

Example. Find the partial fraction of the following expression:

x2 + 5x− 6

x3 − 7x2 + 16x− 12
.
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Factoring,
x3 − 7x2 + 16x− 12 = (x− 3)(x− 2)2.

So,
x2 + 5x− 6

x3 − 7x2 + 16x− 12
=

A1

x− 3
+

A2

x− 2
+

A3

(x− 2)2
.

Multiplying each side by the denominator,

x2 + 5x− 6 = A1(x− 2)2 + A2(x− 2)(x− 3) + A3(x− 3).

At x = 2,
8 = A3(2− 3) =⇒ A3 = −8.

At x = 3,
18 = A1(3− 2)2 =⇒ A1 = 18.

Now we’ll use our results for A1 and A3 to find A2 using a value for x that isn’t 2 or 3 so the A2 term
doesn’t become 0. A good choice is x = 0.
At x = 0,

−6 = 18(0− 2)2 + A2(0− 2)(0− 3) +−8(0− 3) =⇒ A2 = −17.

So,
x2 + 5x− 6

x3 − 7x2 + 16x− 12
=

18

x− 3
− 17

x− 2
− 8

(x− 2)2
.

Quadratic Factors

If a quadratic doesn’t have real roots, then we have a quadratic factor. Here, we’ll assume that the
quadratic factor isn’t repeated. So, Q(x) = R(x)(ax2 + bx + c), b2 − 4ac < 0, and R(x) is not
evenly divisible by ax2 + bx+ c. In this case, we say

P (x)

R(x)(ax2 + bx+ c)
= (Decomposition of R(x)) +

A1x+B1

ax2 + bx+ c
.

We then solve for the constants in the numerator, possibly having to solve a system of equations or
using previous results and less convenient values for x.

Example. Find the partial fraction decomposition of the following expression:

6x2 + 21x+ 11

x3 + 5x2 + 3x+ 15
.

Factoring,
x2 + 5x2 + 3x+ 15 = (x+ 5)(x2 + 3).

So,
6x2 + 21x+ 11

x3 + 5x2 + 3x+ 15
=

A1

x+ 5
+

A2x+B2

x2 + 3
.
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Multiplying each side by the denominator,

6x2 + 21x+ 11 = A1(x
2 + 3) + (A2x+B2)(x+ 5).

At x = −5,
56 = 28A1 =⇒ A1 = 2.

Now we’ll use the previous result and another value for x. We can use x = 0 to not have to worry
about the A2 term. At x = 0,

11 = 2(3) + (B2)(5) =⇒ B2 = 1.

Now we’ll use the previous 2 results to find A2. x = 1 is a good choice to keep the numbers small.
At x = 1,

38 = 2(1 + 3) + (A2 + 1)(6) =⇒ A2 = 4.

So,
6x2 + 21x+ 11

x3 + 5x2 + 3x+ 15
=

2

x+ 5
+

4x+ 1

x2 + 3
.

Repeated Quadratic Factors

If a quadratic factor that can’t be broken into linear factors is repeated, then we can write Q(x) =
R(x)(ax2 + bx + c)k, k ≥ 0, and R(x) is not divisible by (ax2 + bx + c)k. Now we have to do a
combination of what we did for repeated linear factors and quadratic factors. We say

P (x)

R(x)(ax2 + bx+ c)k
= (Decomposition of R(x)) +

A1x+B1

ax2 + bx+ c
+ . . .+

Akx+Bk

(ax2 + bx+ c)k
.

We then solve for the coefficients in the numerator.
Example. Find the partial fraction decomposition of 3x4−2x3+6x2−3x+3

x5+3x4+4x3+12x2+4x+12
.

Factoring,
x5 + 3x4 + 4x3 + 12x2 + 4x+ 12 = (x+ 3)(x2 + 2)2.

So,
3x4 − 2x3 + 6x2 − 3x+ 3

x5 + 3x4 + 4x3 + 12x2 + 4x+ 12
=

A1

x+ 3
+

A2x+B2

x2 + 2
+

A3x+B3

(x2 + 2)2
.

Multiplying each side by the denominator,

3x4 − 2x3 + 6x2 − 3x+ 3 = A1(x
2 + 2)2 + (A2x+B2)(x

2 + 2)(x+ 3) + (A3x+B3)(x+ 3).

At x = −3,
363 = 121A1 =⇒ A1 = 3.

Now, we’ll use our result for A1 and pick a value for x that minimizes the number of things we need
to solve for. We’ll have to solve a linear system with 4 unknowns, so we’ll need up to 4 values. At
x = 0,

3 = 3(2)2 +B2(2)(3) + B3(3) =⇒ 2B2 +B3 = −3.
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At x = 1,

7 = 3(3)2 + (A2 +B2)(3)(4) + (A3 +B3)(4) =⇒ 3A2 + A3 + 3B2 +B3 = −5.

At x = −1,

17 = 3(3)2 + (−A2 +B2)(3)(2) + (−A3 +B3)(2) =⇒ −3A2 − A3 + 3B2 +B3 = −5.

At x = 2,

53 = 3(6)2 + (2A2 +B2)(6)(5) + (2A3 +B3)(5) =⇒ 12A2 + 2A3 + 6B2 +B3 = −11.

Now we have the following system of equations:
0A2 + 0A3 + 2B2 +B3 = −3

3A2 + A3 + 3B2 +B3 = −5

−3A2 − A3 + 3B2 +B3 = −5

12A2 + 2A3 + 6B2 +B3 = −11

.

Solving,
A2 = 0, A3 = 0, B2 = −2, and B3 = 1.

So,
3x4 − 2x3 + 6x2 − 3x+ 3

x5 + 3x4 + 4x3 + 12x2 + 4x+ 12
=

3

x+ 3
− 2

x2 + 2
+

1

(x2 + 2)2
.

Improper Fractions

If the degree of the numerator is greater than or equal to the degree of the denominator, we have a
case of improper fractions. In this case, we have to do polynomial long division to get a quotient and
remainder and then decompose the remainder if necessary. So,

P (x)

Q(x)
= R(x) +

S(x)

Q(x)
.

Example. Find the partial fraction decomposition of the following expression:

x3 + 3

x2 − 2x− 3
.

First we do polynomial long division to find that

x3 + 3

x2 − 2x− 3
= x+ 2 +

7x+ 9

x2 − 2x− 3
.

Now that the numerator is of a lesser degree than the denominator, we can decompose it normally.

x2 − 2x− 3 = (x− 3)(x+ 1).
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So,
7x+ 9

x2 − 2x− 3
=

A1

x− 3
+

A2

x+ 1
.

Multiplying each side by the denominator,

7x+ 9 = A1(x+ 1) + A2(x− 3).

At x = −1,
2 = −4A2 =⇒ A2 =

−1

2
.

At x = 3,
30 = 4A1 =⇒ A1 =

15

2
.

So,
x3 + 3

x2 − 2x− 3
= x+ 2 +

15/2

x− 3
+

−1/2

x+ 1
.

0.2 Single Variable Calculus

0.2.1 Derivatives and Integrals
Derivatives

The derivative of a function y = f(x), notated f ′(x), gives the slope of the tangent line to f at x.

Definition.
f ′(x) = lim

h→0

f(x+ h)− f(x)

h

Below are some properties of the derivative. Let f and g be functions of x and p a scalar.

Linearity
(pf ± g)′ = pf ′ ± g′

Product Rule
(fg)′ = f ′g + fg′

Quotient Rule (
f

g

)′

=
f ′g − fg′

g2

Chain Rule
(f ◦ g)′ = (f ′ ◦ g) · g′
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Power Rule
dx
dp

x

= pxp−1, p ̸= 0

Exponent Rule
dx
dp

x

= px ln p, p > 0

The Power Rule and Exponent Rule are two cases of the same rule

d
dxf

g = gf g−1f ′ + f g ln fg′.

Using the definition of the derivative and these rules, we can find the derivatives to some common
functions.

d
dxp = 0 d

dxe
x = ex

d
dx lnx = 1

x
d
dx sinx = cosx

d
dx cosx = − sinx d

dx tanx = sec2 x

Integrals

The definite integral of a function f(x) from x = a to x = b where a ≤ b is the area between f(x)
and the x-axis bounded by the lines x = a and x = b where area above the x-axis is positive, and
area below the x-axis is negative.

Definition. ∫ b

a

f(x)dx = lim
h→0

b−a
h∑

n=1

f(a+ (n− 1)h) · h.

We also define an indefinite integral, or antiderivative of f(x), notated F (x) where

F ′(x) = f(x) =⇒
∫

f(x)dx = F (x).

Note that there are infinitely many such functions F , since adding a constant to F does not affect its
derivative. To notate this, we add a constant C to the indefinite integral. Given an initial condition
for f , we can solve for C.

Below are some properties of the integral. Let f and g be functions of x and p, a, b, and c where
a < b < c, and f and g are continuous on the closed interval [a, c].

Linearity ∫
(pf ± g)dx = p

∫
fdx±

∫
gdx

14



Flipped Bounds ∫ b

a

fdx = −
∫ a

b

fdx

Union of Intervals ∫ b

a

fdx+

∫ c

b

fdx =

∫ c

a

fdx

Power Rule ∫
xndx =

xn+1

n+ 1
+ C, n ̸= −1

U-Substitution ∫
(f ′ ◦ g) g′dx = f ◦ g + C

Integration by Parts ∫
f ′gdx = fg −

∫
fg′dx

Fundamental Theorem of Calculus
d
dx

∫ x

a

f(s)ds = f(x)

Using the definition of the integral and the above rules, we can find the indefinite integral of some
common functions. ∫

1

x
dx = ln

∣∣x∣∣+ C∫
sinxdx = − cosx+ C∫
cosxdx = sinx+ C∫
tanxdx = − ln

∣∣ cosx∣∣+ C

0.2.2 Taylor Series
A Taylor series as a way of approximating a function about a point x = a using polynomials. The
first approximation just keeps the same value at x = a, the second approximation keeps the same
value and first derivative at x = a, etc.

Definition.

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n + . . .
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If we approximate a function about x = 0, we call this a Maclaurin series. Below are some common
Maclaurin series, and their radii of convergence if applicable.

ex = 1 + x+
x2

2!
+

x3

3!
+ . . .

sinx = x− x3

3!
+

x5

5!
− . . .

cosx = 1− x2

2!
+

x4

4!
− . . .

1

1 + x
= 1− x+ x2 − . . . , where

∣∣x∣∣ < 1

ln (1 + x) = x− x2

2
+

x3

3
− . . . , where

∣∣x∣∣ < 1

Euler’s Identity

Let’s see what happens when we look at the Maclaurin series for eix.

eix = 1 + (ix) +
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
. . .

= 1 + ix− x2

2!
− i

x3

3!
+

x4

4!
+ i

x5

5!
− . . .

=

(
1− x2

2!
+

x4

4!
− . . .

)
+ i

(
x− x3

3!
+

x5

5!
− . . .

)
.

The two expressions in parenthesis are exactly the Maclaurin series for cosx and sin x. So,

eix = cosx+ i sinx.

In the case that x = π,
eiπ = cos π + i sin π = −1 + 0.

So,
eiπ + 1 = 0.

0.3 Vectors and Matrices
0.3.1 Vectors
A vector is a quantity with both direction and magnitude. One can think of it as a directed line seg-
ment. In multivariable calculus, we mostly will work with vectors in R2 and R3, but vectors can exist
in other dimensions.
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Numerical (scalar) quantities have vector analogues, many of which show up in physics. Speed be-
comes velocity, distance becomes displacement, and mass becomes weight.

Say we have a 2D vector, v⃗ = ⟨vx, vy⟩.

Figure 2: The x and y components of a vector v

Its length, also called magnitude or norm, is notated
∣∣∣∣v⃗∣∣∣∣ = √

v2x + v2y . This pattern of the norm
being equal to the square-root of the sum of the squares of the vector’s components continues into
higher dimensions.

The angle a 2D vector forms with the horizontal axis is θ = tan−1
(

vy
vx

)
. There is not a useful ver-

sion of this formula in higher dimensions. Using θ and
∣∣∣∣v⃗∣∣∣∣, we can see that vx =

∣∣∣∣v⃗∣∣∣∣ cos θ and
vy =

∣∣∣∣v⃗∣∣∣∣ sin θ.
Vectors can be added and subtracted from each other in a way that the result is another vector. We do
this numerically by adding the corresponding components of each vector. For example, if a⃗ = ⟨1, 3⟩
and b⃗ = ⟨4, 7⟩, then a⃗+ b⃗ = ⟨1 + 4, 3 + 7⟩ = ⟨5, 10⟩ and b⃗− a⃗ = ⟨4− 1, 7− 3, ⟩ = ⟨3, 4⟩.
Visually, you can think of v⃗+ w⃗ as the vector connecting the tail of v⃗ with the tip of w⃗ where the tail
of v⃗ is on the tip of w⃗.
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Figure 3: Visualization of v⃗ + w⃗ and v⃗ − w⃗

We can also multiply vectors by scalars and get another vector as a result. We do this by multiplying
each component of the vector by the scalar. This has the effect of stretching or shrinking the vector
and possibly changing the vector’s direction if the scalar is negative.

Figure 4: A vector v⃗ scaled by different constants

A unit vector is any vector with magnitude 1. Rather than using an arrow like for other vectors, unit
vectors are notated with a carat (∧) over top, like î, which is read as “i hat”. We can transform any
vector with non-zero magnitude into a unit vector by dividing the vector by its norm. This normalized
vector will point in the same direction as the original vector.

It is common in mathematics for î = ⟨1, 0, 0⟩ to be the unit vector in the x-direction, ĵ = ⟨0, 1, 0⟩
to be the unit vector in the y-direction, and k̂ = ⟨0, 0, 1⟩ to be the unit vector in the z-direction.
Together, î, ĵ, and k̂ are called the standard basis vectors because all other vectors in R3 can be
written as linear combination of these.
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Figure 5: The standard basis vectors î, ĵ, and k̂

0.3.2 Dot Products
A dot product is a way of multiplying two vectors so that the result is a scalar. a⃗ · b⃗ =

∣∣∣∣⃗a∣∣∣∣∣∣∣∣⃗b∣∣∣∣ cos θ
where θ is the angle between a⃗ and b⃗. One way to think of the dot product is as a measure of
how much two vectors point in the same direction. We can also show using the law of cosines that
a⃗ · b⃗ = a1b1 + a2b2 + ... + anbn. Knowing the lengths of two vectors and their dot product we can
calculate the angle between them as

θ = arccos
(

a⃗ · b⃗∣∣∣∣⃗a∣∣∣∣∣∣∣∣⃗b∣∣∣∣
)
.

Figure 6: Two vectors and the angle between them

Although similar to scalar multiplication, dot products have some properties that set them apart.
Commutative

a⃗ · b⃗ = b⃗ · a⃗
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the same as scalar multiplication.

Distributive
a⃗ ·
(⃗
b+ c⃗

)
= a⃗ · b⃗+ a⃗ · c⃗

the same as scalar multiplication.

NOT Associative
(
a⃗ · b⃗

)
· c⃗ is a nonsense expression. However, like scalar multiplication, dot

products are scalar associative.

(c · a⃗) · b⃗ = a⃗ ·
(
c · b⃗
)

0.3.3 Cross Products
A cross product is a way of multiplying two vectors so that the result is a vector. Although the cross
product technically only works for 3D vectors, we will first look a a “fake” 2D version to build an
intuition.

a⃗× b⃗ = a1b1 − a2b2.

This “fake” 2D cross product gives the area of the parallelogram spanned by a⃗ and b⃗.

a⃗× b⃗ =
∣∣∣∣⃗a∣∣∣∣∣∣∣∣⃗b∣∣∣∣ sin θ

where θ is the angle between a⃗ and b⃗. Another way to think of the magnitude of the cross product,
both in 2D and 3D, is as a measure of how perpendicular two vectors are.

Figure 7: Visualization of the cross product

In 3D, a⃗× b⃗ is a vector, and similar to the 2D case, the magnitude of a⃗× b⃗ is equal to the area of the
parallelogram spanned by a⃗ and b⃗.

a⃗× b⃗ = ⟨a2b3 − b2a3, a3b1 − b3a1, a1b2 − b1a2⟩
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and ∣∣∣∣⃗a× b⃗
∣∣∣∣ = ∣∣∣∣⃗a∣∣∣∣∣∣∣∣⃗b∣∣∣∣ sin θ

where θ is the angle between a⃗ and b⃗. Each component of a⃗ × b⃗ gives the area of the parallelogram
spanned by a⃗ and b⃗ in some plane: The x-component of a⃗ × b⃗ gives the area in the yz-plane (x = 0
plane). a⃗× b⃗ is perpendicular, also called “normal,” to the plane containing a⃗ and b⃗. It’s direction, is
determined by the right hand rule.

This cross product table of the standard basis vectors is useful for providing some insight into the
properties of the cross product.

−→row×−→col î ĵ k̂

î 0 k̂ −ĵ

ĵ −k̂ 0 î

k̂ ĵ −î 0

NOT Commutative, but is antisymmetric

a⃗× b⃗ = −
(⃗
b× a⃗

)
Scalar Associative

(c · a⃗)× b⃗ = a⃗×
(
c · b⃗
)

Distributive
a⃗×

(⃗
b× c⃗

)
= a⃗× b⃗+ a⃗× c⃗

One can also think of the cross product as the determinant of a matrix.

a⃗× b⃗ = det

 î ĵ k̂
a1 a2 a2
b1 b2 b3


Now that we have defined the dot product and cross product, we can put the two together as the scalar
triple product, which gives the volume of the parallelepiped spanned by a⃗, b⃗, and c⃗.

a⃗ ·
(⃗
b× c⃗

)
= det

a1 a2 a2
b1 b2 b3
c1 c2 c3
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Figure 8: Scalar triple product gives volume of parallelepiped spanned by three vectors.

0.3.4 Matrices
Matrices are an array of mathematical objects, most often numbers. They are often used to represent
linear transformations between two spaces and systems of linear equations. We denote the size of a
matrix by saying the number of rows followed by the number of columns.

Example. Below is a 2 x 4 matrix. [
1 3 2 −1
−5 7 3 0

]

0.3.5 Types of Matrices
Below is a list of different types of matrices and their special properties.

• A square matrix has the same number of rows as columns.1 3 7
0 2 −1
2 7 9


• Row vectors have one column. Column vectors have one row.

[
1 3 0

]
,

13
0


• Upper triangular matrices have all 0’s below the main diagonal. Lower triangular matrices have
all 0’s above the main diagonal. 1 3 7

0 2 −1
0 0 9

 ,
1 0 0
0 2 0
2 7 9


22



• Diagonal matrices are both upper and lower triangular. They only have non-zero entries on the
main diagonal. 1 0 0

0 2 0
0 0 9


• The identity matrix is one of the most common matrices. It is square, diagonal, and has all 1’s
on the main diagonal. It’s the multiplicative identity for matrices.

I3 =

1 0 0
0 1 0
0 0 1


• The inverse matrix of A, A−1, is such that

A−1A = AA−1 = I.

• The transpose matrix of A, AT , is where the rows and columns of A are swapped.

A =

[
1 3 2 −1
−5 7 3 0

]
=⇒ AT =


1 −5
3 7
2 3
−1 0


0.3.6 Row Reduction
Row reduction is a way of solving a system of linear equations by representing the system as a matrix
and altering the rows of the matrix until we get as close as possible to an identity matrix.

Below is a list of legal row operations. Doing these does not change the solution to the system of
equations.

• Multiplying or dividing each item in a row by a scalar,1 3 7
0 2 −1
2 7 9

 R2=R2/2→

1 3 7
0 1 −1/2
2 7 9

 .

• Adding a multiple of one row to another row,1 3 7
0 2 −1
2 7 9

 R3=R3−2R1→

1 3 7
0 2 −1
0 1 −5

 .
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• Swapping two rows, 1 3 7
0 2 −1
0 1 −5

 swap R2, R3→

1 3 7
0 1 −5
0 2 −1

 .

Using these rules, we solve a system of linear equations using a process called Gauss-Jordan Elimi-
nation.

A system may have a contradiction, meaning no solution exists. This will look like a row of 0’s on
the left and a non-zero term on the far right of the row.[

1 0 1
0 1 0

]
=⇒ No solution

A system may be underdetermined, meaning one or more variables can be any number. This will
look a non-zero column on the left without a leading 1 (bolded).


1 -2 0 0 -3 2
0 0 1 0 1 5
0 0 0 1 2 4
0 0 0 0 0 0

 =⇒


x1

x2

x3

x4

x5

 =


2
0
5
4
0

+ α


2
1
0
0
0

+ β


3
0
−4
−2
1

 , α, β ∈ R.

Example. Solve the following linear system of equations using row reduction.1 3 0
0 2 5
2 7 7

 x⃗ =

 4
13
16


 1 3 7 0

0 2 −1 5
2 7 9 7

 R3=R3−2R1→

 1 3 7 0
0 2 −1 5
0 1 −5 7

 swap R2, R3→

 1 3 7 0
0 1 −5 7
0 2 −1 5


R3=R3−2R2→

 1 3 7 0
0 1 −5 7
0 0 9 −9

 R3=R3/9→

 1 3 7 0
0 1 −5 7
0 0 1 −1

 R2=R2+5R3→

 1 3 7 0
0 1 0 2
0 0 1 −1


R1=R1−7R3→

 1 3 0 7
0 1 0 2
0 0 1 −1

 R1=R1−2R2→

 1 0 0 1
0 1 0 2
0 0 1 −1

 .

So,

x⃗ =

 1
2
−1

 .
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0.3.7 Determinants
The determinant of a matrix is a signed number that tells by howmuch the transformation represented
by a matrix scales volumes in a space. The number is negative if the space was “flipped” during a
transformation. The number is zero if the dimension of the output space is less than that of the input
space.

The determinant is only defined for square matrices. It’s easiest to understand the definition of a
determinant recursively.

det [a] = |a| = a

det
[
a b
c d

]
=

a b
c d

= ad− bc.

We can define aij as the entry in the ith row and jth column of matrix A and Aij as the adjudicate
matrix, which is the matrix A if row i and column j were removed. This allows us to write a general
formula for the determinant.
Definition.

detA =
n∑

j=1

(−1)i+j aijAij (for fixed i) =
n∑

i=1

(−1)i+j aijAij (for fixed j)

This formula allows us to use any row or column to calculate the determinant, which is especially
useful if a certain row contains lots of 0’s.

Below are some properties of the determinant for some n× n matrix A and scalar λ.
det In = 1

det (AT ) = detA

If A is invertible, det (A−1) =
1

detA
det (λA) = λn detA
det (AB) = detA detB

If A is triangular, detA =
n∏

i=1

aii

Example. Find the determinant of the following 3 x 3 matrix.

A =

1 3 7
0 2 −1
2 7 9


We’ll use the first column since it has only two non-zero entries.1 3 7

0 2 −1
2 7 9

 = 1
2 −1
7 9

+ 2
3 7
2 −1

= (18 + 7) + 2(−3− 14) = −9.
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0.3.8 Eigenvalues & Eigenvectors
Definition. Let A be an n×nmatrix. A scalar λ and a vector v⃗ are an eigenvalue and eigenvector of
A if

Av⃗ = λv⃗.

We call p(λ) = det (A− λI) the characteristic polynomial of A. The eigenvalues for A are the
solutions to the equation

p(λ) = det (A− λI) = 0.

Once we have an eigenvalue, we can find the basis vectors for the corresponding eigenspace by solving
the equation

(A− λI) v⃗ = 0⃗.

The basis vectors of the eigenspace for A are the union of the basis vectors of each eigenspace cor-
responding to each eigenvalue.
Example. Find the eigenvalues and eigenvectors of

A =

2 1 3
1 2 3
3 3 20

 .

p(λ) =
2− λ 1 3
1 2− λ 3
3 3 20− λ

= −(λ− 21)(λ− 2)(λ− 1) = 0 =⇒ λ = 1, 2, and 21.

When λ = 1,

A− λI =

 2− 1 1 3 0
1 2− 1 3 0
3 3 20− 1 0

→

 1 1 0 0
0 0 1 0
0 0 0 0

 =⇒ v⃗1 = t

−1
1
0

 .

When λ = 2,

A− λI =

 2− 2 1 3 0
1 2− 2 3 0
3 3 20− 2 0

→

 1 0 3 0
0 1 3 0
0 0 0 0

 =⇒ v⃗2 =

−3
−3
1

 .

When λ = 21,

A− λI =

 2− 21 1 3 0
1 2− 21 3 0
3 3 20− 21 0

→

 1 0 −1/6 0
0 1 −1/6 0
0 0 0 0

 =⇒ v⃗21 =

11
6

 .

Bonus: A’s diagonalization is

A = PDP−1 =⇒

2 1 3
1 2 3
3 3 20

 =

−1 −3 1
1 −3 1
0 1 6

1 0 0
0 2 0
0 0 21

 −1/2 1/2 0
−3/19 −3/19 1/19
1/38 1/38 3/19

 .
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Chapter 1

The Basics of Differential Equations

A differential equation is an equation that relates a function to its derivatives.

1.1 Classifying Differential Equations
Below is a list of differential equations

1.
t = 7

d2x
dt2 + x

dx
dt

2.
dy
dx = x2 + 3xy − 7y

3.
∂2u

∂x2
+

∂2u

∂y2
= 0

4.
∂2y

∂t2
= 4

∂2y

∂x2
+ et−x

5.
dy
dx + 5y = ex

6.
dy
dx = 3x2 + y2

7.
d2x
dt2 =

dx
dt + cosx

27



8.
d2y
dx2

− 2x
dy
dx + 2y = 0

9.
∂2x

∂t∂z
+ xt = 5

10.
dx
dy + xy + ty = ln y

Let’s think about some of the ways we can classify these equations.

1.1.1 Order
One way is by this highest order derivative that appears in the equation.

Definition. The order of a differential equation is the order of the highest derivative in the equation.

Below is a table of orders and equation numbers.

Order Equation Number
1 2, 5, 6, 10
2 1, 3, 4, 7, 8, 9

1.1.2 Linearity
Another useful way to classify differential equations is by linearity.

Definition. A differential equation is linear if all terms in the equation involving the dependent vari-
ables and its derivatives are in linear terms.

“Linear terms” means that dependent variables should all be of degree 1, not be multiplied by a deriva-
tive involving the same variable, and not be in other functions like sin or ln. However, this does not
exclude differential equations from having parts that are functions of only independent variables, like
in equation 4.

Below is a table of linearity and equation numbers.

Linearity Equation Number
Linear 2, 3, 4, 5, 8, 9

Nonlinear 1, 6, 7, 10

We’ll focus a lot of time on linear equations because we have some mathematical tools that are good
at dealing with them.
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1.1.3 Ordinary vs. Partial
Another useful classification is by the type. There are two broad types of differential equation: ordi-
nary and partial.

Definition. An ordinary differential equation (ODE) is a differential equation where only 1 indepen-
dent variable involved in the derivatives.

Definition. A partial differential equation (PDE) is a differential equation where 2 or more indepen-
dent variables are involved in the derivative.

Below is a table of types and equation numbers.

Type Equation Number
ODE 1, 2, 5, 6, 7, 8, 10
PDE 3, 4, 9

We’ll work mostly with ODEs.

1.1.4 Homogeneity
Definition. A differential equation is homogeneous if all terms involve the dependent variable or its
derivatives.

Below is a table of homogeneity and equation numbers.

Homogeneity Equation Number
Homogeneous 3, 7, 8
Heterogeneous 1, 2, 4, 5, 6, 9, 10

Homogeneous equations have some nice properties, like always having at least a trivial solution of
0.
The three classes of order, linearity, and type are how we describe differential equations in words.
Equation 1 would be described as a “1st order linear ODE”. These definitions also allow us to define
explicitly how an nth order linear ODE looks.

Definition. An nth order linear ODE has the form

an(x)
dny
dxn

+ an−1(x)
dn−1y

dxn−1
+ . . .+ a0(x)y = b(x).
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1.2 Solutions to Differential Equations
Definition. A solution to an ODE on an interval I is a function f that makes the differential equation
true on I when f is substituted into the equation.
Although this definition seems straightforward it gives us a formal way to check if a function is a
solution to a differential equation.
Example. Check that y = t2 ln t (t > 0) and y = t2 are solutions to the differential equation

t2y′′ − 3ty′ + 4y = 0.

We’ll check y = t2 ln t (t > 0) first.
t2
(
t2 ln t

)′′ − 3t
(
t2 ln t

)′
+ 4

(
t2 ln t

)
= 0, t > 0

t2 (3 + 2 ln t)− 3t (t+ 2t ln t) + 4
(
t2 ln t

)
= 0, t > 0

3t2 + 2t2 ln t− 3t2 − 6t2 ln t+ 4t2 ln t = 0, t > 0

0 = 0.

So y = t2 ln t (t > 0) is a solution. Now we’ll check y = t2.
t2
(
t2
)′′ − 3t

(
t2
)′
+ 4

(
t2
)
= 0

t2 (2)− 3t (2t) + 4t2 = 0

2t2 − 6t2 + 4t2 = 0

0 = 0.

So y = t2 is also a solution.

1.3 Initial Value Problems
We can see that since solving a differential equation will mean integrating to get rid of derivatives,
the +C from integration will gives us multiple solutions. We call these sets of solutions that differ
only in these constants “solution families”. If we want to find one specific solution, we need more
information about the value of the function and it’s derivatives. This type of problem where a differ-
ential equation is coupled with function values is called an initial value problem (IVP).

Definition. An initial value problem has the general form.

any
(n) + an−1y

(n−1) + . . .+ a0y = f(x)

y(x0) = y0

y′(x1) = y1
...
y(n)(xn) = yn

.

Often, each xi is 0.
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Example. The general solution to the IVP
y′′ − 5y′ + 6y = 0

y(0) = 3

y′(0) = 1

is y = c1e
2x + c2e

3x. Find the specific solution.
Evaluating y at x = 0,

y(0) = c1 + c2 = 3.

Evaluating y′ at x = 0,
y′(0) = 2c1 + 3c2 = 1.

To find c1 and c2, we need to solve the system of linear equations{
c1 + c2 = 3

2c1 + 3c2 = 1
=⇒

{
c1 = 8

c2 = −5
.

So, our specific solution to the IVP is

y = 8e2x − 5e3x.

Theorem (Existence and Uniqueness of Solutions to 1st Order IVPs). Consider the IVP{
dx
dy = f(x, y)

y(x0) = y0
.

If f(x, y) and ∂
∂y
f are both continuous on some rectangular region containing the point (x0, y0), then

the IVP has a unique solution y = y(x) on some open interval containing x0.
Example. Does a solution to the following IVP exist? Is it unique?{

dy
dx = x2 − xy3

y(1) = 6

f(x, y) = x2 − xy3 and ∂f
∂y

= −3xy2 are continuous on all of R2. So, the existence and uniqueness
theorem tells us that the IVP has a unique solution on an open interval containing x0 = 1.
Example. Does a solution to the following IVP exist? Is it unique?{

dy
dx = 3y2/3

y(2) = 0

f(x, y) = 3y2/3 is continuous on y ∈ R, and ∂f
∂y

= 2y−1/3 is continuous on x ∈ (−∞, 0) ∪ (0,∞).
Since ∂f

∂y
is not continuous on a domain containing (2, 0), the existence and uniqueness theorem does

not guarantee a solution.
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Chapter 2

1st Order Linear ODE’s

1st order linear ODEs are among the simplest differential equations, but learning different techniques
to solve them will allow us to develop techniques for solving more complicated types of equations
later on.

2.1 Separable Differential Equations
The most basic approach for solving a 1st-order differential equation is simply integrating both sides.
You’re probably already familiar with this technique from taking indefinite integrals. This approach
only works when the independent and dependent variables can be arranged on different sides of the
equation. We’ll formalize this idea with separability.

Definition. A 1st order ODE is separable if it can be written in the form
dy
dx = f(x)g(y).

Separable equations provide a special way of solving them that can be useful. If we treat the derivative
like a fraction (which is not formally allowed but OK here),

dy
dx = f(x)g(y) =⇒ dy

g(y)
= f(x)dx =⇒

∫ dy
g(y)

=

∫
f(x)dx.

We then have a function in y on the left and a function in x on the right, meaning we only have to
solve for y to get the solution.

Example. Solve the following 1st order ODE using separation of variables.
dy
dx =

5

xy3

Separating so all terms involving y are on the left,

y3dy =
5

x
dx.
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Integrating, ∫
y3dy =

∫
5

x
dx =⇒ y4

4
= 5 lnx+ C =⇒ y =

4
√
20 lnx+ C.

Example. Solve the following IVP using separation of variables.{
dy
dx = 2y2 + xy2

y(0) = 1

Separating,
dy
y2

= (2 + x) dx, or y = 0.

We assume that y ̸= 0when dividing, but we need to be careful to include y = 0 as a possible solution
and check if it satisfies the differential equation and initial conditions.

Integrating, ∫ dy
y2

=

∫
(2 + x) dx =⇒ −1

y
= 2x+

x2

2
+ C.

Solving for y,
y =

−2

x2 + 4x+ C
.

We ignored y = 0, so we need to go back and check if it’s a solution to the differential equation.

0 = 2(0)2 + x(0)2.

Since it’s a solution to the differential equation, we’ll see if its satisfies the initial conditions of the
IVP.

y(0) = 0 ̸= 1.

So, y = 0 is not a solution to the IVP because it does not satisfy the initial conditions.
Solving for C using the initial conditions,

y(0) =
−2

(0)2 + 4(0) + C
= 1 =⇒ C = −2.

So,
y =

−2

x2 + 4x− 2

is the solution to the IVP.

33



2.2 Integrating Factor Method
All 1st order linear differential equations have the form

a1(x)
dy
dx + a0(x)y = b1(x),

which can be rewritten as
dy
dx + a(x)y = b(x).

This equation isn’t always separable, and we can’t just integrate both sides unless a1(x)y = 0.

If a0(x) = a′1(x), then we could rewrite the equation and solve by doing the product rule in reverse.

(a1(x)y)
′ = b1(x) =⇒ y =

∫
b1(x)dx
a1(x)

It’s possible to rearrange into this form by multiplying the equation by some function. Specifically,
what were looking for is a function µ(x) such that

µ(x)
dy
dx + µ(x)a(x)y = µ(x)b(x) and µ′(x) = µ(x)a(x).

This equation involving µ(x) is one that we know how to solve because it’s separable.1

µ′(x) = µ(x)a(x) =⇒ µ(x) = e
∫
a(x)dx.

Substituting the solution for µ(x) back,

e
∫
a(x)dx dy

dx + e
∫
a(x)dxa(x)y = e

∫
a(x)dxb(x) =⇒ e

∫
a(x)dx dy

dx + µ′(x)y = e
∫
a(x)dxb(x).

Applying the product rule in reverse,

y =

∫
µ(x)b(x)dx
µ(x)

, µ(x) = e
∫
a(x)dx.

Example. Solve the following 1st order linear ODE.

y′ − y = 2ex

a(x) = −1, so
µ(x) = e

∫
−1dx = e−x.

Applying to our equation and solving,

y′e−x − ye−x = 2 =⇒
(
ye−x

)′
= 2 =⇒ ye−x = 2x+ C =⇒ y =

2x+ C

e−x
.

1Although we are taking an indefinite integral to find µ(x), we do not have a +C term.
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Chapter 3

Higher Order Linear ODE’s

3.1 Constant Coefficients
Definition. The general form of an nth order linear equation is

an(x)y
(n) + an−1y

(n−1) + . . .+ a1(x)y
′ + a0y = b(x).

If each ai(x) is a constant, then the equation has constant coefficients.
We already know how to solve linear first order differential equations using an integrating factor, but
let’s see if we can develop a method that can solve any order linear, homogeneous differential equation
with constant coefficients.
Example. Let’s try to solve the following equation by guessing and checking likely solutions.

y′′ − 3y′ + 2y = 0

Exponentials seem like good guesses. Let’s try an exponential of the form y = Cerx first.

(Cerx)′′ − 3 (Cerx)′ + 2 (Cerx) = 0

Cr2erx − 3rCerx + 2Cerx = Cerx
(
r2 − 3r + 2

)
= 0.

Since Cerx ̸= 0 unless C = 0, we only need to solve the quadratic. Note that the coefficients of the
quadratic are the same as the coefficients in the original differential equation.

r2 − 3r + 2 = 0 =⇒ r = 1, 2.

So, our two fundamental solutions are {
y = C1e

x

y = C2e
2x

.

Since these two fundamental solutions are linearly independent, the general solution is the sum of the
fundamental solutions.

y = C1e
x + C2e

2x
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3.1.1 The Auxiliary Equation
It’s not a coincidence that the coefficients of the polynomial that we had to find the 0’s of in the above
example matched the coefficients of the differential equation. We call this polynomial the auxiliary
equation, and it can help us solve linear, homogeneous differential equations with constant coefficients
of any order.

Definition. A nth order, linear, homogeneous differential equation with constant coefficients has the
form

any
(n) + an−1y

(n−1) + . . .+ a1y
′ + a0y = 0.

The corresponding auxiliary equation is

anr
n + an−1r

n−1 + . . .+ a1r + a0 = 0.

We now have a method for solving these equations with the roots of the auxiliary equation are all
unique.

Theorem. Let {r1, . . . , rn} be the set of unique roots to an auxiliary equation corresponding to a nth
order, linear, homogeneous differential equation with constant coefficients. The set of fundamental
solutions are {C1e

r1x, . . . , Cne
rnx}, and the general solution is

y = C1e
r1x + . . .+ Cne

rnx.

We can easily extend this method to deal with roots of higher multiplicities.

Theorem. Let α be a root with multiplicity k to an auxiliary equation corresponding to a nth order,
linear, homogeneous differential equation with constant coefficients. Then eαx, xeαx, . . . , xk−1eαx

are fundamental solutions.

Complex Roots

Although the previous two theorems already cover complex roots, we can simplify solutions that have
complex roots into functions we more easily understand.

Theorem. If an auxiliary equation has roots α ± βi, then C1e
αx cos (βx) and C2e

αx sin (βx) are
fundamental solutions.

Proof. The two corresponding fundamental solutions are

C1e
(α+βi)x, C2e

(α−βi)x

so the part of the general solution for these two fundamental solutions are

C1e
(α+βi)x + C2e

(α−βi)x.
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Using Euler’s formula, we can also write this as

C1e
αx (cos (βt) + i sin (βx)) + C2e

αx (cos (−βx) + i sin (−βx)) .

Using the fact that sin (−x) = − sinx, cos (−x) = − cosx and separating into real and imaginary
parts,

= [C1e
αx cos (βx) + C2e

αx cos (βx)] + i [C1e
αx sin (βx)− C2e

αx sin (βx)] .
Simplifying 1,

= eαx (C1 cos (βx) + iC2 sin (βx)) .
At this point, we need to consider if the constants are real or imaginary. We would then take the real
part as a fundamental solution.
If they are both real, then a fundamental solution is2

C1e
αx cos (βx)

where C1 is a real constant. If they are both imaginary, the a fundamental solution is3

C2e
αx sin (βx)

where C2 is a real constant. ■

If complex roots are repeated, we just add the appropriate number of powers of x in front of both
the sin (βx) and cos (αa) parts.

1In this step the values of C1 and C2 might have changed, but they are still constants.
2See footnote 1
3See footnote 1
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Example. Find the general solution to the following differential equation.

y(4) + 2y′′ + y = 0

First we extract the auxiliary equation and find its roots.

r4 + 2r2 + 1 = 0 =⇒ r = i(double root),−i(double root).

Since we have complex roots 0± 1i, we know that the following are fundamental solutions

C1e
0x cos 1x → C1 cosx and C2e

0x sin 1x → C2 sinx.

Since both roots are double roots the following are also fundamental solutions:

C3x cosx and C4x sinx.

So, the general solution is

y = C1 cosx+ C2 sinx+ C3x cosx+ C4x sinx.

3.2 Free Vibrations
Free damped vibrations, like in a massed spring system, are a common application of second order
linear ODEs. In a massed spring system, there are three main forces acting on the mass that make up
external forces.

1) Acceleration of The Mass – Since acceleration is the 2nd derivative of position y(t), and New-
ton’s Second Law tells us that F = ma, the force from the acceleration of the mass ismy′′.

2) Dampening – We’ll assume that this term is proportional to the velocity, y′, and a term b. So,
the force from dampening is by′.

3) Spring Stretch – Hooke’s Law tells us that the force from a spring is ky, where k is some term
that gives the spring’s “stiffness”

Since we assume that the net force is 0 (that’s what free means), our equations is

my′′ + by′ + ky = 0.

Extracting the coefficients and solving the auxiliary equation,

mr2 + br + k = 0 =⇒ r =
−b±

√
b2 − 4mk

2m
.

We will consider two cases. One in which there is no damping (b = 0), and one in which there is
damping (b > 0).
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3.2.1 Free Undamped Vibrations (b = 0)
In this case, our equation simplifies to

my′′ + ky = 0.

The two roots of ou auxiliary equation are

r = ±i

√
k

m
= ±iω.

So, our solution becomes
y = C1 cos (ωt) + C2 sin (ωt).

This is the same ω from physics that means angular frequency, so the same physics formulas apply,
like T = 2π

ω
for the period of the oscillation.

We can simplify this a bit further. If we think of the cos and sin components as being sides of a right
triangle like so,

then we rewrite our equation as

y = A

(
C1√

C2
1 + C2

2

cos (ωt) + C2√
C2

1 + C2
2

sin (ωt)
)
.

Note that since
(
C1

A

)2
+
(
C2

A

)2
= 1, we can rewrite these coefficients as cosϕ and sinϕ respectively

where
ϕ =

{
arctan (C2

C1
) C1 > 0

arctan (C2

C1
) + π C1 ≤ 0

.
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So, our equation becomes

y = A (cos (ωt) cosϕ+ sin (ωt) sinϕ) .

Using the cos angle addition formula,

y = A cos (ωt− ϕ).

As we can see, an undamped free vibration will simply oscillate back and forth without decay.

Example. A 2kg mass in an undamped system is attached to a spring with k = 50N/m. The initial
position of the masss is y0 = −0.25m. The initial velocity is v0 = −1m/s. Find an expression for
y(t), the position of the mass at time t. Write your answer in terms of a cos and a phase shift. Find
the period and frequency in proper units.

The IVP describing this problem is 
2y′′ + 50y = 0

y′(0) = −1

y(0) = −0.25

.

Extracting the auxiliary equation and finding the roots,

2r2 + 50 = 0 =⇒ r = ±5i.

So, our general solution is
y = C1 cos (5t) + C2 sin (5t).

Solving for C1 and C2,

y(0) = −0.25 = C1 =⇒ C1 = −0.25

y′ = −5C1 sin (5t) + 5C2 cos (5t)
y′(0) = −1 = 5C2 =⇒ C2 = −0.2.

Solving for ϕ, keeping in mind that C1 < 0,

ϕ = arctan C2

C1

+ π = arctan 4
5
+ π.
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So, our answer is (in units of meters)

y =
√

(−0.25)2 + (−0.2)2 cos
(
5t− arctan

(
4

5

)
− π

)
≈ 0.32 cos (5t− 3.82).

Solving for the period,
T =

2π

ω
=

2π

5
s.

Solving for the frequency,
f =

1

T
=

5

2π
Hz.

3.2.2 Free Damped Vibrations (b > 0)
We need to consider three cases where the discriminant∆ = b2−4mk is positive, zero, and negative.

Overdamped (∆ > 0)

This is the simplest and easiest case to deal with because our two roots, r1 and r2, are real and distinct.
So, out solution is

y = C1e
r1t + C2e

r2t.

We know that r1, r2 < 0, so
lim
t→0

C1e
r1t + C2e

r2t = 0

meaning the mass’s oscillation decays over time.

Critically Damped (∆ = 0)

This case isn’t much more difficult. The only difference is that because both roots r1 and r2 are −b
2m
,

we need an extra t term in the solution. So, out solution is

y = C1e
r1t + C2te

r2t.
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Since both roots are once again negative,

lim
t→0

C1e
r1t + C2te

r2t = 0

meaning the mass’s oscillation decays over time.

Underdamped (∆ < 0)

This is probably the most complicated case. Here, both roots are complex. Specifically,

r =
−b

2m
± i

√∣∣∆∣∣
2m

.

Letting the coefficient of the imaginary part be ω,

r =
−b

2m
± iω.

So, our solution becomes
y = e

−b
2m

t (C1 cos (ωt) + C2 sin (ωt)) .
Rewriting in terms of cos and a phase shift,

y = Ae
−b
2m

t cos (ωt− ϕ) where A =
√
A2 +B2, ϕ =

{
arctan

(
B
A

)
+ π A ≤ 0

arctan
(
B
A

)
A > 0

.
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Here, the exponential term dominates the limit, so

lim
t→0

Ae
−b
2m

t cos (ωt− ϕ) = 0

meaning the mass’s oscillation decays over time, bounded by the exponential curves.

Example. A 250g mass is attached to a spring with a constant of k = 10N/m. The mechanical
impedance is 3kgs. Initially, the mass is at y(0) = −1m and y′(0) = 2m/s. Find an expression for
y(t), the position of the mass at time t. Write any oscillations as a cos and a phase shift. Is the system
underdamped, critically damped, or overdamped?

The IVP describing this scenario is 
1
4
y′′ + 3y′ + 10y = 0

y(0) = −1

y′(0) = 2

.

Solving the auxiliary equation,

1

4
r2 + 3r + 10 = 0 =⇒ r =

−3±
√
32 − 4(1/4)(10)

2(1/4)
= −6± 2i.

So, the general solution is
y = e−6t (C1 cos (2t) + C2 sin (2t)) .

Solving for C1 and C2,
y(0) = −1 = C1 =⇒ C1 = −1.

y′ = e−6t (−2C1 sin (2t) + 2C2 cos (2t)) + (C1 cos (2t) + C2 sin (2t)) · −6e−6t.

y′(0) = 2 = −6C1 + 2C2 =⇒ 2C2 = −4 =⇒ C2 = −2.

Solving for ϕ, keeping in mind that C1 < 0,

ϕ = arctan C2

C2

+ π = arctan 2 + π.

So, our answer is (in units of meters)

y =
√

(−1)2 + (−2)2e−6t cos (2t− arctan 2− π) ≈ 2.24e−6t cos (2t− 4.25).

Since our roots were complex, ∆ < 0. So, the system is underdamped.
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3.3 Higher Order Heterogeneous Equations
If we modify our equation for free vibrations to have a function as the net force, then out equations
becomes

my′′ + by′ + ky = b(x).

Depending on the form of b(x), like a sin or cos curve or an exponential, we might be able to guess
the form of the solution. However, there is an important thing to keep in mind.
Theorem. If f(x) is a solution to the above equation, and g(x) is a solution to the homogeneous form
of the equation b(x) = 0, then f(x) + g(x) is also a solution to the above equation.
Proof. If f(x) + g(x) is a solution, then

m (f(x) + g(x))′′ + b (f(x) + g(x))′ + k (f(x) + g(x)) = b(x).

Rearranging,

(mf ′′(x) + bf ′(x) + kf(x)) + (mg′′(x) + bg′(x) + kg(x)) = 0.

Using the definitions of f(x) and g(x),

b(x) + 0 = b(x).

■

f(x) and g(x) actually have special meanings in terms of solving these higher-order equations.
Definition. f(x) is called the particular solution to the heterogeneous equation, and g(x) is called a
homogeneous solution.

3.3.1 Method of Undetermined Coefficients
The type of equation we’re trying to solve is a heterogeneous linear ODE with constant coefficients.
These have the form

any
(n) + an−1y

(n−1) + . . .+ a1y
′ + a0y = b(x).

We will assume that the solution has the form y = yh + yp, where yh is the general solution to the
homogeneous equation (b(x) = 0), and yp is the particular solution.

We know how to solve for yh exactly without guessing. However, we will make a guess for the form
of yp based on the form of b(x) and the form of yh using the rules described in the below examples.
For each term in our guess for yp, we will solve for a constant.

When solving, we’ll first solve the homogeneous equation to find the general homogeneous solution yh.
Then, we’ll guess a form for the particular solution yp based on the form of b(x) and solve. Finally,
we’ll add these two solutions together to get the full general solution. We’ll see that the constants
come from yh and not yp.
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Example. Find the general solution to the following equation.

y′′ + 2y′ + y = 27e2x

First, we’ll solve the homogeneous equation

y′′ + 2y′ + y = 0.

Extracting the auxiliary equation and finding the roots,

r2 + 2r + 1 = (r + 1)2 =⇒ r = −1 (double root) .

So, our general solution is
yh = e−x (C1 + C2x) .

Since b(x) is an exponential with a power of 2x, it’s safe guess to say that the particular solution is
also an exponential with a power of 2x. So, we’ll guess that yp = Ae2x and solve for A.(

Ae2x
)′′

+ 2
(
Ae2x

)′
+ Ae2x = 2te2x

A
(
4e2x + 4e2x + e2x

)
= 27e2x =⇒ A = 3.

So,
yp = 3e2x.

Putting yh and yp together,

y = yh + yp = e−x (C1 + C2x) + 3e2x.

There are a couple of catches we need to think about with it comes to guessing the form of the
particular solution.
Example. Find the general solution to the following equation.

y′′ + 2y′ + y = 2e−x.

We already know from the previous example what yh is.

yh = C1e
−x + C2xe

−x.

However, even though b(x) is an exponential with power −x, guessing that yp is of the form Ae−x

won’t work, since that is already covered in yh. So, we instead include factors of x until we hit a factor
not already covered by yh. In this case, we need up to x2, so we guess that yp = Ax2e−x.

y′′p + 2y′p + yp = 2Ae−x = 2e−x =⇒ A = 1.

So, the general solution is

y = yh + yp = C1e
−x + C2xe

−x + x2e−x.

For certain forms of b(x), like sin x or cos x, our guess for yp will have multiple terms. We also need
to make sure that these terms aren’t already in yh and include factors of x.
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Example. Find the general solution to the following equation

y′′ + 4y = 8 cos (2t)

given that yh = C1 cos (2t) + C2 sin (2t).

When b(x) has a sin or cos term in it, we need our guess for yp to include both a sin and cos part
in it, meaning there are two unknowns we’ll have to solve for. However, since yh already has these
sin and cos terms, we need to include an extra factor of x. So, our guess is that yp = Ax cos (2x) +
Bx sin (2x).

y′′p + 4yp = −4A sin (2x) + 4B cos (2x) = 8 cos (2t) =⇒ A = 0, B = 2.

Note how the sin and cos terms that have a factor of x cancel each other out. This is expected since
b(x) does not have any terms with a factor of x.

So, the general solution is

y = yh + yp = C1 cos (2t) + C2 sin (2t) + 2x sin (2x).

If b(x) has multiple terms, we need to include each term fully in our guess. For times when b(x) has a
factor that is a polynomial of degree n, our guess will also have a factor that is a polynomial of degree
n and n coefficients to solve for.

Example. Find the general solution to the following equation

y′′ − 3y′ − 4y = 4x2 − 1

given that yh = C1e
−x + C2e

4x.

Since b(x) is a degree 2 polynomial, we’ll guess that yp = Ax2 +Bx+ C.

y′′p − 3y′p − 4yp = x2(−4A) + x(−6A− 4B) + (2A− 3B − 4C) = 4x2 − 1.

So, we have a system of linear equations,
−4A = 4

−6A− 4B = 0

2A− 3B − 4C = −1

=⇒


A = −1

B = 3/2

C = −11/8

.

So, our general solution is

y = C1e
−x + C2e

4x − x2 +
3

2
x− 11

8
.
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3.3.2 Variation of Parameters
Although the method of undetermined coefficients is useful and relatively quick because it is algebra-
based, it cannot solve many equations, even simple-looking second order equations, like

y′′ + y = cscx.

The method also requires guessing, meaning for very complicated forms of b(x), things can get very
messy.

Instead, we’ll look at a more rigorous, calculus-based, approach developed by Lagrange called “vari-
ation of parameters.” We’ll first see how to apply the method to 2nd order linear ODEs with constant
coefficients, like forced vibrations, and then we’ll extend the method to order n.

Second Order Variation of Parameters

We’ll modify our second order equation of have a 1 as the coefficient of the y′′ term by dividing to
get an equation of the form

y′′ + py′ + qy = g(x).

Just like for undetermined coefficients, we’ll find homogeneous and particular solutions y = yh + yp.
Since the equation is second-order, the solution to the homogeneous equation will yield two funda-
mental solutions y1 and y2 where yh = C1y1 + C2y2.

So, we can write y as
y(x) = A(x)y1 +B(x)y2,

where {
A′y1 +B′y2 = 0

A′y′1 +B′y′2 = g(x)
.

We will then solve this system to solve for A′ and B′ and integrate.
Example. Find the general solution to the following equation

y′′ + y = cscx

given that yh = C1 cosx+ C2 sinx.
yh gives us our two fundamental solutions{

y1 = cosx
y2 = sinx

.

So, our system of equations is{
A′ cosx+B′ sinx = 0

−A′ sinx+B′ cosx = cscx
→

{
A′ cosx+B′ sinx = 0

−A′ cosx+B′ cos2 x
sinx = cosx

sin2 x
.
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So,
B′ 1

sinx =
cosx
sin2 x =⇒ B′ =

cosx
sinx = cotx =⇒ B = ln

∣∣ sinx∣∣+ C2,

and
A′ cosx+ cosx = 0 =⇒ A′ = −1 =⇒ A = −x+ C1.

So, our general solution is

y = (C1 − x) cosx+
(
ln
∣∣ sinx∣∣+ C2

)
sinx = C1 cosx+ C2 sinx− x cosx+ sinx ln

∣∣ sinx∣∣.
Note how yh and yp appear together.

Higher Order Variation of Parameters

We are trying to find a solution to the nth order linear ODE

an(x)y
(n) + . . .+ a0(x)y = g(x)

assuming that we already know the fundamental solutions for the corresponding homogeneous equa-
tion

yh = C1y1 + . . .+ Cnyn.

For this method, we’ll assume that y can be written as

y = v1(x)y1 + . . .+ vn(x)yn

and we’ll try to find v1, . . . , vn.

Since there are n unknown functions, we’ll need n equations to find them all. We can generate these
by differentiating yp.

y′ = (v1y
′
1 + . . .+ vny

′
n) + (v′1y1 + . . .+ v′nyn)

to avoid second derivatives of v1, . . . , vn from entering the formula for y′′, we also have the condition

v′1y1 + . . .+ v′nyn = 0.

We can now continue differentiating to get n−2more equations involving v′1, . . . , v′n. We also impose
a final nth condition that

v′1y
(n−1) + . . .+ v′ny

(n−1)
n = g.

This gets us a system of n equations,
v′1y1 + . . .+ v′nyn = 0
... ...
v′1y

(n−2)
1 + . . .+ v′ny

(n−2)
n = 0

v′1y
(n−1)
1 + . . .+ v′ny

(n−1)
n = g

.
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Hopefully this system looks familiar from second order equations.

We can rewrite this system in terms of matrices and vectors.
y1 . . . yn
... ...

y
(n−2)
1 . . . y

(n−2)
n

y
(n−1)
1 . . . y

(n−1)
n




v′1...
v′n−1

v′n

 =


0
...
0
g

 .

It’s sufficient to show that a solution to this system exists if the determinant of the square matrix on
the left is non-zero. The determinant of this matrix actually has a special name.

Definition. The Wronskian of n n− 1 times differentiable functions {f1, . . . , fn} on an interval I is

W [f1, . . . , fn](x) =

∣∣∣∣∣∣∣∣∣
f1(x) . . . fn(x)
f ′
1(x) . . . f ′

n(x)... ...
f
(n−1)
1 (x) . . . f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣ , x ∈ I.

Using the Wronskian, we can solve the system using Cramer’s Rule.

v′i(x) =
g(x)Wi(x)

W [y1, . . . , yn](x)
, i = 1, . . . , n,

where Wi(x) is the determinant of the matrix obtained from the WronskianW (x) by replacing the
ith column with col[0, . . . , 1]. Using the cofactor expansion along this column, we can writeWi(x) as

Wi(x) = (−1)n−iW [y1, . . . , yi−1, yi+1, . . . , yn](x), i = 1, . . . , n.

Now with a solution for v′i, we can integrate to get vi.

vi =

∫
g(x)Wi(x)

W [y1, . . . , yn](x)
dx.

Now with a solution for vi, we can substitute back to find y(x).

y(x) =
n∑

i=1

yi(x)

∫
g(x)Wi(x)

W [y1, . . . , yn](x)
dx

Example. Find the general solution to the equation

x3y′′ + x2y′ − xy = x3 sinx, x > 0

given that {x, x−1} is the set of fundamental solutions.
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First we divide by x3 to get a leading coefficient of 1.

y′′ + x−1y′ − x−2y = sinx, x > 0.

Next we calculate theW (x) and eachWi(x) for the fundamental solution set.

W [x, x−1](x) =

∣∣∣∣x x−1

1 −x−2

∣∣∣∣ = −2x−1

W1(x) = (−1)2−1W [x−1] = (−1)1
∣∣x−1

∣∣ = −x−1

W2(x) = (−1)2−2W [x] = (−1)1
∣∣x∣∣ = x.

Now we can calculate y.

y(x) = x

∫
(sinx)(−x−1)

−2x−1
dx+ x−1

∫
(sinx)(x)
−2x−1

dx

=
x

2

∫
sin (x)dx− 1

2x

∫
x2 sin (x)dx

=
x

2
(− cosx+ C1)−

1

2x

(
2x sinx− (x2 − 2) cosx+ C2

)
= C1x+

C2

x
− x cosx

2
− sinx+

(x2 − 2) cosx
2x

= C1x+ C2x
−1 − cosx

x
− x sinx

x
.

3.4 Forced Vibrations
Now that we have some powerful methods for solving higher order equations, we can think about
forced vibrations and understand ideas like beats and resonance.

The equation we’re trying to solve is

my′′ + by′ + ky = Fext(t).

We’ll assume that Fext(t) = F0 cos (γt) so our equation becomes.

my′′ + by′ + ky = F0 cos γ

We’ll look at the undamped and damped cases separately.
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3.4.1 Undamped Forced Vibrations (b = 0)
Our equation now becomes

my′′ + ky = F0 cos (γt).
We can use the method of undetermined coefficients to solve this system.

Extracting the coefficients for the auxiliary equation and finding the roots,

mr2 + k = 0 =⇒ r = ±i

√
k

m
= iω.

So, our homogeneous solution is

yh = C1 cos (ωt) + C2 sin (ωt).

For guessing the form of yp, we’ll need to break into two cases depending on if ω = γ. One case will
give rise to beats and the other resonance.

Beats (ω ̸= γ)

If ω ̸= γ, then we can guess that yp has the form

yp = A cos (γt) + B sin (γt).

Since we don’t have a term involving the 1st derivative, we can be sure that B = 0, since an odd
number of derivatives is the only way to turn a sin term into a cos term. So,

yp = A cos (γt).

Solving for A,

m (A cos (γt))′′ + k (A cos (γt)) = F0 cos (γt)
−mAγ2 cos (γt) + kA cos (γt) = F0 cos (γt)

A
(
k −mγ2

)
= F0

A =
F0

k −mγ2
=

F0

m(ω2 − γ2)
.

So, our solution is

y =
F0

m(ω2 − γ2)
cos (γt) + C1 cos (ωt) + C2 sin (ωt).

Let’s look specifically at the IVP where y(0) = 0 and y′(0) = 0.

C1 =
−F0

m(ω2 − γ2)
and C2 = 0.
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So,
y =

F0

m(ω2 − γ2)
cos (γt)− F0

m(ω2 − γ2)
cos (ωt).

Using the fact that cosα− cos β = 2 sin
(
α−β
2

)
sin
(
α+β
2

)
,

y =
2F0

m(ω2 − γ2)
sin
(
γ − ω

2
t

)
sin
(
γ + ω

2
t

)
.

When γ ≈ ω, the γ + ω, with a small period, dominates the motion, and the amplitude is slowly
guided by the γ − ω term which has a large period. This creates intervals guided by the γ − ω term
of higher and lower amplitudes. These are beats.

Resonance (ω = γ)

In the case where ω = γ, we need to add an extra factor of t to our guess for yp. So,
yp = At cos (ωt) + Bt sin (ωt).

Solving for A and B,
my′′p + kyp = 2Bmω cos (ωt)− 2Amω sin (ωt) = F0 cos (ωt).

=⇒ A = 0 and B =
F0

2mω
.

So our solution is,
y = C1 cos (ωt) + C2 sin (ωt) +

F0

2mω
t sin (ωt).

Let’s look specifically at the IVP where y(0) = 0 and y′(0) = 0.
C1 = C2 = 0.

So,
y =

F0

2mω
t sin (ωt).

Here, the amplitude grows with t, creating bigger and bigger waves. This is resonance, and you can
see mathematically how it is responsible for one string causing another tuned the same to vibrate and
the collapsing of bridges.
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3.4.2 Damped Forced Vibrations (b ̸= 0)
Our equation is

my′ + by′ + ky = F0 cos (γt).
Depending on if ∆ = b2 − 4mk is positive, zero, or negative, we’ll get different results and thus
different guesses for yp and thus different solutions. There is, however, one long, complicated and not
very useful for y.

y = C1e
−b+

√
b2−4mk
2m

t + C2e
−b−

√
b2−4mk
2m

t +
F0 (bγ sin (γt) + (k − γ2m) cos (γt))

b2γ2 + (k − γ2m)2
.

The one useful thing this formula does tell us is that assuming m, b, k, F0, and γ are all positive
and non-zero, the exponential terms quickly decrease to 0, so in the limit the function looks like the
particular solution part.

Example. Solve the following IVP.
y′′ + 2y′ + 10y = 5 cos (4t)
y(0) = 0

y′(0) = −2.6
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Some of the work has been omitted for brevity.
Solving the auxiliary equation and finding yh,

r2 + 2r + 10 = 0 =⇒ r = −1± 3i =⇒ yh = e−t (C1 cos (3t) + C2 sin (3t)) .

Guessing the form of yp, noting that ω ̸= γ,

yp = A cos (4t) + B sin (4t).

Solving for A and B,

y′′p + 2y′p + 10yp = 5 cos (4t) =⇒ A = −3/10 and B = 4/10.

Solving for C1 and C2,{
y(0) = 0

y′(0) = −2.6
=⇒ C1 = 3/10 and C2 = −13/10.

So, we have a solution for y,

y = e−t

(
3

10
cos (3t)− 13

10
sin (3t)

)
+

(
−3

10
cos (4t) + 4

10
sin (4t)

)
.

The graph of this solution was shown above before the example.
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Chapter 4

Linear Systems of Differential Equations

Although we have a good idea on how to solve many single linear differential equations, it’s often
useful to think about linear systems of equations, like{

x′
1 = 3tx1 − x2 + t2

x′
2 = −x1 + etx2 − e2t

→
[
x1

x2

]′
=

[
3t −1
−1 et

] [
x1

x2

]
+

[
t2

−e2t

]
.

This matrix form, x⃗′ = Ax⃗+ f⃗ , where A is a square matrix, is called normal form.

4.1 Solutions to Systems
Just like with a single differential equation, we need to define exactly what a solution to a differential
equation looks like.
Definition. A solution on an interval I is a vector x⃗ that satisfies the system of differential equations.
We also need to define some common terms like homogeneous and heterogeneous.
Definition. If a linear system of differential equations written in the form x⃗′ = Ax⃗+ f⃗ where f⃗ = 0⃗,
then the system is homogeneous. Else, the system is heterogeneous.
Example. Check that

a⃗ =

[
e−2t

−e−2t

]
and b⃗ =

[
3e6t

5e6t

]
are the two fundamental solutions and that

c⃗ =

[
3t− 4
−5t+ 6

]
is the particular solution to the system

x⃗′ =

[
1 3
5 3

]
x⃗+

[
12t− 11

−3

]
.

Use these results to write the general solution to the equation.
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We’ll check that a⃗ is a fundamental solution.[
e−2t

−e−2t

]′
=

[
1 3
5 3

] [
e−2t

−e−2t

]
[
−2e−2t

2e−2t

]
=

[
e−2t − 3e−2t

5e−2t − 3e−2t

]
[
−2e−2t

2e−2t

]
=

[
−2e−2t

2e−2t

]
.

Now we’ll check that b⃗ is a fundamental solution.[
3e6t

5e6t

]′
=

[
1 3
5 3

] [
3e6t

5e6t

]
[
18e6t

30e6t

]
=

[
3e6t + 15e6t

15e6t + 15e6t

]
[
18e6t

30e6t

]
=

[
18e6t

30e6t

]
.

These two true results give us the homogeneous solution x⃗h. We know that a⃗ and b⃗ make up the full
homogeneous solution because the system is made up of two first order equations and thus has two
fundamental solutions.

x⃗h = C1

[
e−2t

−e−2t

]
+ C2

[
3e6t

5e6t

]
.

Now we’ll check that c⃗ is the particular solution.[
3t− 4
−5t+ 6

]′
=

[
1 3
5 3

] [
3t− 4
−5t+ 6

]
+

[
12t− 11

−3

]
[
3
−5

]
=

[
(3t− 4) + 3(−5t+ 6) + (12t− 11)
5(3t− 4) + 3(−5t+ 6) + (−3)

]
[
3
−5

]
=

[
3
−5

]
.

This true result gives us the particular solution x⃗p.

x⃗p =

[
3t− 4
−5t+ 6

]
.

Putting x⃗h and x⃗p together gives us our general solution x⃗.

x⃗ = x⃗h + x⃗p = C1

[
e−2t

−e−2t

]
+ C2

[
3e6t

5e6t

]
+

[
3t− 4
−5t+ 6

]
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4.2 Homogeneous Systems
Homogeneous systems of linear equations have the form

x⃗′ = Ax⃗.

We’ll see how to find solutions to these types of systems using the eigenvalue method. Finding so-
lutions to these systems will allow us to find homogeneous solutions to heterogeneous systems of
equations.

4.2.1 Eigenvalue Method
This method allows us to find fundamental solutions using the eigenvalues of the matrixA. Of course,
just like with roots of the auxiliary equation, we need to consider the cases of real distinct eigenvalues
and eigenvectors, repeated eigenvalues, complex eigenvalues, and defective matrices.

Real Distinct Eigenvalues

Real, distinct eigenvalues are the simplest case, similar to real, distinct roots of an auxiliary equation.

Theorem. Let {λ1, . . . , λn} be the set of unique eigenvalues and {v⃗1, . . . , v⃗n} be the corresponding
set of non-zero, unique, eigenvectors for an n × n matrix A. Then the set of fundamental solutions
to the system x⃗′ = Ax⃗ is

{
eλ1tv⃗1, . . . , e

λntv⃗n
}

Example. Find the general solution to the system

x⃗′ =

 3 0 0
−5 −2 0
1 1 −1

 x⃗.

For a triangular matrix, the eigenvalues are simply the diagonal entries.

λ = 3,−2,−1.

Finding the eigenvector for λ = 3,

(A− 3I)v⃗ = 0⃗ =⇒ v⃗ = C1

−1
1
0

 .

Finding the eigenvector for λ = −2,

(A+ 2I)v⃗ = 0⃗ =⇒ v⃗ = C2

 0
−1
1

 .

57



Finding the eigenvector for λ = −1,

(A+ I)v⃗ = 0⃗ =⇒ v⃗ = C3

00
1

 .

So, our general solution is

x⃗ = C1e
3t

−1
1
0

+ C2e
−2t

 0
−1
1

+ C3e
−t

00
1

 .

Repeated Eigenvalues

If A has an eigenvalue with multiplicity k, that eigenvalue needs to generate k fundamental solutions.
If this eigenvalue generates k linearly independent eigenvectors, then the process is much like with
distinct eigenvalues. Otherwise, the matrix A is defective.

Theorem. If λ is an eigenvalue with multiplicity k, and {v⃗1, . . . , v⃗k} are corresponding linearly in-
dependent eigenvectors, the the set of fundamental solutions generated by λ is

{
eλtv⃗1, . . . , e

λtv⃗k
}
.

Example. Find the general solution to the system

x⃗′ =

0 1 1
1 0 1
1 1 0

 x⃗.

Finding the eigenvalues by finding the roots of the characteristic polynomial of A,

p(λ) = det (A− λI) = −λ3 + 3λ+ 2 =⇒ λ = 2,−1,−1.

Finding the eigenvector for λ = 2,

(A− 2I)v⃗ = 0⃗ =⇒ v⃗ = C1

11
1

 .

Finding the eigenvectors for λ = −1,

(A+ I)v⃗ = 0⃗ =⇒ v⃗ = C2

−1
1
0

+ C3

−1
0
1

 .

So, our solution is

x⃗ = C1e
2t

11
1

+ C2e
−t

−1
1
0

+ C3e
−t

−1
0
1

 .

58



Complex Eigenvalues

Theorem. If an n×nmatrixA is not defective, then for each pair of complex eigenvalues α±βiwith
corresponding eigenvectors a⃗±i⃗b, the corresponding fundamental solutions are eαt

(
cos (βt)⃗a− sin (βt)⃗b

)
and eαt

(
sin (βt)⃗a+ cos (βt)⃗b

)
.

Example. Find the general solution to the system

x⃗′ =

[
2 3
−3 2

]
x⃗.

Finding the eigenvalues by finding the roots of the characteristic polynomial of A,

p(λ) = det (A− λI) = (2− λ)2 + 9 =⇒ λ = 2± 3i.

Finding the eigenvectors for λ = 2 + 3i, remembering that once we have the two eigenvectors, we
don’t need to find them for the conjugate,

(A− (2 + 3i)I)v⃗ = 0⃗ =⇒ v⃗ = C1

[
0
1

]
+ C2i

[
−1
0

]
.

So, our solution is

x⃗ = C1e
2t

(
cos (3t)

[
0
1

]
− sin (3t)

[
−1
0

])
+ C2e

2t

(
sin (3t)

[
0
1

]
+ cos (3t)

[
−1
0

])
.

We can rewrite this a little more elegantly as

x⃗ =

[
sin (3t) − cos (3t)
sin (3t) cos (3t)

] [
C1

C2

]
e2t.

Defective Matrix

If A has an eigenvalue λ with multiplicity k that does not generate k corresponding linearly inde-
pendent eigenvectors, the the matrix A is defective. To generate enough vectors, we need to extend
eigenvectors.

Definition. Let A be a square matrix. A nonzero vector v⃗ satisfying

(A− λI)nv⃗ = 0⃗

for some eigenvalue λ and some positive integer n is a generalized eigenvector or rank n.

These generalized eigenvectors also make up solutions.
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Theorem. Let v⃗ be an generalized eigenvector of a square matrix A corresponding to an eigenvalue
λ with multiplicity k. Then

eAtv⃗ = eλt
(
v⃗ + t(A− λI)v⃗ +

t2

2!
(A− λI)2v⃗ + . . .

)
is the corresponding fundamental solution. Further, the above sequence will terminate after k or
fewer terms (all subsequent terms are 0).

Example. Find the general solution to the system

x⃗′ =

1 0 0
1 3 0
0 1 1

 x⃗.

Since A is diagonal, the eigenvalues are simply the diagonal entries

λ = 3, 1(double root).

Finding the eigenvector for λ = 3,

(A− 3I)v⃗ = 0⃗ =⇒ v⃗ = C1

02
1

 .

Finding the eigenvector for λ = 1,

(A− I)v⃗ = 0⃗ =⇒ v⃗ = C2

00
1

 .

Since λ = 1 had multiplicity 2, we need to find a generalized eigenvector.

(A− I)2v⃗ = 0⃗ =⇒ v⃗ = C2

00
1

+ C3

−2
1
0

 .

Note how then eigenvector showed up again as a generalized eigenvector of rank 2. This is because
the eigenvector makes (A− I)v⃗ = 0, so (A− I)2v⃗ = (A− I )⃗0 = 0⃗. So, our solution is

x⃗ = C1e
3t

02
1

+ C2e
t

00
1

+ C3e
t

−2
1
0

+ (A− I)t

−2
1
0


= C1e

3t

02
1

+ C2e
t

00
1

+ C3e
t

−2
1
t

 .
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We can rewrite this a bit more cleanly as

x⃗ =

 0 0 −2et

2e2t 0 et

e3t et tet

C1

C2

C3

 .

This square matrix is called the fundamental matrix of the system.

This final approach for defective matrices actually gives a general way to solve x⃗′ = Ax⃗ for any real
n× n matrix A.
1) Compute the characteristic polynomial p(λ) = det (A− λI). Find the zeroes of the character-

istic to find the distinct eigenvalues λ1, . . . , λk with corresponding multiplicitiesm1, . . . ,mk.

2) For each eigenvalue λi find themi corresponding linearly independent eigenvectors of rankmi

by solving the system (A− λi)
mi v⃗i = 0⃗.

3) For each generalized generalized eigenvector v⃗i, compute the corresponding fundamental so-
lution

x⃗i = eAtv⃗i = eλt
(
v⃗i + t(A− λI)v⃗i +

t2

2!
(A− λI)2v⃗i + . . .

)
.

Note that this summation terminates is at mostmi terms.

4) Combine these fundamental solutions as columns of a a squarematrix to obtain the fundamental
matrix of the system X(t). The general solution to the system is

x⃗ = X(t)

C1
...
Cn

 .

4.3 Heterogeneous Systems
Now that we know how to solve the “easy case” of homogeneous systems of linear differential equa-
tions, we can tackle the general case of heterogeneous systems. Much like for single equations, we’ll
look for a homogeneous solution and particular solution, and we’ll use undetermined coefficients or
variation of parameters to find the particular solution. These methods will then lead into seeing how
systems of first order equations relate to single higher order equations.

4.3.1 Method of Undetermined Coefficients
The rules for undetermined coefficients are very similar for systems and single equations. Let’s say
we have a heterogeneous system of the form

x′
1 = a11x1 + . . .+ a1nxn + f1(t)
...
x′
n = an1xn + . . .+ annxn + fn(t).

.
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Written in a matrix form, x
′
1...

x′
n

 =

a11 . . . a1n
... . . . ...

an1 . . . ann


x1
...
xn

+

f1(t)...
fn(t)

 ,

or more compactly as
x⃗′ = Ax⃗+ f⃗ .

All we need to do is look at each fi(t) and write in the ith blank the corresponding guess. This is like
doing undetermined coefficients on each equation in the system.

This is especially nice when all the fi(t)’s have a similar form because we can write our guess as

g⃗(t) = fc(t)v⃗

where fc(t) is the guess corresponding to f and c⃗ is a vector of undetermined scalars.
Example. Find the particular solution to the system

x⃗′ =

[
1 2
3 2

]
x⃗+

[
2et

4et

]
.

All entries in f⃗ are exponentials, so we’ll guess that

x⃗p = et
[
A
B

]
= eta⃗.

Plugging our guess into the equation,(
eta⃗
)′
=

[
1 2
3 2

]
eta⃗+

[
2et

4et

]
et
[
A
B

]
= et

[
1 2
3 2

] [
A
B

]
+ et

[
2
4

]
.

Dividing by et, which is never 0, [
A
B

]
=

[
A+ 2B
3A+ 2B

]
+

[
2
4

]
.

Rearranging, [
0 2
3 1

] [
A
B

]
=

[
−2
−4

]
=⇒

[
A
B

]
=

[
−1
−1

]
.

So,
x⃗p = et

[
−1
−1

]
.

It’s possible that we’ll have to solve for multiple vectors of scalars to find x⃗p.
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Example. Find the particular solution to the system

x⃗′ =

[
2 2
2 2

]
x⃗+

[
−4 cos t
− sin t

]
.

Just like when dealing with sin and cos in single equations, we need both sin and cos in our guess.

x⃗p = sin t⃗a+ cos t⃗b.

Plugging into the equation where A is the matrix of all 2’s,

cos t⃗a− sin(t)⃗b = sin tAa⃗+ cos tA⃗b+ sin t
[
0
−1

]
+ cos t

[
−4
0

]
.

This gives us a system 
−b⃗ = Aa⃗+

[
0

−1

]

a⃗ = A⃗b+

[
−4

0

] .

Substituting,

−b⃗ = A

(
A⃗b+

[
−4
0

])
+

[
0
−1

]
=⇒ (A2 + I )⃗b = −A

[
−4
0

]
−
[
0
−1

]
A2 + I =

[
9 8
8 9

]
and − A

[
−4
0

]
−
[
0
−1

]
=

[
8
9

]
.

So, [
9 8
8 9

]
b⃗ =

[
8
9

]
=⇒ b⃗ =

[
0
1

]
,

and
a⃗ = A⃗b+

[
−4
0

]
=⇒ a⃗ =

[
−2
2

]
.

Finally we have x⃗p,
x⃗p = sin t

[
−2
2

]
+ cos t

[
0
1

]
.

4.3.2 Variation of Parameters for Systems
Let X be a fundamental matrix for the homogeneous system.

x⃗h
′ = Ax⃗h.
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That is,
x⃗h = Xc⃗

where

c⃗ =

C1
...
Cn


and the entries of matrix A can be any continuous functions of t.
We are looking for the particular solution x⃗p, to the system

x⃗ = Ax⃗+ f⃗

where x⃗p is of the form
x⃗p = Xv⃗

where v⃗ is a vector of functions of t that we’ll have to find.
Differentiating x⃗p,

x⃗p
′ = Xv⃗′ +X ′v⃗.

From the system we’re trying to solve we know that

Xv⃗′ +X ′v⃗ = A(Xv⃗) + f⃗ .

Since X ′ = AX ,
Xv⃗′ = f⃗ .

Since the columns ofX are always linearly independent, we know thatX−1 always exists. Multiplying
by X−1,

v⃗′ = X−1f⃗ .

Integrating with respect to t,
v⃗ =

∫
X−1f⃗dt.

So,
x⃗p = X

∫
X−1f⃗dt,

and
x⃗ = Xc⃗+X

∫
X−1f⃗dt.

Example. Find the general solution to the system by variation of parameters

x⃗′ =

[
2 −3
1 −2

]
x⃗+

[
e2t

1

]
given the fundamental matrix

X =

[
3et e−t

et e−t

]
.
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Finding x⃗h is simply multiplyingX by a vector, so we’ll save that for the end and focus on x⃗p. First we
need to findX−1. The details are left out, but the process is identical to that for matrices of numbers.

X−1 =

[
1
2
e−t −1

2
e−t

−1
2
et 3

2
et

]
.

Multiplying by f⃗ .
Xf⃗ =

[
1
2
et − 1

2
e−t

−1
2
e3t + 3

2
et

]
.

Integrating with respect to t, ∫
X−1f⃗dt =

[
1
2
et + 1

2
e−t

−1
6
e3t + 3

2
et

]
.

Note that although we are doing an indefinite integral, we don’t have a constant (or in this case a
vector) of integration. Multiplying by X to obtain x⃗p,

x⃗p = X

∫
X−1f⃗dt =

[
4
3
e2t + 3

1
3
e2t + 2

]
.

Finding x⃗h,
x⃗h = Xc⃗ =

[
3C1e

t + C2e
−t

C1e
t + C2e

−t

]
.

Putting x⃗h and x⃗p together to get the general solution,

x⃗ =

[
3C1e

3t + C2e
−t + 4

3
e2t + 3

C1e
t + C2e

−t + 1
3
e2t + 2

]
.

4.4 Systems and Higher Order Equations
There is a connection between a system of linear first order equations and a single higher order equa-
tion. We’ll see how to convert between the two, which will help explain whymethods like the auxiliary
equation work.

4.4.1 System to Higher Order
Let’s say we have the linear system

x⃗′ = Ax⃗+ f⃗ .

Writing the system using x1, . . . xn as the components of x⃗, f1, . . . fn as the components of f⃗ , and
aij as the entry in A on the ith row and jth column,

x′
1 = a11x1 + . . . a1nxn + f1
...
x′
n = an1x1 + . . . annxn + fn

.
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Let’s arbitrarily assign x1 = y. This will allow us to find expressions for x2, . . . xn in terms of y and
its derivatives. When we find xn in these terms and equate x′

n with what’s given in the system, we’ll
have an linear nth order equation.

Example. Convert the following system of equations to a single equation.

x⃗′ =

1 1 1
1 0 1
0 1 1

 x⃗+

1t
t2


Expanding the system out of matrix form,

x′
1 = x1 + x2 + x3 + 1

x′
2 = x1 + x3 + t

x′
3 = x2 + x3 + t2

.

Assuming x1 = y,

y′ = y + x2 + x3 + 1

=⇒ x2 = y′ − y − x3 − 1.

Taking the derivative of x2 and equating it with what’s given in the system,

x′
2 = y′′ − y′ − x′

3 = y + x3 + t.

Solving for x′
3 and equating it with what’s given in the system,

x′
3 = y′′ − y′ − t− x3 = y′ − y + t2 − 1.

Putting this expression for x′
3 back into our expression for x′

2,

x′
2 = y′′ − 2y′ + y − t2 + 1 = y + x3 + t

=⇒ x3 = y′′ − 2y′ − t2 − t+ 1.

Taking the derivative of x3 and equating it to what’s given in the system,

x′
3 = y′′′ − 2y′′ − 2t− 1 = y′ − y − 1 + t2.

So, we have our order 3 equation,

y′′′ − 2y′′ − y′ + y = t2 + 2t.

The auxiliary polynomial of this higher order equation p(r) and the characteristic polynomial p(λ)
of the linear system will have exactly the same roots.
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4.4.2 Higher Order to System
Let’s say we have the linear, nth order differential equation

any
(n) + . . .+ a0y = f

where a0, . . . an and f are functions.

If we let x1 = y, x2 = y′, . . . xn = y(n−1), then we have a system of equations,
x′
1 = y′ = x2

...
x′
n−1 = y(n−1) = xn

x′
n = y(n) = 1

an
(f − an−1xn − . . .− a0x1)

.

Rewriting in matrix form,

x⃗′ =


0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1

−a0
an

−a1
an

−a2
an

. . . −an−1

an

 x⃗+


0
...
0
f
an

 .

The square matrix has characteristic polynomial p(λ) = (−1)n

an
(anλ

n + an−1λ
n−1 + . . .+ a0) which

has the same zeroes as the the auxiliary equation anrn + . . .+ a0.

Note that if one starts with a higher order equation, converts it to a system, and the converts the
system back to a higher order equation, the result is the original equation. This does not hold true
when converting a system to an equation and back to a system. The two solutions will have the same
eigenvalues but different eigenvectors.
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Chapter 5

Laplace Transforms

Laplace transforms allow us to change differential equations into algebraic equations. We can then
solve the algebraic equation and “undo” the Laplace transform to find the solution to our differential
equation.

5.1 Definition
Definition. Let f(t) be a function that is defined for t ≥ 0.

L{f} (s) =
∫ ∞

0

e−stf(t)dt.

The domain of F is all values of s where the integral is defined and finite.

5.1.1 Linearity
We already know from calculus that the integral is a linear operator. That is, scalar multiplication can
be pulled out of the integral, and the integral of the sum of two functions is the same as the sum of the
integrals of the functions. Since the Laplace transform is just an integral, it is also a linear operator.
So we can say

L{cf + g} (s) = cL{f} (s) + L{g} (s) , c ∈ R.

5.2 Derivations
We can use the definition of the Laplace transform and the fact that the Laplace transform is a linear
operator to find the Laplace transform of some common functions.
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5.2.1 Constant
Let a be a constant.
By definitions of a Laplace transform and an improper integral,

L{a} (s) = lim
n→∞

∫ n

0

ae−stdt

=
a

s
lim
n→∞

[
−e−st

]n
0
, s ̸= 0

=
a

s
lim
n→∞

(
1− e−sn

)
, s ̸= 0

=
a

s
, s > 0.

So,
L{a} (s) = a

s
, s > 0.

5.2.2 Exponential
Let a be a constant.
By definitions of a Laplace transform and an improper integral,

L
{
eat
}
(s) = lim

n→∞

∫ n

0

eate−stdt

= lim
n→∞

∫ ∞

0

e(a−s)tdt

=
1

a− s
lim
n→∞

[
e(a−s)n

]n
0
, s ̸= a

=
1

a− s
lim
n→∞

(
e(a−s)n − 1

)
, s ̸= a

=

{
−1
a−s

s > a

DNE s ≤ a
.

So,
L
{
eat
}
(s) =

−1

a− s
, s > a.

5.2.3 Sine and Cosine
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Sine

Let a be a constant.
By definitions of a Laplace transform and an improper integral,

L{sin (at)} (s) = lim
n→∞

∫ n

0

sin (at)e−stdt

=
−1

s2 + a2
lim
n→∞

[
e−st (s sin (at) + a cos (at))

]n
0

=
−1

s2 + a2

(
lim
n→∞

(
e−sn (s sin (an) + a cos (an))

)
−
(
e−s·0 (s sin (a · 0) + a cos (a · 0))

))
.

Both sin and cos have maximum values of 1, so we can say that the left part of them expression has
a maximum value at most s + a. For positive s, the exponential dominates and the expression goes
to 0 in the limit.

=
−1

s2 + a2
(0− a) , s > 0

=
a

s2 + a2
, s > 0.

So,
L{sin (at)} (s) = a

s2 + a2
, s > 0.

Cosine

Let a be a constant.
By definitions of a Laplace transform and an improper integral,

L{cos (at)} (s) = lim
n→∞

∫ n

0

cos (at)e−stdt

=
1

s2 + a2
lim
n→∞

[
e−st (a sin (at)− s cos (at))

]n
0

=
1

s2 + a2

(
lim
n→∞

(
e−sn (a sin sn− s cos (an))

)
−
(
e−s·0 (a sin (a · 0)− s cos (a · 0))

))
.

Both sin and cos have maximum values of 1 and minimum values of -1, so we can way that the left
part of the expression has a maximum value of at most a+s. For positive s, the exponential dominates
and the expression goes to 0 in the limit.

=
1

s2 + a2
(0 + s) , s > 0

=
s

s2 + a2
, s > 0.

So,
L{cos (at)} (s) = s

s2 + a2
, s > 0.
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5.2.4 nth Derivative
We’ll use induction to show that

L
{
f (n)(t)

}
(s) = snL{f(t)} (s)− f (n−1)(0)− sf (n−2)(0)− . . .− sn−1f(0).

We’ll start with the first derivative as a base case. We could use the 0th derivative, but this case will
give us a little more insight into where the formula comes from.
Let f be a differentiable function.

L{f ′(t)} (s) = lim
n→∞

∫ n

0

f ′(t)e−stdt.

Integrating by parts and using the fundamental theorem of calculus,

=
(
lim
n→∞

(
f(n)e−sn

)
− f(0)e−s·0

)
+ lim

n→∞
s

∫ n

0

f(t)e−stdt.

Assuming that f(n) grows slower than e−sn,

= (0− f(0)) + lim
n→∞

s

∫ n

0

f(t)e−stdt.

Since the right part of the expression is just s times the definition of L{f} (s),

= sL{f} (s)− f(0).

So,
L{f ′(t)} (s) = sL{f} (s)− f(0).

Assuming the following is true,

L
{
f (n)(t)

}
(s) = snL{f(t)} (s)− f (n−1)(0)− sf (n−2)(0)− . . .− sn−1f(0).

We’ll show that the n+ 1 case follows.

L
{
f (n+1)(t)

}
(s) = L

{(
f (n)

)′}
(s) .

Using our first derivative formula,

= sL
{
f (n)(t)

}
(s)− f (n)(0).

Using our general formula,

= s
(
snL{f(t)} (s)− f (n−1)(0)− sf (n−2)(0)− . . .− sn−1f(0)

)
− f (n)(0)

= sn+1L{f(t)} (s)− f (n)(0)− sf (n−1)(0)s2f (n−2)(0)− . . .− snf(0),

which is the n+ 1 case, meaning we have proven the general formula as correct.
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5.2.5 Polynomials
We’ll use our derivative formula and induction to show that

L{tn} (s) = n!

sn+1
, n ≥ 0.

Although the formula for n = 0 is clearly the same as L{1} (s), we’ll use n = 1 as a base case to get
a little more insight into where the formula comes from.

L{1} (s) = L{t′} (s) = 1

s
.

Using our derivative formula,

1

s
= sL{t} (s)− 01

=⇒ L{t} (s) = 1

s2
.

Assuming the following is true,
L{tn} (s) = n!

sn+1
, n ≥ 0.

We’ll show that the n+ 1 case follows.

L{tn} (s) = L
{(

tn+1

n+ 1

)′}
(s) =

n!

sn+1
.

Using our derivative formula and the linearity of the Laplace transform,

n!

sn+1
=

s

n+ 1
L
{
tn+1

}
(s)− 0n+1

=⇒ L
{
tn+1

}
(s) =

(n+ 1)!

sn+2
,

which is the n+ 1 case, meaning we have proven the general formula as correct.

5.2.6 Translation
Let a be a constant.

L
{
eatf(t)

}
(s) =

∫ ∞

0

eatf(t)e−stdt =
∫ ∞

0

f(t)e−(s−a)tdt = L{f(t)} (s− a) .

So,
L
{
eatf(t)

}
(s) = L{f(t)} (s− a) .

This illustrates how multiplying by eat in the t domain corresponds to a translation by a in the s
domain.
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5.2.7 Derivative of a Laplace Transform
Consider the nth derivative of the Laplace transform of f ,

dn
dsn (L{f(t)} (s)) = dn

dsn
(∫ ∞

0

f(t)e−stdt
)
.

We’re able to change the order of differentiation and integration here without affecting the result.

=

∫ ∞

0

f(t)
dn
dsn

(
e−st

)
dt

=

∫ ∞

0

f(t)(−t)ne−stdt

= (−1)nL{tnf(t)} (s) .

So,
dn
dsn (L{f(t)} (s)) = (−1)nL{tnf(t)} (s) .

This formula is useful in both directions: finding the derivatives of Laplace transforms, and finding
the Laplace transforms of functions multiplied by tn.
Example. Find the Laplace transform of e−t sin (3t).
Using the translation property,

L
{
e−t sin (3t)

}
(s) = L{sin (3t)} (s+ 1).

We from our sin formula that
L{sin (3t)} (s) = 3

s2 + 32
.

So,
L
{
e−t sin (3t)

}
(s) = L{sin (3t)} (s+ 1) =

3

(s+ 1)2 + 32
.

Example. Find the Laplace transform of t2(t2 + 1)(t− 1)(t+ 2).
Using the derivative of the Laplace transform property,

L
{
t2(t2 + 1)(t− 1)(t+ 2)

}
(s) = (−1)2

d2
ds2L

{
(t2 + 1)(t− 1)(t+ 2)

}
(s) .

Expanding out the polynomial,

=
d2
ds2L

{
t4 + t3 − t2 + t− 2

}
(s) .

Using the polynomial formula,

=
d2
ds2

(
4!

s5
+

3!

s4
− 2!

s3
+

1!

s2
+

2 · 0!
s1

)
.

Taking the second derivative,

L
{
t2(t2 + 1)(t− 1)(t+ 2)

}
(s) =

6!

s7
+

5!

s6
− 4!

s5
+

3!

s4
+

2 · 2!
s3

.
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Example. Find the Laplace transform of (x2)
′′ using the derivative formula. Show it’s equal to

L{2} (s).
Using the derivative formula,

L
{(

x2
)′′}

(s) = s2L
{
x2
}
(s)− s

(
x2
)′
x=0

−
(
x2
)
x=0

.

Using the polynomial formula,
= s2

2!

s3
− 0− 0.

Simplifying,
L
{(

x2
)′′}

(s) =
2

s
= L{2} (s) .

Example. Find the Laplace transform of eit. Show that it’s equal to L{cos t+ i sin t} (s).
Using the exponential formula,

L
{
eit
}
(s) =

1

s− i
.

Now we’ll work on cos t+ i sin t. Using the linearity of the Laplace transform,
L{cos θ + i sin θ} (s) = L{cos t} (s) + iL{sin t} (s) .

Using the sin and cos formulas,
=

s

s2 + 12
+ i

1

s2 + 12
.

Combining into one fraction,
=

s+ i

s2 + 12
.

Although we normally avoid it, we can factor the denominator into its two complex roots,

=
s+ i

(s+ i)(s− i)
.

Canceling out common factors we see that we get the same Laplace transform as we did with eit.

L{cos θ + i sin θ} (s) = 1

s− i
= L

{
eit
}
(s) .

The Laplace transforms of these common functions are summarized in the appendix.

5.3 Inverse Laplace Transform
Similar to how the derivative is the inverse of the integral, we can think about an inverse Laplace
transform that allows us to go back from the s domain to the t domain.
Definition. Let F (s) = L{f(t)} (s). Then f(t) is the inverse Laplace transform of F (s).

L−1 {F (s)} (t) = L−1 {L {f(t)} (s)} (t) = f(t)

We don’t need to work through the derivations of inverse Laplace transforms because we already did
the derivations for Laplace transforms.
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5.4 Solving Equations
Now that we can take the Laplace transform and its inverse of most of the common functions we’ve
seen when solving differential equations, we can use Laplace transforms as another tool to solve dif-
ferential equations.

There is a general pattern to how we’ll use Laplace transforms to solve differential equations.
1) If needed, arrange the equation into a convenient form in the t domain.

2) Take the Laplace transform of both sides.

3) Use algebra, especially partial fraction decomposition and completing the square, to arrange
items into a convenient form in the s domain.

4) Take the inverse Laplace transform of both sides and solve.
Example. Solve the following IVP using a Laplace transform.

y′′ − 2y′ − 3y = 0

y(0) = 1

y′(0) = 1

Taking the Laplace transform of both sides,

L{y′′ − 2y′ − 3y} (s) = L{y′′} (s)− 2L{y′} (s)− 3L{y} (s) = 0(
s2L{y} (s)− sy′(0)− y(0)

)
− 2 (sL{y} (s)− y(0))− 3 (L{y} (s)) = 0

= L{y} (s)
(
s2 − 2s− 3

)
= s− 1.

Note how the auxiliary equation appears in terms of s here.
Solving for L{y} (s),

L{y} (s) = s− 1

s2 − 2s− 3
.

Rearranging the right side into partial fractions,

L{y} (s) = 1/2

s+ 1
+

1/2

s− 3
.

Taking the inverse Laplace transform of both sides,

y =
1

2
e−t +

1

2
e3t.

Example. Solve the following IVP using a Laplace transform.
y′′ + 2y′ + 5y = 0

y(0) = 1

y′(0) = 5
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Taking the Laplace transform of both sides and solving for L{y} (s),
L{y′′} (s) + 2L{y′} (s) + 5L{y} (s) = 0

L{y} (s)
(
s2 + 2s+ 5

)
− y′(0)− sy(0)− 2y(0) = 0

L{y} (s)
(
s2 + 2s+ 5

)
= s+ 7

L{y} (s) = s+ 7

s2 + 2s+ 5
.

The denominator of the right hand side cannot be factored into linear terms. Instead, we’ll complete
the square.

=
s+ 7

(s+ 1)2 + 22
.

If the numerator was s+ 1, we’d have a cos that’s been shifted left by 1 in the s domain by -1. If the
numerator were a multiple of 2, we’d have a sin that’s been similarly shifted. We can rewrite the right
hand side as two terms: one for cos and the other for sin with the appropriate numerators.

=
s+ 1

(s+ 1)2 + 22
+ 3

2

(s+ 1)2 + 22
.

Taking the inverse Laplace transform of both sides,
y = e−t cos (2t) + 3e−t sin (2t).

We can also use the Laplace transform on non-homogeneous equations. The method will even take
care of the cases where what would be our guess for the particular solution is already included in the
homogeneous solution.
Example. Solve the following IVP using a Laplace transform.

y′′ + 2y′ + 5y = e−t

y(0) = 1

y′(0) = 5

This equation is the same as the previous example except for the e−t, so we can use some of our
previous work.

L{y} (s) (s2 + 2s+ 5) = s+ 7 +
1

s+ 1

L{y} (s) = s2 + 8s+ 8

(s+ 1)(s2 + 2s+ 5)
.

Rearranging the right hand side into partial fractions with completed squares,

L{y} (s) = 1

4

(
1

s+ 1

)
+

1

4

(
3

s+ 1

(s+ 1)2 + 22
+ 9

2

(s+ 1)2 + 22

)
.

Taking the inverse Laplace transform of both sides,

y =
1

4
e−t +

3

4
e−t cos (2t) + 3e−t sin (2t).
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Example. Solve the following IVP using a Laplace transform.
8 cos (2t)− y′′ = 4y

y(0) = 1

y′(0) = 0

Rearranging the equation into the standard form for a linear heterogeneous ODE,

y′′ + 4y = 8 cos (2t).

Taking the Laplace transform of both sides,

s2L{y} (s)− y′(0)− sy(0) + 4L{y} (s) = 8
s

s2 + 22
.

Plugging in the values given by the IVP and rearranging,

L{y} (s)
(
s2 + 4

)
=

s3 + 12s

s2 + 22
.

Dividing to solve for L{y} (s),

L{y} (s) = s3 + 12s

(s2 + 22)(s2 + 22)
.

Rearranging the right side into partial fractions,

L{y} (s) = s

s2 + 22
+ 2

22s

(s2 + 22)2
.

Taking the inverse Laplace transform of both sides,

y = cos (2t) + 2t sin (2t).

5.5 Convolutions
5.5.1 Motivation
Taking Laplace transforms can be difficult. We already have some basic formulas derived from lin-
earity properties of integrals that allow us to not evaluate an integral every time.

One sort of formula that would be nice to have is one relating products of functions. If we know that

H(s) = F (s)G(s),

where F andG are the Laplace transforms of f and g, it’d be nice if we could find the inverse Laplace
transform of H to get h. This is one way to define the convolution.
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5.5.2 Definition & Convolution Theorem
Definition. Let F (s) and G(s) be the Laplace transforms of functions f(t) and g(t). Then

F (s)G(s) = L{f ⋆ g} (s) .

Note how using this definition we can see that ⋆, the convolution operator, is commutative.
Defining this function that works like multiplication over Laplace transforms is only really useful if
we have a formula for it, so let’s derive one. Starting from the left-hand side of the equation in the
definition and applying the integral definition of the Laplace transform,

F (s)G(s) =

∫ ∞

0

e−suf(u)du ·
∫ ∞

0

e−svf(v)dv.

Making this product of integrals into a double integral (we usually do this in reverse when simplifying
a double integral),

=

∫ ∞

0

∫ ∞

0

e−s(u+v)f(u)g(v)dudv.

Letting t = u+ v,
=

∫ ∞

0

∫ t

0

e−stf(u)g(t− u)dudt.

Bringing e−st outside of the innermost integral,

=

∫ ∞

0

e−st

[∫ t

0

f(u)g(t− u)du
]
dt.

We see that we have the Laplace transform of the expression in the square brackets. So,

f ⋆ g =

∫ t

0

f(u)g(t− u)du.

This is an equivalent way to define the convolution.

Example. Compute the convolution of t2 with t.

Applying the formula we just derived,

t2 ⋆ t =

∫ t

0

u2(t− u)du

= t
u3

3
− u4

4

∣∣∣∣t
0

=
t4

3
− t4

4

=
t4

12
.
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5.5.3 Properties
Convolution inherits all the linearity properties of integration. Let f(t), g(t), and h(t) be piecewise
continuous on [0,∞). Let a be a real constant. Then

Commutativity – f⋆ = g ⋆ f

Associativity – (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)

Distributivity over Addition – f ⋆ (g + h) = (f ⋆ g) + (f ⋆ h)

Associativity over Scalar Multiplication – a(f ⋆ g) = (af) ⋆ g

5.5.4 Applications
When we’re using Laplace transforms to solve a differential equation, if we recognize L{y} (s) as
the product of two functions for which we know the inverse Laplace transforms, we can compute a
convolution to find y.

Example. Solve the following differential equation using Laplace transforms and convolutions. Let a
and c be real constants where a ̸= c.

y′ − ay = ect.1

Taking the Laplace transform of both sides,

sL{y} (s)− aL{y} (s) = 1

s− c

L{y} (s) (s− a) =
1

s− c
.

Solving for L{y} (s),
L{y} (s) = 1

s− c
· 1

s− a
.

Recognizing the right-hand side of the equation as the product of the Laplace transforms of ect and

1When we’re taking the Laplace transform of both sides, we implicitly use that y(0) = 0.
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eat, we can solve for y by finding the convolution of ect and eat. Applying our formula,

F (s) =
1

s− c
and G(s) =

1

s− a

f(t) = ect and g(t) = eat.

y(t) = f(t) ⋆ g(t)

=

∫ t

0

ecuea(t−u)du

= eat
∫ t

0

eu(c−a)du

= eat
(
e(c−a)t

c− a
− 1

c− a

)
=

ect − eat

c− a
.
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Chapter 6

Additional Resources

6.1 Tests
The following tests are modeled off of real tests given in an undergraduate introductory differential
equations course. The tests is meant to be taken during a 75 minute period without the use of notes,
textbooks, the internet, or calculators. Answers may be left in unsimplified form unless the question
asks for a certain form.

6.1.1 Test 1
1. Determine if y − ln y = x2 + 1 is an implicit solution to dy

dx = 2xy
y−1

. Give reasons for your
answer.

2. Find the function y(x) that satisfies the differential equation

dy
dx + 4y − e−x = 0 and y(0) = 4

3
.

3. Find the solution to the initial value problem dx
dt = x (t−3)2

x+2
, x(3) = −1. You may leave the

solution in implicit form.

4. Find the general solution to the differential equation y′′′ + y′′ − 2y = 0.

5. A tank contains 90kg of salt and 2000L of water. Pure water enters the tank at a rate of 3L/min.
The solutions is mixed and drains from the tank at a rate of 6L/min.

(a) What is the amount of salt in the tank initially?
(b) Find the amount of salt in the tank after 2 hours.

6. A detective arrives at a murder scene at noon that has an ambient temperature of 16◦C. He
measures the temperature of the body as 34◦C. He then returns an hour later and measures
the temperature of the body as 32◦C. Assuming the normal body temperature is 37◦C, write a
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differential equation using Newton’s law of cooling that models the situation. Describe, without
actually solving the equation, how one would solve the equation to find then the murder took
place.

6.1.2 Test 1 Answers
1. Using implicit differentiation,

dy
dx − 1

y

dy
dx = 2x.

So,
dy
dx =

2x

1− 1/y
=

2xy

1− y
.

So, y − ln y = x2 + 1 is an implicit solution to dy
dx = 2x

y−1
as we have demonstrated by differ-

entiating and checking.

2. We will use the integrating factor method. Rewriting the equation so all terms involving y are
on the left,

y′ + 4y = e−x.

In this case,
a(x) = 4 and b(x) = e−x.

So,
µ(x) = e

∫
a(x)dx = e4x.

Multiplying both sides by µ(x), (
e4xy

)′
= e3x.

Integrating both sides,
e4xy =

1

3
e3x + C1.

Solving for y,
y =

1

3
e−x + C1e

−4x.

Plugging in x = 0 and y = 4
3
to solve for C1,

4

3
=

1

3
+ C1 =⇒ C1 = 1.

So, our answer to the IVP is
y =

1

3
e−x + e−4x.

3. The equation is separable and can be rewritten as

x+ 2

x
dx = (t− 3)2dt, x ̸= 0.
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We’ll come back later to see if x = 0 is a solution. Integrating both sides,

x+ 2 ln
∣∣x∣∣ = (t− 3)3

3
+ C1, x ̸= 0.

Plugging in x = −1 and t = 3 to solve for C1,

1 + 2 ln 1 = 0 + C1 =⇒ C1 = −1, x ̸= 0.

So, our solution to the IVP is

x+ 2 ln
∣∣x∣∣ = (t− 3)3

3
− 1, x ̸= 0.

Checking if x = 0 is a solution,
0 = 0

(t− 3)2

2
.

So, x = 0 is a general solution. However for our solution x(t) = 0, x(3) ̸= −1, to x = 0 is
not a solution to the IVP. So, our solution to the IVP remains.

4. This equation is linear and homogeneous, so we can find the general solution using the auxiliary
equation. Extracting the auxiliary equation and finding the roots,

r3 + r2 − 2 = 0 =⇒ r = 1,−1± i.

So, the general solution is

y = C1e
x + C2e

−x cosx+ C3e
−x sinx.

5. (a) As stated in the problem, 90kg of salt is in the tank initially.
(b) So find the amount of salt in the tank after 2 hours we’ll need to set up a differential

equation that models the situation. Let y(t) be the number of kgs of salt in the tank after
tminutes. Let V (t) be the volume of brine in the tank after tminutes. Modeling the salt,

dy
dt = salt rate in− salt rate out = 0− salt rate out.

Modeling the volume,
dV
dt = brine rate in− brine rate out = 3

L

min
− 6

L

min
= −3

L

min
.

We’re also given that V (0) = 2000L, so we can find that

V (t) = 2000− 3t.

Now we can write an equation to find salt rate out.

salt rate out = ykg of salt
V L of brine ∗

6L

min =
6y

2000− 3t
.
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This allows us to write a differential equation for y(t).

dy
dt = −salt rate out = −6y

2000− 3t
=

6y

3t− 2000
.

This equation is separable and can be rewritten as

dy
y

=
6dt

3t− 200
.

Integrating both sides,
ln
∣∣y∣∣ = 2 ln

∣∣3t− 2000
∣∣+ C1.

We know that y > 0 always because we can’t have a negative amount of salt. Further,
we’re concerned with the time between t = 0 and t = 120 < 2000

3
, so 3t − 2000 < 0.

This means we can rewrite our equation as

ln y = 2 ln (2000− 3t) + C1.

Exponentiating both sides,1
y = C1(2000− 3t)2.

Applying our initial condition of y(0) = 90 to solve for C1,

90 = C1(2000)
2 =⇒ C1 =

20002

90
.

Plugging our solution for C1 back into our general solution,

y = 90

(
2000− 3t

2000

)2

.

6. Newton’s law of cooling is
dT
dt = k (Te − T )

where k is some constant, Te is the temperature of the environment, and T is the current
temperature of the object. In the detective’s case, Te = 16, so

dT
dt = k(16− T )

with initial conditions T (12) = 34 and T (13) = 32. One could then solve this equation and
apply the initial conditions to solve for k and the constant of integration C. Then one would
need to solve for x in T (x) = 37. This value of x will tell you the number of hours after
midnight one the same day that the murder took place2.

1C1 is different from the C1 previously, but it’s still a constant.
2For those that do solve the equation, x ≈ 10.691, so the murder should have took place at about 10:41am.
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6.1.3 Test 2
1. Find the general form of a particular solution to the differential equation

y′′ + 10y′ + 25y = f(t)

for each of the following cases:

(a) f(t) = cos (−5t) + 7t sin (−5t)

(b) f(t) = te−5t.

2. Consider the matrix A =

 1 0 6
3 1 3
−3 3 −8

. Compute its characteristic polynomial and find all
its eigenvalues. Pick one of the eigenvalues and compute a corresponding eigenvector.

3. Choose one of the two parts.

(a) Compute the general solution for the equation y′′ − 5y′ + 6y = 6e4t − 10et.
(b) Use the method of variation of parameters to find a particular solution to y′′ + 9y =

csc (3t).

4. A 1kg mass is attached to a spring with stiffness 8N/m. The damping constant is 6Ns/m. At
time t = 0, an external force F (t) = 8 sin (2t) is applied to the system as the mass is pushed
rightward from equilibrium with a velocity of 1m/s.

(a) Find the displacement function of the mass.
(b) Determine the steady-state solution for the system.
(c) Write the steady-state solution in the form A cos (ωt− ϕ) indicating the amplitude, fre-

quency, period, and phase-shift.

5. Choose one of the following two parts.

(a) Consider the following linear system of differential equations with given initial conditions:{
x′
1 = 2x1 − 3x2

x′
2 = x1 − 2x2

, x1(0) = 2, x2(0) = 3

(i) Write the system in normal form.

(ii) Show that the vectors
[
3et

et

]
and

[
e−t

e−t

]
are solutions to the homogeneous system.

(iii) Write the general solution for the system and then compute the unique solution sat-
isfying the initial conditions.
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(b) The matrix A =

[
−1 2
−1 3

]
has eigenvalues λ = −2± i. Find the general solution to the

system x⃗′ = Ax⃗.

6. Consider the system x⃗′ =

[
2 −1
3 −2

]
x⃗ +

[
2t

3t+ 3

]
. It is known that the corresponding homo-

geneous sysstem has general solution x⃗h = C1e
t

[
1
1

]
+ C2e

−t

[
1
3

]
. Find the general solution

for the given heterogeneous system.

6.1.4 Test 2 Answers
1. For both (a) and (b), we’ll need to compute the general solution to make sure any terms that

we’d guess as part of the particular solution aren’t already part of the general solution. The
auxiliary equation and its roots are

r2 + 10r + 25 =⇒ r = −5 (double root).

So, the general solution is
C1e

−5t + C2te
5t.

(a) We have a trig term and a linear term times a trig term, so the particular solution has the
form

yp = A cos (−5t) + B sin (−5t) + Ct cos (−5t) +Dt sin (−5t).

So, without solving for A, B, C, and D, the general form of a particular solution is

C1e
−5t + C2te

5t + A cos (−5t) + B sin (−5t) + Ct cos (−5t) +Dt sin (−5t).

(b) We have a linear term time e−5t. However, up to linear terms are already represented in
the general solution, so we need to include another factor of t. So, the particular solution
has the form

yp = At2e−5t.

So, without solving for A, the general form of a particular solution is

C1e
−5t + C2te

5t + At2e−5t.

2. Finding p(λ),

p(λ) = det

 1 0 6
3 1 3
−3 3 −8

 = −λ3 − 6λ2 + 6λ+ 55.

So, p(λ) = 0 when

λ = −5,
−1± 3

√
5

2
.
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We’ll find the eigenvector for λ = −5. 6 0 6 0
3 6 3 0
−3 3 3 0

→

 1 0 1 0
0 1 0 0
0 0 0 0

 =⇒ v⃗ = t

−1
0
1


3. The instructions say only do one, but we’ll do both for the answers.

(a) The auxiliary equation and its roots are

r2 − 5r + 6 = 0 =⇒ r = 2, 3.

So, the homogeneous solution is

yh = C1e
2t + C2e

3t.

We use the method of undetermined coefficients to find yp. We’ll guess that yp has the
form

yp = Ae4t +Bet.

Solving for A and B3,

y′′p − 5y′p + 6yp = 6e4t − 10et =⇒ A = 3, B = −5.

So, we can write the particular solution

yp = 3e4t − 5et.

So, the general solution is

y = C1e
2t + C2e

3t + 3e4t − 5et.

(b) Although this is a second-order equation, we’ll do the version of variation of parameters
that also works for higher orders too. First, we need to find our fundamental solutions
that are part of the homogeneous solution by finding the roots of the auxiliary equation.

r2 + 9 = 0 =⇒ r = ±3i.

So, the homogeneous solution is

yh = C1 cos (3t) + C2 sin (3t),

and the fundamental solutions are

y1 = cos (3t)
y2 = sin (3t).

3The algebra of solving for A and B have been omitted for brevity.
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So, the Wronskian matrix and its determinant are

[W ] =

[
cos (3t) sin (3t)

−3 sin (3t) 3 cos (3t)

]
,W = 3 cos2 (3t) + 3 sin2 (3t) = 3.

The sub-matrices are

W1 = det
[
0 sin (3t)
1 3 cos (3t)

]
= − sin (3t)

W2 = det
[
cos (3t) 0

−3 sin (3t) 1

]
= cos (3t).

Solving for v1 and v2,

v1 =

∫
− csc (3t) sin (3t)

3
dt = −1

3
t+ C1

v2 =

∫ csc (3t) cos (3t)
3

dt = 1

9
ln
∣∣ sin (3t)∣∣+ C2.

Solving for y,

y = cos (3t)
(
−1

3
t+ C1

)
+ sin (3t)

(
1

9
ln
∣∣ sin (3t)∣∣+ C2

)
= C1 cos (3t) + C2 sin (3t)−

1

3
t cos (3t) + 1

9
sin (3t) ln

∣∣ sin (3t)∣∣.
4. Below is a diagram that depicts the situation.

m = 1

k = 8

b = 6 {
y′(0) = 1

Fext(t) = 8 sin (2t)

y = 0

(a) Our IVP to model this is 
y′′ + 6y′ + 8y = 8 sin (2t)
y′(0) = 1

y(0) = 0

.

Solving the auxiliary equation,

r2 + 6r + 8 = 0 =⇒ r = −4,−2.
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So, our homogeneous solution is
yh = C1e

−4t + C2e
−2t.

We’ll use the method of undetermined coefficients to find yp. We’ll guess that yp has the
form

yp = A cos (2t) + B sin (2t).
Solving for A and B4,

y′′p + 6y′p + 8yp = 8 sin (2t) =⇒ A =
−3

5
, B =

1

5
.

So, our particular solution is

yp =
−3

5
cos (2t) + 1

5
sin (2t),

and our general solution is

y = C1e
−4t + C2e

−2t − 3

5
cos (2t) + 1

5
sin (2t).

Plugging in our initial condition to solve for C1 and C2
5,

y′(0) = 1, y(0) = 0 =⇒ C1 =
−9

10
, C2 =

3

2
.

So, our solution to the IVP is

y(t) =
−9

10
e−4t +

3

2
e−2t − 3

5
cos (2t) + 1

5
sin (2t) m.

(b) As t grows large, the exponential terms will decrease to 0 and have minimal effect. So,
the steady-state solution yss is just the terms with cos and sin.

yss(t) =
−3

5
cos (2t) + 1

5
sin (2t) m

(c)

yss(t) =

√
2

5
cos
(
2x+ arctan

(
1

3

)
+ π

)
m.

The amplitude, frequency, period, and phase shift are

A =

√
2

5
m

f =
1

π
Hz

T = π secs

ϕ = arctan
(
1

3

)
+ π.

4The algebra of solving for A and B has been omitted for brevity.
5The algebra of solving for C1 and C2 has been omitted for brevity.
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5. The instructions say only do one, but we’ll do both for the answers.

(a) (i) The system in matrix form is

x⃗′ =

[
2 −3
1 −2

]
x⃗, x⃗(0) =

[
2
3

]
.

(ii) We’ll check the first vector.[
3et

et

]
=

[
2 −3
1 −2

] [
3et

et

]
=

[
3et

et

]
.

Next we’ll check the second vector.[
−e−t

−e−t

]
=

[
2 −3
1 −2

] [
e−t

e−t

]
=

[
−e−t

−e−t

]
.

So, both vectors are solutions to the homogeneous equation.
(iii) Since we know two linearly independent solutions from (ii), we can write the general

solution as
x⃗ = C1

[
3et

et

]
+ C2

[
−e−t

−e−t

]
.

Applying the initial conditions6,

x⃗(0) =

[
2
3

]
=⇒ C1 =

−1

2
, C2 =

−7

2
.

So, the solution to the IVP is

x⃗ =
−1

2

[
3et

et

]
− 7

2

[
−e−t

−e−t

]
.

(b) Since the eigenvalues are a complex conjugate pair, we only need to consider one eigen-
value to find both corresponding eigenvectors. We’ll use λ = −2 + i.[

1− i 2 0
−1 −1− i 0

]
→
[
1 1− i 0
0 0 0

]
→ t

([
−1
1

]
+

[
1
0

])
.

So, the two eigenvectors are [
−1
1

]
,

[
1
0

]
.

Remembering our solution form for complex eigenvalues, we get the solution

x⃗ = C1e
−2t

(
cos (t)

[
−1
1

]
− sin (t)

[
1
0

])
+ C2e

−2t

(
cos (t)

[
1
0

]
+ sin (t)

[
−1
1

])
.

6The algebra of solving for C1 and C2 has been omitted for brevity
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6. We’ll use the method of undetermined coefficients for systems to find x⃗p. We’ll guess that x⃗p

has the form
x⃗p = a⃗t+ b⃗.

Solving for a⃗ and b⃗7,

x⃗p
′ =

[
2 −1
3 −2

]
x⃗p =⇒ a⃗ =

[
−1
0

]
, b⃗ =

[
1
3

]
.

So, we have our solution for x⃗p,

x⃗p = t

[
−1
0

]
+

[
1
3

]
.

The general solution is thus

x⃗ = C1e
t

[
1
1

]
+ C2e

−t

[
1
3

]
+ t

[
−1
0

]
+

[
1
3

]
.

6.1.5 Test 3
1. Write the integral definition of the Laplace transform.

2. Find the Laplace transform of the following functions. Be sure to give the domains. Use the
integral definition for (a) and (e). Be sure to state the domain of the transformed function and
any rules of Laplace transforms you use.

(a)
f(x) = ex

(b)
h(t) = sin t+ 2 cos 3t

(c)
j(t) = e3t

(
t2 + 3t+ 2

)
(d)

b(t) =
d
dt(e

3t+1 + e1−t)

3. Find the inverse Laplace transform of the following functions.

(a)
F (s) =

1

1 + s

7The algebra of solving for a⃗ and vecb has been omitted for brevity.
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(b)
H(s) =

s2 + 2s+ 1

s3 − 4s2 + 5s− 2

(c)
J(s) =

s− 4

s2 − 8s+ 32

(d)
A(s) =

768

(2s+ 3)5

4. Find the general solution to the following differential equation using one of the methods you
learned previously and by Laplace transform. Show that the two methods give the same answer.

2y′′ − 3y′ + y = 10 sinx

5. Solve the following IVP by Laplace transform.
2y′′ + 4y′ − 6y = te−3t

y′(0) = 0

y(0) = 1

6.1.6 Test 3 Answers
1. Let f(t) be a function defined for t ≥ 0.

L{f} (s) =
∫ ∞

0

e−stf(t)dt

2. (a)

L{ex} (s) =
∫ ∞

0

e−stetdt

=

∫ ∞

0

et(1−s)dt

=
1

1− s
et(1−s)

∣∣∣∣∞
0

=
1

1− s

(
lim
a→∞

ea(1−s) − e0(1−s)
)

=
1

1− s
(0− 1) , s > 1

=
1

s− 1
, s > 1
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(b)
L{sin t+ 2 cos 3t} (s) = L{sin t} (s) + 2L{cos 3t} (s)

by the linearity of the Laplace transform.

= L{sin t} (s) + 2

3
L{cos t} (s

3
)

as specified in the table of Laplace transforms for sin and cos.

=
1

s2 + 12
+

2

3

(
s/3

(s/3)2 + 12

)
=

1

s2 + 12
+

2

3

3s

s2 + 32

=
1

s2 + 12
+

2s

s2 + 32

=
2s3 + s2 + 2s+ 9

(s2 + 1) (s2 + 9)

(c)
L
{
e3t
(
t2 + 3t+ 2

)}
(s) = L

{
e3tt2

}
(s) + 3L

{
e3tx

}
(s) + 2L

{
e3t
}
(s)

by the linearity of the Laplace transform.

=
2!

(s− 3)2+1
+ 3

1!

(s− 3)1+1
+ 2

0!

(s− 3)0+1

as specified in the table of Laplace transforms for an exponential and power of t.

=
2

(s− 3)3
+

3

(s− 3)2
+

2

(s− 3)

=
2(s− 3)2 + 3(s− 3) + 2

(s− 3)3

=
2s2 − 9s+ 11

(s− 3)3

(d)
L
{ d
dt(e

3t+1 + e1−t)

}
(s) = sL

{
e3t+1 + e1−t

}
(s)−

(
e3·0+1 + e1−0

)
by the Laplace transform of a derivative.

= s
(
eL
{
e3t
}
(s) + eL

{
e−t
}
(s)
)
− 2e

by the linearity of the Laplace transform.

= s

(
e

1

s− 3
+ e

1

s+ 1

)
− 2e
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as specified in the table of Laplace trasforms for the Laplace transform of an exponential.

=
se

s− 3
+

se

s+ 1
− 2e

=
se(s+ 1) + se(s− 3)− 2e(s+ 1)(s− 3)

(s+ 1)(s− 3)

=
2e(s+ 3)

(s+ 1)(s− 3)

3. (a)
L−1

{
1

1 + s

}
(t) = e−t

(b)

L−1

{
s2 + 2s+ 1

s3 − 4s2 + 5s− 2

}
(t) = L−1

{
−8

s− 1

}
(t)− L−1

{
4

(s− 1)2

}
(t) + L−1

{
9

s− 2

}
(t)

= −8et − 4ett+ 9e2t

(c)

L−1

{
s− 4

s2 − 8s+ 32

}
(t) = L−1

{
s− 4

(s− 4)2 + 42

}
(t)

= e4t cos (4t)

(d)

L−1

{
768

(2s+ 3)5

}
(t) = L−1

{
4!

(s+ 3
2
)4+1

}
(t)

= e−
3
2
tt4

4. We’ll use method of undetermined coefficients. Extracting and solving the axillary equation,

2r2 − 3r + 1 = 0 =⇒ r =
1

2
, 1.

So, our homogeneous solution is

yh = C1e
x
2 + C2e

x.

We’ll guess that the particular solution has the form

yp = A sinx+B cosx
2y′′p − 3y′p + yp = 10 sinx =⇒ A = −1, B = 3.
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So,
yp = − sinx+ 3 cosx,

and our general solution is

y = C1e
x
2 + C2e

x − sinx+ 3 cosx.

Now we’ll use Laplace transform. Taking the Laplace transform of both sides,

L{2y′′ − 3y′ + y} (s) = L{10 sinx} (s)

L{y} (s) · (2s2 − 3s+ 1) =
10

s2 + 1
+ 2y′(0) + 3y(0)− 2sy(0)

L{y} (s) · (2s2 − 3s+ 1) =
10 + 3y(0)s2 + 3y(0)− 2s3y(0)− 2sy(0) + 2s2y′(0) + 2y′(0)

s2 + 1

L{y} (s) = −2y(0)s3 + (3y(0) + 2y′(0))s2 − 2sy(0) + 3y(0) + 2y′(0) + 10

(s2 + 1) (2s2 − 3s+ 1)

=
−2y(0)s3 + (3y(0) + 2y′(0))s2 − 2sy(0) + 3y(0) + 2y′(0) + 10

(s2 + 1) (2s− 1) (s− 1)

=
−4(y(0) + y′(0) + 4)

2s− 1
+

y(0) + 2y′(0) + 5

s− 1
+

3s− 1

s2 + 1
.

Let C1 = −2(y(0) + y′(0) + 4) and C2 = y(0) + 2y′(0) + 5.

L{y} (s) = 2C1

2s− 1
+

C2

s− 1
− 1

s2 + 1
+ 3

s

s2 + 1
.

Taking the inverse Laplace transform of both sides,

y = C1e
x
2 + C2e

x − sinx+ 3 cosx.

We can see that we have the same solution for y in both methods.

5. Taking the Laplace transform of both sides and solving for the Laplace transform of y,

L{2y′′ + 4y′ − 6y} (s) = L
{
te−3t

}
(s)

L{y} (s) · (2s2 + 4s− 6)− 2sy(0)− 2y′(0)− 4y(0) =
1

(s+ 3)2

L{y} (s) · (2s2 + 4s− 6)− 2s− 4 =
1

(s+ 3)2

L{y} (s) · (2s2 + 4s− 6) =
1

(s+ 3)2
+ 2s+ 4

=
2s3 + 16s2 + 42s+ 37

(s+ 3)2

L{y} (s) = 2s3 + 16s2 + 42s+ 37

2(s+ 3)3(s− 1)
.
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Converting the right side to partial fractions,

L{y} (s) = 31

128(s+ 3)
− 1

32(s+ 3)2
− 1

8(s+ 3)3
+

97

128(s− 1)
.

Taking the inverse Laplace transform of both sides to solve for y,

y =
31

128
e−3t − 1

32
te−3t − 1

16
t2e−3t +

97

128
et.

6.2 Online Resources
Below is a list of other useful resources for learning differential equations. Most are freely accessible
online.

• Paul’s Online Notes – Goes deeper than this text and has additional practices problems.

• Khan Academy – Video lectures and practice problems.

• PatrickJMT – YouTube series focused mostly on solving example problems.

• MIT OCW18.03SC – Complete series of lectures, recitations, assignments, practice problems,
lecture notes, and exams needed for independent study.

• Jeffery R. Chasnov: Differential Equations – Online textbook from the Hong Kong University
of Science and Technology. Adapted from Coursera’s Differential Equations for Engineers.

6.3 Contributors
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of number of commits as name (GitHub username).

William Boyles (wmboyles) Nate A (aneziac) Ashwin Murali (Suzukazole)
github-actions[bot] (github-actions[bot]) आदित्य देव (dev-aditya) Calvin McPhail-Snyder (esselltwo)

Jared Geller (jaredgeller) Robert Washbourne (rawsh)
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Appendix A

Reference Tables

A.1 Table of Laplace Transforms
Below is a brief table of Laplace transforms. Although most differential equations textbooks have a
longer table, this table covers all Laplace transforms done in this text.

f(t) F (s) = L{f} (s)

f(at) 1
a
F
(
s
a

)
f ′(t) sF (s)− f(0)

f (n)(t) snF (s)−
∑n−1

i=0 sn−i−1f (i)(0)

tnf(t) (−1)nF (n)(s)

1
t
f(t)

∫∞
s

F (u)du

a a
s
, s > 0

eat 1
s−a

, s > a

tn, n = 1, 2, . . . n!
sn+1 , s < 0

eattn, n = 1, 2, . . . n!
(s−a)n+1 , s > a

sin (bt) b
s2+b2

, s > 0

cos (bt) s
s2+b2

, s > 0

eat sin (bt) s
(s−a)2+b2

, s > a

eat cos (bt) s−a
(s−a)2+b2

, s > a
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